JPH07145197A - Ets transcription factor - Google Patents
Ets transcription factorInfo
- Publication number
- JPH07145197A JPH07145197A JP5295393A JP29539393A JPH07145197A JP H07145197 A JPH07145197 A JP H07145197A JP 5295393 A JP5295393 A JP 5295393A JP 29539393 A JP29539393 A JP 29539393A JP H07145197 A JPH07145197 A JP H07145197A
- Authority
- JP
- Japan
- Prior art keywords
- pro
- leu
- glu
- gln
- ser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はRasにより活性化され
る新規なETS転写因子、それをコードするDNAおよ
び該ETS転写因子に対する抗体に関するもので医学の
分野で利用される。FIELD OF THE INVENTION The present invention relates to a novel ETS transcription factor activated by Ras, DNA encoding the ETS transcription factor and an antibody against the ETS transcription factor, and is used in the medical field.
【0002】[0002]
【従来の技術】癌遺伝子Etsはトリの赤芽球症を起こ
すレトロウイルスE26に見い出されたものである(Nun
n, M.F., et al., Nature, 306, 391, 1983)。Ets
癌原遺伝子をクローニングする過程で多くの遺伝子がE
tsと類似した塩基配列をもつことがわかり、Etsフ
ァミリーと呼ばれ、Ets-1、GABPα、PU1、P
EA-3など十数種類のものが知られている。これらEt
s遺伝子は、それぞれ発現される組織が異なっているこ
とから組織特異的な機能をもつことが予想され、またヒ
トの特定の腫瘍に見い出される染色体転座の切断部位近
傍に座位することから、これら腫瘍の発症メカニズムと
の関連性に強い関心が払われた(Rao, V.N.et al., Sci
ence, 244, 66, 1989)。The oncogene Ets was found in the retrovirus E26 that causes avian erythroblastosis (Nun.
n, MF, et al., Nature, 306 , 391, 1983). Ets
In the process of cloning protooncogenes, many genes
It was found to have a nucleotide sequence similar to that of ts and is called the Ets family. Ets-1, GABPα, PU1, P
Over a dozen types are known, such as EA-3. These Et
Since the s gene is expected to have a tissue-specific function because the expressed tissues are different, and since it is located near the cleavage site of the chromosomal translocation found in specific human tumors, these Strong attention was paid to the relationship with the pathogenesis of tumors (Rao, VNet al., Sci.
ence, 244 , 66, 1989).
【0003】その後の研究によって、モロニイマウス肉
腫ウイルスの転写活性を調節する機能を有すること(Gu
nther, C.V. et al., Genes Development, 4, 667, 199
0 )、Tリンパ球抗原受容体を構成するα鎖遺伝子のエ
ンハンサー領域に Ets-1が特異的に結合して、転写を活
性化することが見い出され(Leiden, J.M., Science,25
0, 814, 1990 )、新しい転写因子として注目された。Subsequent studies showed that it has a function of regulating the transcriptional activity of Moroni murine sarcoma virus (Gu
nther, CV et al., Genes Development, 4 , 667, 199
0), it was found that Ets-1 specifically binds to the enhancer region of the α chain gene that constitutes the T lymphocyte antigen receptor and activates transcription (Leiden, JM, Science, 25.
0 , 814, 1990), which attracted attention as a new transcription factor.
【0004】Etsファミリー蛋白質のアミノ酸配列の
特徴は、myb癌遺伝子産物と同じく、トリプトファン
クラスターが存在し、この領域はETSドメインと呼ば
れDNA結合部位であることがわかっている。このドメ
インを介し、IL-2エンハンサー、ポリオーマウイルス
エンハンサー、HTLV-1などが保存するGGAA/T
コアモチーフを認識する。このようにEtsファミリー
は細胞の外からのシグナル、またfmsやsrcなどの
癌遺伝子のシグナルに応じて、多くの遺伝子の転写活性
を促進し細胞の機能に深く関与していることがわかって
きたが、これらEtsファミリーの役割については、い
まだ不明の点が多い。The characteristics of the amino acid sequence of Ets family proteins are that, like the myb oncogene product, there is a tryptophan cluster, and this region is called the ETS domain and is known to be a DNA binding site. GGAA / T conserved by IL-2 enhancer, polyomavirus enhancer, HTLV-1, etc. via this domain
Recognize core motifs. Thus, it has been revealed that the Ets family promotes the transcriptional activity of many genes and is deeply involved in the function of cells in response to signals from the outside of cells and oncogene signals such as fms and src. However, there are still many unclear points about the role of these Ets families.
【0005】ファイブロブラストをv−rafやc−H
a−rasでトランスフォームすると、ポリオーマウイ
ルスエンハンサーのEts結合部位、PEA3エレメン
トに結合する蛋白質(Etsファミリーと考えられる)
が増加することが知られていた。この蛋白質は蛋白合成
阻害剤存在下においても増加が観察されることから、r
asの下流に位置するraf−1 Kinase か、またはそ
の下流のMAP Kinase により直接または間接的にリン
酸化され、活性されたものであろうと考えられた。新規
なEts転写因子の解明は、細胞のシグナル伝達機構解
明の道を開くことから、癌細胞の増殖メカニズムを理解
する上でもさらなる解明が望まれている。The fibroblast is v-raf or c-H.
Proteins that bind to the Ets binding site of the polyomavirus enhancer, PEA3 element when transformed with a-ras (probably Ets family)
Was known to increase. This protein is observed to increase even in the presence of protein synthesis inhibitors.
It was considered that raf-1 Kinase located downstream of as or phosphorylated by MAP Kinase downstream thereof was directly or indirectly phosphorylated and activated. Since the elucidation of a novel Ets transcription factor opens the way to elucidate the signal transduction mechanism of cells, further elucidation is desired in understanding the growth mechanism of cancer cells.
【0006】[0006]
【発明が解決しようとする課題】本発明はRasにより
活性化される新規なETS転写因子、該転写因子をコー
ドするDNAおよび抗体の提供を目的とする。DISCLOSURE OF THE INVENTION The object of the present invention is to provide a novel ETS transcription factor activated by Ras, a DNA encoding the transcription factor and an antibody.
【0007】[0007]
【課題を解決するための手段】上記現状に鑑み、本発明
者らは新規なETS転写因子を探究すべく鋭意研究を行
った。まずこれまで知られているEtsファミリー転写
因子の構造を解析し、よく保存されている塩基配列部位
をプライマーとして選択する。mRNAより合成した単
鎖cDNAを鋳型としてRT−PCRを行い、得られた
PCR産物の塩基配列を構造解析の結果、公知のEts
ファミリーの他に新規なETS転写因子(以下、PEA
3βと称す)を確認し、本発明を完成するに至った。す
なわち、本発明は、配列番号1記載のアミノ酸配列を含
有してなる新規なETS転写因子PEA3β、配列番号
2記載のPEA3βをコードするDNAを含有してなる
DNAおよびPEA3βを抗原とする抗体、に関するも
のである。SUMMARY OF THE INVENTION In view of the above situation, the present inventors have conducted diligent research to search for a novel ETS transcription factor. First, the structure of the Ets family transcription factor known so far is analyzed, and a well-conserved nucleotide sequence site is selected as a primer. RT-PCR was carried out using a single-stranded cDNA synthesized from mRNA as a template, and the base sequence of the resulting PCR product was subjected to structural analysis, which revealed that known Ets
In addition to the family, a novel ETS transcription factor (hereinafter PEA
3) was confirmed and the present invention was completed. That is, the present invention relates to a novel ETS transcription factor PEA3β containing the amino acid sequence of SEQ ID NO: 1, a DNA containing the DNA encoding PEA3β of SEQ ID NO: 2, and an antibody using PEA3β as an antigen. It is a thing.
【0008】本発明のPEA3βはHa−RasやRa
f−1により活性の増大がみられることから、上記のR
asまたはRasの下流因子で活性化されるEtsファ
ミリーのひとつであり、MAP Kinase の基質となりう
る部位が3ケ所、転写活性化部位のプロリンに富む領域
に存在する。Etsファミリー転写因子のなかで、広汎
な組織に発現し、かつRas、Rafで活性化される因
子はなく、本発明により初めて見い出されたものであ
り、癌細胞の増殖メカニズムの解明、ポリオーマウイル
スのトランスフォームメカニズム解明上重要である。[0008] PEA3β of the present invention is Ha-Ras or Ra.
Since the activity is increased by f-1, the above R
It is one of the Ets family that is activated by a downstream factor of as or Ras, and there are three sites that can be substrates of MAP Kinase, in the proline-rich region of the transcription activation site. Among the Ets family transcription factors, there is no factor that is expressed in a wide range of tissues and activated by Ras and Raf, and it was discovered for the first time by the present invention. Elucidation of the growth mechanism of cancer cells, polyomavirus Is important for elucidating the transformation mechanism of
【0009】本発明の構成は次の通りである。PEA3
βをコードするcDNAは、例えば、(1)Etsファ
ミリー転写因子を産生する細胞からmRNAを分離し、
(2)該mRNAから単鎖のcDNAを合成し、(3)
Etsファミリー転写因子群のcDNA構造からよく保
存された部分をプライマーとして選択し、上記単鎖cD
NAを鋳型としてRT−PCRを行う、(4)得られた
PCR産物を適切なプラスミドに組み込み、それで宿主
を形質転換し、(5)得られたコロニーのDNA解析を
行って、新規なEts転写因子をコードするDNAを選
択し、(6)これをもとに、ヒトcDNAライブラリー
をスクリーニングすることにより全長のPEA3βcD
NAを含むクローンを得ることができる。The structure of the present invention is as follows. PEA3
The cDNA encoding β is, for example, (1) mRNA isolated from cells producing an Ets family transcription factor,
(2) A single-stranded cDNA is synthesized from the mRNA, and (3)
From the cDNA structure of the Ets family transcription factor group, a well-conserved portion was selected as a primer, and the above single-chain cD was selected.
Perform RT-PCR using NA as a template. (4) Incorporate the obtained PCR product into an appropriate plasmid, transform the host with it, and (5) conduct DNA analysis of the obtained colony to obtain a novel Ets transcription. The full-length PEA3βcD was selected by selecting the DNA encoding the factor and (6) screening the human cDNA library based on this.
A clone containing NA can be obtained.
【0010】mRNA調製用原料としては、Etsファ
ミリー転写因子を産生している細胞、例えばヒト肝細胞
変異株HepG2を使用することができる。HepG2
からRNAを調製する方法としてはグアニジンチオシア
ネート法(Chirgwin J.M. etal., Biochemistry, 18, 5
294, 1979)などが挙げられる。抽出したRNAをオリ
ゴ(dT)セルロースカラムを用いてmRNAを調製す
ることができる。このようにして得られたmRNAを鋳
型とし、逆転写酵素を用いて、例えばグブラーらの方法
(Gubler, U. at el., Gene, 25, 263, 1983)を用いて
単鎖cDNAを合成する。次にEtsファミリー転写因
子群のcDNA配列をもとに、よく保存されているDN
A配列部位をプライマーとして選択し、先に得た一本鎖
cDNAとプライマーをセットしてPCR法による遺伝
子増幅を行う。As a raw material for preparing mRNA, cells producing an Ets family transcription factor, for example, human hepatocyte mutant strain HepG2 can be used. HepG2
As a method for preparing RNA from guanidine thiocyanate method (Chirgwin JM et al., Biochemistry, 18 , 5
294, 1979) and the like. MRNA can be prepared from the extracted RNA using an oligo (dT) cellulose column. Using the mRNA thus obtained as a template and reverse transcriptase, for example, a single-stranded cDNA is synthesized using the method of Gubler et al. (Gubler, U. at el., Gene, 25 , 263, 1983). . Next, based on the cDNA sequences of the Ets family transcription factors, the well-conserved DN
The A sequence site is selected as a primer, the previously obtained single-stranded cDNA is set, and the gene is amplified by the PCR method.
【0011】選択されるプライマーとしては、Etsフ
ァミリー間でよく保存されている部分であればいずれで
も使用可能であるが、EtsのDNA結合ドメインがよ
く保存されている。そのなかで、さらによく保存されて
いる部分の塩基配列をもとにPCR用プライマーを作製
することが好ましく、さらに好ましくは、 5’プライマー(アミノ酸QLWQFLに対応) CGGATCCA (A/G) CT (A/G) TGGCA (G/A) TT (T/C) (T/C)
T 3’プライマー(アミノ酸MNY D/E T/K L/M に対応) GGAATTCA (G/T) C (T/G) T (C/A/G) TC (G/A) TA (G/A)
TTCAT が挙げられる。As the primer to be selected, any part that is well conserved among Ets families can be used, but the DNA binding domain of Ets is well conserved. Among them, it is preferable to prepare a PCR primer based on the nucleotide sequence of a more well-conserved part, and more preferable is 5 ′ primer (corresponding to amino acid QLWQFL) CGGATCCA (A / G) CT (A / G) TGGCA (G / A) TT (T / C) (T / C)
T 3'primer (corresponding to amino acids MNY D / ET / KL / M) GGAATTCA (G / T) C (T / G) T (C / A / G) TC (G / A) TA (G / A)
TTCAT is an example.
【0012】得られたPCR産物を適当なベクター、例
えばpBluescript IIに組み込み、これで宿主大腸菌をト
ランスフォームすることによりPCR産物の部分ライブ
ラリーを得ることができる。PCR産物を組込むベクタ
ーとしては大腸菌由来のもの、枯草菌由来のものおよび
ファージなど、宿主細胞内に保持されて複製、増幅され
るものであれば、いずれも用いることができる。プラス
ミドに組み込む方法としては、例えば Maniatis T らの
Molecular Cloning, Cold Spring Harbor Laboratory,
p239, 1982 に記載の方法などが挙げられる。このよう
にして得られたプラスミドは適当な宿主、例えば大腸菌
に導入する方法としては塩化カルシウム法あるいは塩化
カルシウム/塩化ルビジウム法(Molecular Cloning, C
old Spring Harbor Laboratory, p249, 1982)などが挙
げられる。A partial library of PCR products can be obtained by incorporating the obtained PCR product into an appropriate vector, for example, pBluescript II, and transforming the host E. coli. As the vector incorporating the PCR product, any vector can be used, such as those derived from Escherichia coli, those derived from Bacillus subtilis, and phages, as long as they are retained in the host cell to replicate and be amplified. As a method for incorporating into a plasmid, for example, Maniatis T et al.
Molecular Cloning, Cold Spring Harbor Laboratory,
Examples include the method described in p239, 1982. The plasmid thus obtained can be introduced into an appropriate host such as Escherichia coli by the calcium chloride method or the calcium chloride / rubidium chloride method (Molecular Cloning, C
old Spring Harbor Laboratory, p249, 1982) and the like.
【0013】得られたPCR産物の部分ライブラリーは
Etsファミリー因子群を保持するものであるゆえ、例
えば得られた大腸菌コロニーそれぞれについてプラスミ
ドを単離し、塩基配列を解析することにより、公知のE
tsファミリー因子かまたは新規な因子であるかを確認
することができる。塩基配列の解析はマキサムギルバー
ト法(Maxam A.M. and Gilbert W., Proc. Natl. Acad.
Sci. USA, 74, 560、1977)、あるいはジデオキシ法(M
essing J. et al., Nucl. Acids Res., 9, 309, 1981
)などが挙げられる。Since the obtained partial library of PCR products retains the Ets family factor group, for example, by isolating a plasmid from each of the obtained E. coli colonies and analyzing the nucleotide sequence, a known E
Whether it is a ts family factor or a novel factor can be confirmed. Nucleotide sequence analysis was performed by Maxam AM and Gilbert W., Proc. Natl. Acad.
Sci. USA, 74 , 560, 1977) or dideoxy method (M
essing J. et al., Nucl. Acids Res., 9 , 309, 1981
) And the like.
【0014】新規な塩基配列を有するクローンについ
て、この段階では全長の塩基を保有してないが、全構造
解析はこのクローンをもとにしてヒトcDNAライブラ
リーをスクリーニングすることにより解析することがで
きる。ヒトcDNAライブラリーはEtsファミリー転
写因子群を産生している組織または細胞、例えばヒト胎
盤cDNAライブラリー、ヒト肝細胞株HepG2cD
NAライブラリーなどを使用することができる。Although the clone having the novel nucleotide sequence does not have the full-length base at this stage, the entire structure can be analyzed by screening a human cDNA library based on this clone. . The human cDNA library is a tissue or cell producing the Ets family transcription factors, for example, human placenta cDNA library, human hepatocyte cell line HepG2cD.
NA library or the like can be used.
【0015】HepG2のcDNAライブラリーの作製
は常法に準ずればよく、例えば上記の方法でHepG2
よりmRNAを調製し、逆転写酵素を用いて一本鎖DN
A、次いで二本鎖DNAを合成する。このcDNAをフ
ァージベクターとしてλgt11にHyunthの方法(DNA Cl
oning, A Practical Approach, 1, 49, 1985)などの方
法により組み込む。次いで、このファージベクターを増
殖させた大腸菌にインビトロパッケージング法を用いて
導入し、HepG2λgt11ライブラリーを得ることが
できる。Preparation of a HepG2 cDNA library may be carried out according to a conventional method, for example, the above-mentioned method.
MRNA from the single-stranded DN using reverse transcriptase
A, then double-stranded DNA is synthesized. This cDNA is used as a phage vector in λgt11 by the method of Hyunth (DNA Cl
oning, A Practical Approach, 1 , 49, 1985). Then, the HepG2λgt11 library can be obtained by introducing this phage vector into Escherichia coli in which it has been propagated by using the in vitro packaging method.
【0016】前記の方法で得られた、新規Ets転写因
子部分塩基を保有するクローンからcDNAを分離し、
それをプローブとして、ヒトcDNAライブラリーをコ
ロニーハイブリダイゼーション法(Gene, 10, 63, 198
0)またはプラークハイブリダイゼーション法(Scienc
e, 196, 180, 1977 )などの方法により、目的とする新
規Ets転写因子PEA3βのcDNAクローンを釣り
上げることができる。これらクローンの塩基配列を前記
と同様の方法により解析し、さらに必要があれば、塩基
配列の決定されたcDNAの一部を合成し、それをプラ
イマーとして用い、プライマーエクステンション法(Pr
oc. Natl. Acad. Sci. USA, 76, 731, 1979 )などの方
法によって新しくcDNAを合成、前記と同様の方法に
より組換cDNAのクローニング、塩基配列の解析によ
り新規Ets転写因子の全長cDNAを決定確認するこ
とができる。本発明のPEA3βのcDNA配列は配列
番号2に、アミノ酸配列は配列番号1に示した。CDNA is isolated from the clone having the novel Ets transcription factor partial base obtained by the above method,
Using this as a probe, a human cDNA library was subjected to colony hybridization (Gene, 10 , 63, 198).
0) or plaque hybridization (Scienc
e, 196 , 180, 1977) and the like, the desired cDNA clone of the novel Ets transcription factor PEA3β can be searched for. The base sequences of these clones were analyzed by the same method as described above, and if necessary, a part of the cDNA of which the base sequence was determined was synthesized and used as a primer, and the primer extension method (Pr
oc. Natl. Acad. Sci. USA, 76 , 731, 1979) to synthesize a new cDNA, clone a recombinant cDNA by the same method as described above, and analyze the nucleotide sequence to obtain a full-length cDNA of a novel Ets transcription factor. You can confirm the decision. The cDNA sequence of PEA3β of the present invention is shown in SEQ ID NO: 2, and the amino acid sequence is shown in SEQ ID NO: 1.
【0017】520 個のアミノ酸からなる本発明のPEA
3βの構造的特徴は下記のとうりである。Etsファミ
リ−転写因子群との構造を比較すると、マウスER8
1、マウスPEA3及びヒトEF−1とそれぞれ59
%、48%、48%のホモロジ−を有する。PEA3β
のETSドメインは配列番号1記載のアミノ酸番号 364
-448位に相当し、ER81及びPEA3と96%のホモ
ロジ−を有する。プロリンに富む領域はアミノ酸番号 1
27-269位にあり、酸性領域( 36-67位)とともに転写活
性に関与するものと予想される。組織での本因子の発現
について、ヒトのほとんどの組織において 4.0 kb のm
RNAの発現が確認された。PEA of the invention consisting of 520 amino acids
The structural features of 3β are as follows. Ets family-Comparison of structure with transcription factor group shows mouse ER8
1, mouse PEA3 and human EF-1 respectively 59
%, 48%, 48% homology. PEA3β
The ETS domain of E. coli has amino acid number 364 in SEQ ID NO: 1.
It corresponds to position -448 and has 96% homology with ER81 and PEA3. Amino acid number 1 in the proline-rich region
It is located at positions 27-269 and is expected to be involved in transcriptional activity together with the acidic region (positions 36-67). Regarding expression of this factor in tissues, the m of 4.0 kb was found in most human tissues.
The expression of RNA was confirmed.
【0018】本発明のPEA3βcDNAは配列番号2
記載の塩基配列に限定されず、配列番号1記載のアミノ
酸をコードするものであればよく、部分的削除、アミノ
酸の交換体、部分的追加なども本発明に含まれる。ま
た、これら塩基配列に基づくアンチセンス体も含まれる
ことは言うまでもない。アミノ酸配列に関しても同様で
ある。The PEA3β cDNA of the present invention is SEQ ID NO: 2.
The present invention is not limited to the base sequence described, as long as it encodes the amino acid shown in SEQ ID NO: 1, and partial deletion, amino acid exchange, partial addition, etc. are also included in the present invention. It goes without saying that antisense forms based on these base sequences are also included. The same applies to the amino acid sequence.
【0019】新規PEA3β組換発現ベクターとその形
質転換体 上記記載の方法により得られたPEA3βcDNAを適
切なベクターに組み込み、該ベクターを適切な宿主細胞
に移入することにより形質転換体を得ることができる。
これを常法により培養し培養物よりPEA3βを大量に
生産することができる。PEA3βをコードするcDN
AをPEA3βの発現に適したベクターのプロモーター
下流に制限酵素とDNAリガーゼを用いる公知の方法に
より再結合して組換発現ベクターを作成することができ
る。使用できるベクターとしては、大腸菌由来のプラス
ミドpBR322 、pUC18、枯草菌由来のプラスミドp
UB110、酵母由来のプラスミドpSH15、バクテリオ
ファージλgt10、λgt11あるいはSV40などが挙げ
られるが、宿主内で複製、増幅可能なベクターであれば
特に限定されない。プロモーターおよびターミネーター
に関してもPEA3βをコードする塩基配列の発現に用
いられる宿主に対応したものであれば特に限定されず、
宿主に応じて適切な組み合わせも可能である。Novel PEA3β recombinant expression vector and its transformant The PEA3β cDNA obtained by the method described above is incorporated into an appropriate vector, and the vector is transferred into an appropriate host cell to obtain a transformant. .
This can be cultured by a conventional method to produce a large amount of PEA3β from the culture. CDNA encoding PEA3β
A recombinant expression vector can be prepared by recombining A with a known method using a restriction enzyme and DNA ligase downstream of the promoter of a vector suitable for PEA3β expression. Vectors that can be used include Escherichia coli-derived plasmid pBR322, pUC18, and Bacillus subtilis-derived plasmid p.
Examples include UB110, yeast-derived plasmid pSH15, bacteriophage λgt10, λgt11, and SV40, but are not particularly limited as long as they can be replicated and amplified in the host. The promoter and terminator are not particularly limited as long as they correspond to the host used for expressing the nucleotide sequence encoding PEA3β,
Appropriate combinations are possible depending on the host.
【0020】このようにして得られた組換発現ベクター
はコンビテント細胞法(J. Mol. Biol., 53, 154, 197
0)、プロトプラスト法(Proc. Natl. Acad. Sci. USA,
75,1929, 1978)、リン酸カルシウム法(Science, 22
1, 551, 1983 )、インビトロパッケージング法(Proc.
Natl, Acad. Sci. USA, 72, 581, 1975 )、ウイルス
ベクター法(Cell, 37, 1053, 1984)などにより宿主に
導入し、形質転換体が作製される。宿主としては大腸
菌、枯草菌、酵母および動物細胞などが用いられ、得ら
れた形質転換体はその宿主に応じた適切な培地中で培養
される。培養は通常20℃〜45℃、pH5〜8の範囲で行わ
れ、必要に応じて通気、撹拌が行われる。培養物からの
PEA3βの分離・精製は公知の分離・精製法を適宜組
み合わせて実施すれば良い。これらの公知の方法として
は塩析、溶媒沈殿法、透析ゲル炉過法、電気泳動法、イ
オン交換クロマトグラフィ、アフィニティクロマトグラ
フィー、逆相高速液体クロマトグラフィなどが挙げられ
る。The recombinant expression vector obtained in this manner is a recombinant cell method (J. Mol. Biol., 53, 154, 197).
0), protoplast method (Proc. Natl. Acad. Sci. USA,
75, 1929, 1978), calcium phosphate method (Science, 22
1, 551, 1983), in vitro packaging method (Proc.
Natl, Acad. Sci. USA, 72, 581, 1975), virus vector method (Cell, 37, 1053, 1984) and the like are introduced into a host to prepare a transformant. As a host, Escherichia coli, Bacillus subtilis, yeast, animal cells and the like are used, and the obtained transformant is cultured in an appropriate medium according to the host. Culturing is usually carried out at 20 ° C to 45 ° C and pH 5 to 8, and aeration and stirring are carried out if necessary. Separation / purification of PEA3β from the culture may be carried out by appropriately combining known separation / purification methods. Examples of these known methods include salting out, solvent precipitation, dialysis gel filtration, electrophoresis, ion exchange chromatography, affinity chromatography, reverse phase high performance liquid chromatography and the like.
【0021】抗体の作成について PEA3βを抗原として抗体を作成するポリクローナル
抗体は常法に従い例えばマウス、モルモット、ウサギ等
の動物の皮下、筋肉内、腹腔内、静脈に複数回接種し十
分に免疫した後、斯かる動物から採血、血清分離し抗P
EA3β抗体を作製する。なお、市販のアジュバンドも
使用できる。モノクローナル抗体は公知の方法により作
製しえる。たとえば、PEA3βで免疫したマウスの脾
細胞と市販のマウスミエローマ細胞との細胞融合により
得られるハイブリドーマを作成後、該ハイブリドーマ培
養上清、または該ハイブリドーマ投与マウス腹水から抗
PEA3βモノクローナル抗体を調製することができ
る。抗原とするPEA3βは全アミノ酸構造を有する必
要はなく、部分構造を有するペプチドであってもよく、
またグルタチオントランスフェラ−ゼなどとの融合蛋白
質でもよい。調製法は生物学的手法、化学合成手法いず
れでもよい。これら抗体はヒト生体試料中のPEA3β
の同定や定量を可能とし、癌を含む疾患の診断への利用
が期待される。PEA3βの免疫学的測定法は、公知の
方法に準ずればよく、たとえば蛍光抗体法、受身凝集反
応法、酵素抗体法などいずれの方法においても実施でき
る。Preparation of Antibodies Polyclonal antibodies for preparing antibodies using PEA3β as an antigen are, for example, subcutaneously, intramuscularly, intraperitoneally, or intravenously inoculated into animals such as mice, guinea pigs and rabbits several times according to a conventional method, and then sufficiently immunized. , Blood collection from such animals, serum separation, anti-P
EA3β antibody is produced. Commercially available adjuvants can also be used. The monoclonal antibody can be produced by a known method. For example, after preparing a hybridoma obtained by cell fusion of spleen cells of a mouse immunized with PEA3β and commercially available mouse myeloma cells, an anti-PEA3β monoclonal antibody can be prepared from the hybridoma culture supernatant or the ascites of the hybridoma-administered mouse. it can. PEA3β used as an antigen does not need to have a whole amino acid structure, and may be a peptide having a partial structure,
It may also be a fusion protein with glutathione transferase and the like. The preparation method may be a biological method or a chemical synthesis method. These antibodies are PEA3β in human biological samples.
It is expected to be used for diagnosis of diseases including cancer. The immunological measurement method of PEA3β may be based on a known method, and can be carried out by any method such as a fluorescent antibody method, a passive agglutination reaction method and an enzyme antibody method.
【0022】[0022]
【実施例】以下の実施例により本発明を詳細に且つ具体
的に説明するが、本発明はこれらの実施例に限定される
ものではない。The present invention will be described in detail and specifically with reference to the following examples, but the present invention is not limited to these examples.
【0023】実施例1 (1)mRNAの調製 1.5×108 個のHepG2細胞より Invitrogen 社
の Fast Track mRNAisolation kit を用いて polyA RNA
約 10 μg を得た。Example 1 (1) Preparation of mRNA polyA RNA was prepared from 1.5 × 10 8 HepG2 cells using Fast Track mRNA isolation kit from Invitrogen.
About 10 μg was obtained.
【0024】(2)部分PEA3βcDNAの合成 部分PEA3βcDNAをRT−PCR法により合成し
た。Etsファミリー転写因子においてはEts DN
A結合ドメインがよく保存されており、その中でさらに
よく保存されている部分の塩基配列をもとに下記のプラ
イマーを合成し使用した。 5’プライマー(アミノ酸QLWQFLに対応) CGGATCCA (A/G) CT (A/G) TGGCA (G/A) TT (T/C) (T/C)
T 3’プライマー(アミノ酸MNY D/E T/K L/M に対応) GGAATTCA (G/T) C (T/G) T (C/A/G) TC (G/A) TA (G/A)
TTCAT 方法は 0.1μg のヒト肝mRNAとPCRバッファー、
dNTPs、DTTそして 25 pmolのオリゴdTを合わ
せ、65℃、5分インキュベーションし、その後RNAsi
n 40 unit, M−MLV−RT(moloney murine leuke
mia virus-reverse transcriptase :BRL)200 unit
を加え全量25μl とし42℃90分インキュベーションす
る。次いでこの反応物にPCRバッファー、dNTP
s,100 pmolの3’オリゴヌクレオチドプライマー、10
0 pmolの5’オリゴヌクレオチドプライマーをさらに加
えて全量 100μl としPCRを行う。 PCRの条件は
aneal温度37℃で 30 秒、extention 温度72℃で2分、d
enature温度94℃で1分を30サイクルを行い、DNAを
増幅し、PCRプロダクトを得た。このPCR産物を3
% Nu sieve GTG ゲルにて電気泳動を行い、約 170-200
bp のバンドを切り取り、その一部(1/10)をテン
プレ−トとして再びPCRを行った。(2) Synthesis of Partial PEA3β cDNA Partial PEA3β cDNA was synthesized by the RT-PCR method. Ets DN in Ets family transcription factors
The A-binding domain was well conserved, and the following primers were synthesized and used based on the nucleotide sequence of the part that was more well conserved. 5'primer (corresponding to amino acid QLWQFL) CGGATCCA (A / G) CT (A / G) TGGCA (G / A) TT (T / C) (T / C)
T 3'primer (corresponding to amino acids MNY D / ET / KL / M) GGAATTCA (G / T) C (T / G) T (C / A / G) TC (G / A) TA (G / A)
TTCAT method is 0.1 μg human liver mRNA and PCR buffer,
dNTPs, DTT and 25 pmol of oligo dT were combined and incubated at 65 ° C. for 5 minutes, then RNAsi
n 40 unit, M-MLV-RT (moloney murine leuke
mia virus-reverse transcriptase : BRL) 200 unit
Add to make the total volume 25 μl and incubate at 42 ° C for 90 minutes. This reaction was then added to PCR buffer, dNTP
s, 100 pmol of 3'oligonucleotide primer, 10
PCR is performed by further adding 0 pmol of 5'oligonucleotide primer to a total volume of 100 µl. PCR conditions
Aneal temperature 37 ℃ for 30 seconds, extension temperature 72 ℃ for 2 minutes, d
At an enature temperature of 94 ° C., 30 cycles of 1 minute were performed to amplify the DNA and obtain a PCR product. 3 PCR products
Electrophoresed on a% Nu sieve GTG gel, approx. 170-200
A band of bp was cut out, and a part (1/10) thereof was used as a template to perform PCR again.
【0025】(3)pBSKIIへの組み込みと形質転換 上記の2回目のPCRプロダクトを、フェノ−ル/クロ
ロホルムで蛋白質を除き、エタノ−ル沈殿した後、制限
酵素 EcoRI, BamHI で切断した。この EcoRI /BamHI フ
ラグメントを低融点アガロ−スで分離し、あらかじめ E
coRI, BamHI で開裂、BAP 処理した pBluescriptII SK
(+)ベクタ−とT4 ligase を用いて結合させた。この
プラスミドで大腸菌 E. coli XL-1 Blueを形質転換し
て、約 300個のクローンを得た。これらクローンをジデ
オキシ法(ファルマシア、T7 sequencing kit )にて
塩基配列を決定したところ、公知のEtsファミリー転
写因子GABPα、Ets−2の他に、新しい塩基配列
を有するクローンを確認した。この塩基配列は配列番号
2記載のPEA3βcDNAの1105-1266 位に相当する
ものであった。(3) Integration into pBSKII and transformation The above-mentioned second PCR product was deproteinized with phenol / chloroform, precipitated with ethanol, and then digested with restriction enzymes EcoRI and BamHI. This EcoRI / BamHI fragment was separated on a low melting point agarose and
pBluescriptII SK cleaved with coRI and BamHI and treated with BAP
The (+) vector was ligated with T4 ligase. E. coli XL-1 Blue was transformed with this plasmid to obtain about 300 clones. When the nucleotide sequences of these clones were determined by the dideoxy method (Pharmacia, T7 sequencing kit), clones having a new nucleotide sequence were confirmed in addition to the known Ets family transcription factors GABPα and Ets-2. This base sequence corresponded to positions 1105-1266 of PEA3β cDNA described in SEQ ID NO: 2.
【0026】(4)PEA3βcDNAクローンの同定 ・プローブの作製 上記の新規の塩基配列を有するクローンをBam H1、Hi
nd IIIで開裂し、 1.2%アガロースゲルよりDNA断片
を回収した。このDNA断片を常法に従い、Klenow enz
yme を用いてα−32P−dCTPを導入しプローブとし
て使用した。 ・cDNAクローンの同定 HepG2cDNAライブラリーよりファージDNAを
トランスファーしたフィルターを作製し(約 3.5×105
クローン)、上記プローブを用いてDNAハイブリダイ
ゼーション法によりスクリーニングしたところ、2つの
陽性クローンを得た。この2つのcDNAの塩基配列を
決定し、PEA3β全cDNAを確認した。PEA3β
全cDNA配列は配列番号2に示す。このcDNAを組
み込んだ pBluescript II SK(+)により形質転換さ
れたEscherichia coli XL-1 PEA3βは工業技術院生命工
学工業技術研究所に平成5年11月25日付で委託され
ている(委託番号FERM P-13982)。(4) Identification of PEA3β cDNA clone-Production of probe Bam H1 and Hi were cloned into clones having the above novel nucleotide sequences.
It was cleaved with nd III and the DNA fragment was recovered from a 1.2% agarose gel. This DNA fragment was subjected to Klenow enz according to a conventional method.
α- 32 P-dCTP was introduced using yme and used as a probe. -Identification of cDNA clones A filter in which phage DNA was transferred was prepared from the HepG2 cDNA library (about 3.5 x 10 5
The clone) was screened by the DNA hybridization method using the above probe, and two positive clones were obtained. The base sequences of these two cDNAs were determined to confirm the PEA3β total cDNA. PEA3β
The entire cDNA sequence is shown in SEQ ID NO: 2. Escherichia coli XL-1 PEA3β transformed with pBluescript II SK (+) incorporating this cDNA was entrusted to the Institute of Life Science and Technology, Institute of Industrial Science on November 25, 1993 (consignment number FERM P -13982).
【0027】実施例2 cDNAのCOS7細胞による発現 pcDベクター(Okayama, H. and P. Berg., Mol. Cel
l. Biol., 3, 280, 1983)はSV40ウイルスのDNA複
製開始点と初期プロモーターを持ち、このプロモーター
下流にcDNAを組み込み、SV40の T antigenを産生
する細胞株COS7(Y. Glutzman, Cell., 23, 175, 1
981 )に導入すると、この組換えプラスミドの増幅が起
こり、一過性にcDNAの強い発現が起こる。Full-Len
gth cDNAを含むクローンであるpBSPEA3βよ
りコーディング領域すべてを含む Bam HI-Xho I 断片を
切り出し、Xho I +Hind III で開裂したpcDV1 ベ
クター(F. Sanger et al., Proc. Natl. Acad. Sci.,
74, 5463, 1977)とDNAリガーゼと結合してpcDP
EA3βを作製した。この操作によりcDNAがプロモ
ーター下流に正しい向きに組み込まれた。pcDPEA
3βのプラスミドDNAを調製し、DEAE−dextren
法(T. Yokota et al., Proc. Natl. Acad. Sci., 82,
68, 1985)により、COS7細胞にトランスフェクトし
た形質転換細胞は約1日後よりその培養細胞中にPEA
3βを産生した。Example 2 Expression of cDNA in COS7 cells pcD vector (Okayama, H. and P. Berg., Mol. Cel.
L. Biol., 3, 280, 1983) has a replication origin of SV40 virus and an early promoter, and has a cDNA integrated downstream of this promoter to produce a SV40 T antigen cell line COS7 (Y. Glutzman, Cell. , 23, 175, 1
981), amplification of this recombinant plasmid occurs and transient strong expression of cDNA occurs. Full-Len
excised Bam HI-Xho I fragment containing the entire coding region from pBSPEA3β a clone containing the gth cDNA, pcDV 1 vector cleaved with Xho I + Hind III (F. Sanger et al., Proc. Natl. Acad. Sci.,
74, 5463, 1977) and DNA ligase to bind to pcDP
EA3β was made. By this operation, the cDNA was incorporated in the correct downstream direction of the promoter. pcDPEA
3β plasmid DNA was prepared and DEAE-dextren
Law (T. Yokota et al., Proc. Natl. Acad. Sci., 82,
68, 1985), the transformed cells transfected into COS7 cells were treated with PEA in the cultured cells after about 1 day.
Produced 3β.
【0028】[0028]
【発明の効果】本発明の新規ETS転写因子PEA3β
はrasにより活性化される性質をもつ特異性のある因
子である。癌細胞の増殖メカニズムの解明、ポリオ−マ
ウイルスのトランスフォ−ムメカニズム解明の研究の試
薬として有用である。また該因子の抗体を用いることに
より組織での発現の有無の検定、さらに該因子塩基配列
をもとにしたプロ−ブを持ちいる遺伝子解析への利用
は、臨床の場において診断薬としての応用が期待され
る。The novel ETS transcription factor PEA3β of the present invention
Is a specific factor having the property of being activated by ras. It is useful as a reagent for studying the elucidation of the growth mechanism of cancer cells and the study of the elucidation of the transformation mechanism of poliovirus. Further, the use of an antibody of the factor for the presence / absence of expression in a tissue and for the analysis of a gene having a probe based on the nucleotide sequence of the factor can be applied as a diagnostic agent in a clinical setting. There is expected.
【0029】[0029]
配列番号:1 配列の長さ:520 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:human 細胞の種類:肝臓細胞 セルライン:Hep G2 配列 Met Asp Gly Phe Tyr Asp Gln Gln Val Pro Phe Met Val Pro Gly Lys 1 5 10 15 Ser Arg Ser Glu Glu Cys Arg Gly Arg Pro Val Ile Asp Arg Lys Arg 20 25 30 Lys Phe Leu Asp Thr Asp Leu Ala His Asp Ser Glu Glu Leu Phe Gln 35 40 45 Asp Leu Ser Gln Leu Gln Glu Ala Trp Leu Ala Glu Ala Gln Val Pro 50 55 60 Asp Asp Glu Gln Phe Val Pro Asp Phe Gln Ser Asp Asn Leu Val Leu 65 70 75 80 His Ala Pro Pro Pro Thr Lys Ile Lys Arg Glu Leu His Ser Pro Ser 85 90 95 Ser Glu Leu Ser Ser Cys Ser His Glu Gln Ala Phe Gly Ala Asn Tyr 100 105 110 Gly Glu Lys Cys Leu Tyr Asn Tyr Cys Ala Tyr Asp Arg Lys Pro Pro 115 120 125 Ser Gly Phe Lys Pro Leu Thr Pro Pro Thr Thr Pro Leu Ser Pro Thr 130 135 140 His Gln Asn Pro Leu Phe Pro Pro Pro Gln Ala Thr Leu Pro Thr Ser 145 150 155 160 Gly His Ala Pro Ala Ala Gly Pro Val Gln Gly Val Gly Pro Ala Pro 165 170 175 Ala Pro His Ser Leu Pro Glu Pro Gly Pro Gln Gln Gln Thr Phe Ala 180 185 190 Val Pro Arg Pro Pro His Gln Pro Leu Gln Met Pro Lys Met Met Pro 195 200 205 Glu Asn Gln Tyr Pro Ser Glu Gln Arg Phe Gln Arg Gln Leu Ser Glu 210 215 220 Pro Cys His Pro Phe Pro Pro Gln Pro Gly Val Pro Gly Asp Asn Arg 225 230 235 240 Pro Ser Tyr His Arg Gln Met Ser Glu Pro Ile Val Pro Ala Ala Pro 245 250 255 Pro Pro Pro Gln Gly Phe Lys Gln Glu Tyr His Asp Pro Leu Tyr Glu 260 265 270 His Gly Val Pro Gly Met Pro Gly Pro Pro Ala His Gly Phe Gln Ser 275 280 285 Pro Met Gly Ile Lys Gln Glu Pro Arg Asp Tyr Cys Val Asp Ser Glu 290 295 300 Val Pro Asn Cys Gln Ser Ser Tyr Met Arg Gly Gly Tyr Phe Ser Ser 305 310 315 320 Ser His Glu Gly Phe Ser Tyr Glu Lys Asp Pro Arg Leu Tyr Phe Asp 325 330 335 Asp Thr Cys Val Val Pro Glu Arg Leu Glu Gly Lys Val Lys Gln Glu 340 345 350 Pro Thr Met Tyr Arg Glu Gly Pro Pro Tyr Gln Arg Arg Gly Ser Leu 355 360 365 Gln Leu Trp Gln Phe Leu Val Thr Leu Leu Asp Asp Pro Ala Asn Ala 370 375 380 His Phe Ile Ala Trp Thr Gly Arg Gly Met Glu Phe Lys Leu Ile Glu 385 390 395 400 Pro Glu Glu Val Ala Arg Arg Trp Gly Ile Gln Lys Asn Arg Pro Ala 405 410 415 Met Asn Tyr Asp Lys Leu Ser Arg Ser Leu Arg Tyr Tyr Tyr Glu Lys 420 425 430 Gly Ile Met Gln Lys Val Ala Gly Glu Arg Tyr Val Tyr Lys Phe Val 435 440 445 Cys Asp Pro Asp Ala Leu Phe Ser Met Ala Phe Pro Asp Asn Gln Arg 450 455 460 Pro Phe Leu Lys Ala Glu Ser Glu Cys His Leu Ser Glu Glu Asp Thr 465 470 475 480 Leu Pro Leu Thr His Phe Glu Asp Ser Pro Ala Tyr Leu Leu Asp Met 485 490 495 Asp Arg Cys Ser Ser Leu Pro Tyr Ala Glu Val Leu Leu Thr Lys Phe 500 505 510 Leu Ser Gly Gly Val Ala Lys Pro 515 520 。 SEQ ID NO: 1 Sequence length: 520 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Origin organism name: human Cell type: Liver cell Cell line: Hep G2 Sequence Met Asp Gly Phe Tyr Asp Gln Gln Val Pro Phe Met Val Pro Gly Lys 1 5 10 15 Ser Arg Ser Glu Glu Cys Arg Gly Arg Pro Val Ile Asp Arg Lys Arg 20 25 30 Lys Phe Leu Asp Thr Asp Leu Ala His Asp Ser Glu Glu Leu Phe Gln 35 40 45 Asp Leu Ser Gln Leu Gln Glu Ala Trp Leu Ala Glu Ala Gln Val Pro 50 55 60 Asp Asp Glu Gln Phe Val Pro Asp Phe Gln Ser Asp Asn Leu Val Leu 65 70 75 80 His Ala Pro Pro Pro Thr Lys Ile Lys Arg Glu Leu His Ser Pro Ser 85 90 95 Ser Glu Leu Ser Ser Cys Ser His Glu Gln Ala Phe Gly Ala Asn Tyr 100 105 110 Gly Glu Lys Cys Leu Tyr Asn Tyr Cys Ala Tyr Asp Arg Lys Pro Pro 115 120 125 Ser Gly Phe Lys Pro Leu Thr Pro Pro Thr Thr Pro Leu Ser Pro Thr 130 135 140 His Gln Asn Pro Leu Phe Pro Pro Pro Gln Ala Thr Leu Pro Thr Ser 145 150 155 160 Gly His Ala Pro Ala Ala Gly Pro Val Gln Gly Val Gly Pro Ala Pro 165 170 175 Ala Pro His Ser Leu Pro Glu Pro Gly Pro Gln Gln Gln Thr Phe Ala 180 185 190 Val Pro Arg Pro Pro His Gln Pro Leu Gln Met Pro Lys Met Met Pro 195 200 205 Glu Asn Gln Tyr Pro Ser Glu Gln Arg Phe Gln Arg Gln Leu Ser Glu 210 215 220 Pro Cys His Pro Phe Pro Pro Gln Pro Gly Val Pro Gly Asp Asn Arg 225 230 235 240 Pro Ser Tyr His Arg Gln Met Ser Glu Pro Ile Val Pro Ala Ala Pro 245 250 255 Pro Pro Pro Gln Gly Phe Lys Gln Glu Tyr His Asp Pro Leu Tyr Glu 260 265 270 His Gly Val Pro Gly Met Pro Gly Pro Pro Ala His Gly Phe Gln Ser 275 280 285 Pro Met Gly Ile Lys Gln Glu Pro Arg Asp Tyr Cys Val Asp Ser Glu 290 295 300 Val Pro Asn Cys Gln Ser Ser Tyr Met Arg Gly Gly Tyr Phe Ser Ser 305 310 315 320 Ser His Glu Gly Phe Ser Tyr Glu Lys Asp Pro Arg Leu Tyr Phe Asp 325 330 335 Asp Thr Cys Val Val Pro Glu Arg Leu Glu Gly Lys Val Lys Gln Glu 340 345 350 Pro Thr Met Tyr Arg Glu Gly Pro Pro Tyr Gln Arg Arg Gly Ser Leu 355 360 365 Gln Leu Trp Gln Phe Leu Val Thr Leu Leu Asp Asp Pro Ala Asn Ala 370 375 380 His Phe Ile Ala Trp Thr Gly Arg Gly Met Glu Phe Lys Leu Ile Glu 385 390 395 400 Pro Glu Glu Val Ala Arg Arg Trp Gly Ile Gln Lys Asn Arg Pro Ala 405 410 415 Met Asn Tyr Asp Lys Leu Ser Arg Ser Leu Arg Tyr Tyr Tyr Glu Lys 420 425 430 Gly Ile Met Gln Lys Val Ala Gly Glu Arg Tyr Val Tyr Lys Phe Val 435 440 445 Cys Asp Pro Asp Ala Leu Phe Ser Met Ala Phe Pro Asp Asn Gln Arg 450 455 460 Pro Phe Leu Lys Ala Glu Ser Glu Cys His Leu Ser Glu Glu Asp Thr 465 470 475 480 Leu Pro Leu Thr His Phe Glu Asp Ser Pro Ala Tyr Leu Leu Asp Met 485 490 495 Asp Arg Cys Ser Ser Leu Pro Tyr Ala Glu Val Leu Leu Thr Lys Phe 500 505 510 Leu Ser Gly Gly Val Ala Lys Pro 515 520.
【0030】配列番号:2 配列の長さ:1800 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:human 細胞の種類:肝臓細胞 セルライン:Hep G2 配列 ATG GAC GGC TTT TAT GAT CAG CAA GTC CCT TTT ATG GTC CCA GGG AAA 48 Met Asp Gly Phe Tyr Asp Gln Gln Val Pro Phe Met Val Pro Gly Lys 1 5 10 15 TCT CGA TCT GAG GAA TGC AGA GGG CGG CCT GTG ATT GAC AGA AAG AGG 96 Ser Arg Ser Glu Glu Cys Arg Gly Arg Pro Val Ile Asp Arg Lys Arg 20 25 30 AAG TTT TTG GAC ACA GAT CTG GCT CAC GAT TCT GAA GAG CTA TTT CAG 144 Lys Phe Leu Asp Thr Asp Leu Ala His Asp Ser Glu Glu Leu Phe Gln 35 40 45 GAT CTC AGT CAA CTT CAA GAG GCT TGG TTA GCT GAA GCA CAA GTT CCT 192 Asp Leu Ser Gln Leu Gln Glu Ala Trp Leu Ala Glu Ala Gln Val Pro 50 55 60 GAT GAT GAA CAG TTT GTC CCA GAT TTT CAG TCT GAT AAC CTG GTG CTT 240 Asp Asp Glu Gln Phe Val Pro Asp Phe Gln Ser Asp Asn Leu Val Leu 65 70 75 80 CAT GCC CCA CTC CCA ACC AAG ATC AAA CGG GAG CTG CAC AGC CCC TCC 288 His Ala Pro Pro Pro Thr Lys Ile Lys Arg Glu Leu His Ser Pro Ser 85 90 95 TCT GAG CTG TCG TCT TGT AGC CAT GAG CAG GCT TTT GGT GCT AAC TAT 336 Ser Glu Leu Ser Ser Cys Ser His Glu Gln Ala Phe Gly Ala Asn Tyr 100 105 110 GGA GAA AAG TGC CTC TAC AAC TAT TGT GCC TAT GAT AGG AAC CCT CCC 384 Gly Glu Lys Cys Leu Tyr Asn Tyr Cys Ala Tyr Asp Arg Lys Pro Pro 115 120 125 TCT GGG TTC AAG CCA TTA ACC CCT CCT ACA ACC CCC CTC TCA CCC ACC 432 Ser Gly Phe Lys Pro Leu Thr Pro Pro Thr Thr Pro Leu Ser Pro Thr 130 135 140 CAT CAG AAT CCC CTA TTT CCC CCA CCT CAG GCA ACT CTG CCC ACC TCA 480 His Gln Asn Pro Leu Phe Pro Pro Pro Gln Ala Thr Leu Pro Thr Ser 145 150 155 160 GGG CAT GCC CCT GCA GCT GGC CCA GTT CAA GGT GTG GGC CCC GCC CCC 528 Gly His Ala Pro Ala Ala Gly Pro Val Gln Gly Val Gly Pro Ala Pro 165 170 175 GCC CCC CAT TCG CTT CCA GAG CCT GGA CCA CAG CAG CAA ACA TTT GCG 576 Ala Pro His Ser Leu Pro Glu Pro Gly Pro Gln Gln Gln Thr Phe Ala 180 185 190 GTC CCC CGA CCA CCA CAT CAG CCC CTG CAG ATG CCA AAG ATG ATG CCT 624 Val Pro Arg Pro Pro His Gln Pro Leu Gln Met Pro Lys Met Met Pro 195 200 205 GAA AAC CAG TAT CCA TCA GAA CAG AGA TTT CAG AGA CAA CTG TCT GAA 672 Glu Asn Gln Tyr Pro Ser Glu Gln Arg Phe Gln Arg Gln Leu Ser Glu 210 215 220 CCC TGC CAC CCC TTC CCT CCT CAG CCA GGA GTT CCT GGA GAT AAT CGC 720 Pro Cys His Pro Phe Pro Pro Gln Pro Gly Val Pro Gly Asp Asn Arg 225 230 235 240 CCC AGT TAC CAT CGG CAA ATG TCA GAA CCT ATT GTC CCT GCA GCT CCC 768 Pro Ser Tyr His Arg Gln Met Ser Glu Pro Ile Val Pro Ala Ala Pro 245 250 255 CCG CCC CCT CAG GGA TTC AAA CAA GAA TAC CAT GAC CCA CTC TAT GAA 816 Pro Pro Pro Gln Gly Phe Lys Gln Glu Tyr His Asp Pro Leu Tyr Glu 260 265 270 CAT GGG GTC CCG GGC ATG CCA GGG CCC CCA GCA CAC GGG TTC CAG TCA 864 His Gly Val Pro Gly Met Pro Gly Pro Pro Ala His Gly Phe Gln Ser 275 280 285 CCA ATG GGA ATC AAG CAG GAG CCT CGG GAT TAC TGC GTC GAT TCA GAA 912 Pro Met Gly Ile Lys Gln Glu Pro Arg Asp Tyr Cys Val Asp Ser Glu 290 295 300 GTG CCT AAC TGC CAG TCA TCC TAC ATG AGA GGG GGT TAT TTC TCC AGC 960 Val Pro Asn Cys Gln Ser Ser Tyr Met Arg Gly Gly Tyr Phe Ser Ser 305 310 315 320 AGC CAT GAA GGT TTT TCA TAT GAA AAA GAT CCC CGA TTA TAC TTT GAC 1008 Ser His Glu Gly Phe Ser Tyr Glu Lys Asp Pro Arg Leu Tyr Phe Asp 325 330 335 GAC ACT TGT GTT GTG CCT GAG AGA CTG GAA GGC AAA GTC AAA CAG GAG 1056 Asp Thr Cys Val Val Pro Glu Arg Leu Glu Gly Lys Val Lys Gln Glu 340 345 350 CCT ACC ATG TAT CGA GAG GGG CCC CCT TAC CAG AGG CGA GGT TCC CTT 1104 Pro Thr Met Tyr Arg Glu Gly Pro Pro Tyr Gln Arg Arg Gly Ser Leu 355 360 365 CAG CTG TGG CAG TTC CTG GTC ACC CTT CTT GAT GAC CCA GCC AAT GCC 1152 Gln Leu Trp Gln Phe Leu Val Thr Leu Leu Asp Asp Pro Ala Asn Ala 370 375 380 CAC TTC ATT GCC TGG ACA GGT CGA GGC ATG GAG TTC AAG CTG ATA GAA 1200 His Phe Ile Ala Trp Thr Gly Arg Gly Met Glu Phe Lys Leu Ile Glu 385 390 395 400 CCG GAA GAG GTT GCT CGG CGC TGG GGC ATC CAG AAG AAC CGG CCA GCC 1248 Pro Glu Glu Val Ala Arg Arg Trp Gly Ile Gln Lys Asn Arg Pro Ala 405 410 415 ATG AAC TAT GAC AAG CTG AGC CGC TCT CTC CGC TAT TAC TAT GAA AAG 1296 Met Asn Tyr Asp Lys Leu Ser Arg Ser Leu Arg Tyr Tyr Tyr Glu Lys 420 425 430 GGC ATC ATG CAG AAG GTG GCT GGA GAG CGA TAC GTC TAC AAA TTT GTC 1344 Gly Ile Met Gln Lys Val Ala Gly Glu Arg Tyr Val Tyr Lys Phe Val 435 440 445 TGT GAC CCA GAT GCC CTC TTC TCC ATG GCT TTC CCG GAT AAC CAG CGT 1392 Cys Asp Pro Asp Ala Leu Phe Ser Met Ala Phe Pro Asp Asn Gln Arg 450 455 460 CCG TTC CTG AAG GCA GAG TCC GAG TGC CAC CTC AGC GAG GAG GAC ACC 1440 Pro Phe Leu Lys Ala Glu Ser Glu Cys His Leu Ser Glu Glu Asp Thr 465 470 475 480 CTG CCG CTG ACC CAC TTT GAA GAC AGC CCC GCT TAC CTC CTG GAC ATG 1488 Leu Pro Leu Thr His Phe Glu Asp Ser Pro Ala Tyr Leu Leu Asp Met 485 490 495 GAC CGC TGC ACC AGC CTC CCC TAT GCC GAA GTT TTG CTT ACT AAG TTT 1536 Asp Arg Cys Ser Ser Leu Pro Tyr Ala Glu Val Leu Leu Thr Lys Phe 500 505 510 CTG AGT GGC GGA GTG GCC AAA CCC TAGAGCTAGC AGTTCCCATT CAGGCAAACA 1590 Leu Ser Gly Gly Val Ala Lys Pro 515 520 AGGGCAGTGG TTTTGTTTGT GTTTTTGGTT GTTCCTAAAG CTTGCCCTTT GAGTATTATC 1650 TGGAGAACCC AAGCTGTCTC TGGATTGGCA CCCTTAAAGA CAGATACATT GGCTGGGGAG 1710 TGGGAACAGG GAGGGGCAGA AAACCACCAA AACNAGTGCC TCAACTCTTG ATTCTGATGA 1770 GGTTTCTGGG AAGAGATCAA AATGGAGTCT 18
00SEQ ID NO: 2 Sequence length: 1800 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: cDNA to mRNA Origin Biological name: human Cell type: Liver cell line : Hep G2 sequence ATG GAC GGC TTT TAT GAT CAG CAA GTC CCT TTT ATG GTC CCA GGG AAA 48 Met Asp Gly Phe Tyr Asp Gln Gln Val Pro Phe Met Val Pro Gly Lys 1 5 10 15 TCT CGA TCT GAG GAA TGC AGA GGG CGG CCT GTG ATT GAC AGA AAG AGG 96 Ser Arg Ser Glu Glu Cys Arg Gly Arg Pro Val Ile Asp Arg Lys Arg 20 25 30 AAG TTT TTG GAC ACA GAT CTG GCT CAC GAT TCT GAA GAG CTA TTT CAG 144 Lys Phe Leu Asp Thr Asp Leu Ala His Asp Ser Glu Glu Leu Phe Gln 35 40 45 GAT CTC AGT CAA CTT CAA GAG GCT TGG TTA GCT GAA GCA CAA GTT CCT 192 Asp Leu Ser Gln Leu Gln Glu Ala Trp Leu Ala Glu Ala Gln Val Pro 50 55 60 GAT GAT GAA CAG TTT GTC CCA GAT TTT CAG TCT GAT AAC CTG GTG CTT 240 Asp Asp Glu Gln Phe Val Pro Asp Phe Gln Ser Asp Asn Leu Val Leu 65 70 75 8 0 CAT GCC CCA CTC CCA ACC AAG ATC AAA CGG GAG CTG CAC AGC CCC TCC 288 His Ala Pro Pro Pro Thr Lys Ile Lys Arg Glu Leu His Ser Pro Ser 85 90 95 TCT GAG CTG TCG TCT TGT AGC CAT GAG CAG GCT TTT GGT GCT AAC TAT 336 Ser Glu Leu Ser Ser Cys Ser His Glu Gln Ala Phe Gly Ala Asn Tyr 100 105 110 GGA GAA AAG TGC CTC TAC AAC TAT TGT GCC TAT GAT AGG AAC CCT CCC 384 Gly Glu Lys Cys Leu Tyr Asn Tyr Cys Ala Tyr Asp Arg Lys Pro Pro 115 120 125 TCT GGG TTC AAG CCA TTA ACC CCT CCT ACA ACC CCC CTC TCA CCC ACC 432 Ser Gly Phe Lys Pro Leu Thr Pro Pro Thr Thr Pro Leu Ser Pro Thr 130 135 140 CAT CAG AAT CCC CTA TTT CCC CCA CCT CAG GCA ACT CTG CCC ACC TCA 480 His Gln Asn Pro Leu Phe Pro Pro Pro Gln Ala Thr Leu Pro Thr Ser 145 150 155 160 GGG CAT GCC CCT GCA GCT GGC CCA GTT CAA GGT GTG GGC CCC GCC CCC 528 Gly His Ala Pro Ala Ala Gly Pro Val Gln Gly Val Gly Pro Ala Pro 165 170 175 GCC CCC CAT TCG CTT CCA GAG CCT GGA CCA CAG CAG CAA ACA TTT GCG 576 Ala Pro His Ser Leu Pro Glu Pro Gly Pro Gln Gln Gln Thr Phe Ala 1 80 185 190 GTC CCC CGA CCA CCA CAT CAG CCC CTG CAG ATG CCA AAG ATG ATG CCT 624 Val Pro Arg Pro Pro His Gln Pro Leu Gln Met Pro Lys Met Met Pro 195 200 205 GAA AAC CAG TAT CCA TCA GAA CAG AGA TTT CAG AGA CAA CTG TCT GAA 672 Glu Asn Gln Tyr Pro Ser Glu Gln Arg Phe Gln Arg Gln Leu Ser Glu 210 215 220 CCC TGC CAC CCC TTC CCT CCT CAG CCA GGA GTT CCT GGA GAT AAT CGC 720 Pro Cys His Pro Phe Pro Pro Gln Pro Gly Val Pro Gly Asp Asn Arg 225 230 235 240 CCC AGT TAC CAT CGG CAA ATG TCA GAA CCT ATT GTC CCT GCA GCT CCC 768 Pro Ser Tyr His Arg Gln Met Ser Glu Pro Ile Val Pro Ala Ala Pro 245 250 255 CCG CCC CCT CAG GGA TTC AAA CAA GAA TAC CAT GAC CCA CTC TAT GAA 816 Pro Pro Pro Gln Gly Phe Lys Gln Glu Tyr His Asp Pro Leu Tyr Glu 260 265 270 CAT GGG GTC CCG GGC ATG CCA GGG CCC CCA GCA CAC GGG TTC CAG TCA 864 His Gly Val Pro Gly Met Pro Gly Pro Pro Ala His Gly Phe Gln Ser 275 280 285 CCA ATG GGA ATC AAG CAG GAG CCT CGG GAT TAC TGC GTC GAT TCA GAA 912 Pro Met Gly Ile Lys Gln Glu Pro Arg Asp Tyr Cys Val A sp Ser Glu 290 295 300 GTG CCT AAC TGC CAG TCA TCC TAC ATG AGA GGG GGT TAT TTC TCC AGC 960 Val Pro Asn Cys Gln Ser Ser Tyr Met Arg Gly Gly Tyr Phe Ser Ser 305 310 315 320 AGC CAT GAA GGT TTT TCA TAT GAA AAA GAT CCC CGA TTA TAC TTT GAC 1008 Ser His Glu Gly Phe Ser Tyr Glu Lys Asp Pro Arg Leu Tyr Phe Asp 325 330 335 GAC ACT TGT GTT GTG CCT GAG AGA CTG GAA GGC AAA GTC AAA CAG GAG 1056 Asp Thr Cys Val Val Pro Glu Arg Leu Glu Gly Lys Val Lys Gln Glu 340 345 350 CCT ACC ATG TAT CGA GAG GGG CCC CCT TAC CAG AGG CGA GGT TCC CTT 1104 Pro Thr Met Tyr Arg Glu Gly Pro Pro Tyr Gln Arg Arg Gly Ser Leu 355 360 365 CAG CTG TGG CAG TTC CTG GTC ACC CTT CTT GAT GAC CCA GCC AAT GCC 1152 Gln Leu Trp Gln Phe Leu Val Thr Leu Leu Asp Asp Pro Ala Asn Ala 370 375 380 CAC TTC ATT GCC TGG ACA GGT CGA GGC ATG GAG TTC AAG CTG ATA GAA 1200 His Phe Ile Ala Trp Thr Gly Arg Gly Met Glu Phe Lys Leu Ile Glu 385 390 395 400 CCG GAA GAG GTT GCT CGG CGC TGG GGC ATC CAG AAG AAC CGG CCA GCC 1248 Pro Glu Glu Val Ala Arg Arg Trp Gly Ile Gln Lys Asn Arg Pro Ala 405 410 415 ATG AAC TAT GAC AAG CTG AGC CGC TCT CTC CGC TAT TAC TAT GAA AAG 1296 Met Asn Tyr Asp Lys Leu Ser Arg Ser Leu Arg Tyr Tyr Tyr Glu Lys 420 425 430 GGC ATC ATG CAG AAG GTG GCT GGA GAG CGA TAC GTC TAC AAA TTT GTC 1344 Gly Ile Met Gln Lys Val Ala Gly Glu Arg Tyr Val Tyr Lys Phe Val 435 440 445 TGT GAC CCA GAT GCC CTC TTC TCC ATG GCT TTC CCG GAT AAC CAG CGT 1392 Cys Asp Pro Asp Ala Leu Phe Ser Met Ala Phe Pro Asp Asn Gln Arg 450 455 460 CCG TTC CTG AAG GCA GAG TCC GAG TGC CAC CTC AGC GAG GAG GAC ACC 1440 Pro Phe Leu Lys Ala Glu Ser Glu Cys His Leu Ser Glu Glu Asp Thr 465 470 475 480 CTG CCG CTG ACC CAC TTT GAA GAC AGC CCC GCT TAC CTC CTG GAC ATG 1488 Leu Pro Leu Thr His Phe Glu Asp Ser Pro Ala Tyr Leu Leu Asp Met 485 490 495 GAC CGC TGC ACC AGC CTC CCC TAT GCC GAA GTT TTG CTT ACT AAG TTT 1536 Asp Arg Cys Ser Ser Leu Pro Tyr Ala Glu Val Leu Leu Thr Lys Phe 500 505 510 CTG AGT GGC GGA GTG GCC AAA CCC TAGAGCTAGC AGTTCCCATT CAGGCAAACA 1590 Leu Ser Gly Gly Val Ala Lys Pro 515 520 AGGGCAGTGG TTTTGTTTGT GTTTTTGGTT GTTCCTAAAG CTTGCCCTTT GAGTATTATC 1650 TGGAGAACCC AAGCTGTCTCTCGGAGAG 1710 TGGGAACAGG GAGGGGCAGA 1
00
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C12P 21/02 C 9282−4B G01N 33/53 D 33/574 Z (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location // C12P 21/02 C 9282-4B G01N 33/53 D 33/574 Z (C12P 21/02 C12R (1:19) (C12P 21/02 C12R 1:91)
Claims (3)
含有してなるETS転写因子1. An ETS transcription factor comprising the amino acid sequence represented by SEQ ID NO: 1.
する、配列番号2記載の塩基配列を含有しているETS
転写因子cDNA2. An ETS containing the nucleotide sequence of SEQ ID NO: 2 which codes for the ETS transcription factor of claim 1.
Transcription factor cDNA
その部分ペプチドを抗原とする抗体3. An antibody using the ETS transcription factor according to claim 1 or a partial peptide thereof as an antigen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5295393A JPH07145197A (en) | 1993-11-25 | 1993-11-25 | Ets transcription factor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5295393A JPH07145197A (en) | 1993-11-25 | 1993-11-25 | Ets transcription factor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07145197A true JPH07145197A (en) | 1995-06-06 |
Family
ID=17820040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5295393A Pending JPH07145197A (en) | 1993-11-25 | 1993-11-25 | Ets transcription factor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07145197A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7628989B2 (en) | 2001-04-10 | 2009-12-08 | Agensys, Inc. | Methods of inducing an immune response |
US7927597B2 (en) | 2001-04-10 | 2011-04-19 | Agensys, Inc. | Methods to inhibit cell growth |
CN103003294A (en) * | 2010-02-19 | 2013-03-27 | 密执安大学评议会 | gene fusion targeted therapy |
-
1993
- 1993-11-25 JP JP5295393A patent/JPH07145197A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7628989B2 (en) | 2001-04-10 | 2009-12-08 | Agensys, Inc. | Methods of inducing an immune response |
US7641905B2 (en) | 2001-04-10 | 2010-01-05 | Agensys, Inc. | Methods of inducing an immune response |
US7736654B2 (en) | 2001-04-10 | 2010-06-15 | Agensys, Inc. | Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers |
US7927597B2 (en) | 2001-04-10 | 2011-04-19 | Agensys, Inc. | Methods to inhibit cell growth |
US7951375B2 (en) | 2001-04-10 | 2011-05-31 | Agensys, Inc. | Methods of inducing an immune response |
CN103003294A (en) * | 2010-02-19 | 2013-03-27 | 密执安大学评议会 | gene fusion targeted therapy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lai et al. | Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases | |
JP3512797B2 (en) | Mammalian melanocyte stimulating hormone receptor and use thereof | |
JPH05271294A (en) | Human prohibitin and dna coding the same | |
JPH06503958A (en) | Human dopamine D↓4 receptor and its use | |
JPH06256210A (en) | Bone related transfer control factor-like protein and its production | |
JP2000511765A (en) | Purified SR-p70 protein | |
JPH07145197A (en) | Ets transcription factor | |
PT101014A (en) | PARTNERS, REASONS, TESTING AND UTILIZATION OF C-MYC LIGACATION TO DNA | |
US6252046B1 (en) | Polypeptide having water channel activity and DNA sequence | |
JPH0892289A (en) | Protein related to human machado joseph disease, cdna and gene coding for the same protein, vector containing the same dna or gene, host cell transformed with the same manifestation vector, method for diagnosing machado joseph disease and therapeutic agent therefor | |
WO1997031110A1 (en) | Traf family molecule, polynucleotide coding for the molecule, and antibody against the molecule | |
JP2002530056A (en) | Nucleic acids encoding transferrin receptor-like proteins and related products | |
WO2003102028A1 (en) | Rb1 gene induced protein (rb1cc1) and gene | |
JPH0515375A (en) | Dna sequence encoding human intrinsic factor | |
JP3832973B2 (en) | Human transcription-related protein and cDNA encoding this protein | |
JP2001078780A (en) | MAST CELL SPECIFIC SIGNAL TRANSMISSION MOLECULE AND ITS cDNA | |
JPH07123985A (en) | DNA fragment encoding regucalcin | |
WO1997001634A2 (en) | Polypeptide for repairing genetic information, nucleotidic sequence which codes for it and process for the preparation thereof (guanine thymine binding protein - gtbp) | |
JP4301541B2 (en) | Screening method of SMG-1 binding protein and substance controlling its activity | |
JPH08140687A (en) | Rpdl protein and dna encoding for the same | |
JPH05146294A (en) | Cancer-related protein | |
WO1997010267A1 (en) | HUMAN SMCY cDNA AND RELATED PRODUCTS | |
JP2001149075A (en) | HUMAN NUCLEOPROTEIN HAVING WW DOMAIN AND cDNA ENCODING TEE SAME | |
JPH1084971A (en) | New stress protein | |
JPH10286094A (en) | Novel dlg family molecule, polynucleotide encoding the molecule, antibody to the molecule, and method for detecting dlg gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040106 |