JPH0714461B2 - Denitration equipment - Google Patents
Denitration equipmentInfo
- Publication number
- JPH0714461B2 JPH0714461B2 JP61029895A JP2989586A JPH0714461B2 JP H0714461 B2 JPH0714461 B2 JP H0714461B2 JP 61029895 A JP61029895 A JP 61029895A JP 2989586 A JP2989586 A JP 2989586A JP H0714461 B2 JPH0714461 B2 JP H0714461B2
- Authority
- JP
- Japan
- Prior art keywords
- box
- exhaust gas
- support member
- catalyst block
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 claims description 87
- 239000011810 insulating material Substances 0.000 claims description 31
- 238000011144 upstream manufacturing Methods 0.000 claims description 18
- 239000007789 gas Substances 0.000 description 54
- 230000008602 contraction Effects 0.000 description 12
- 238000010248 power generation Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- 238000011084 recovery Methods 0.000 description 6
- 239000002918 waste heat Substances 0.000 description 5
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合発電プラントの廃熱回収装置等から排出さ
れる燃焼排ガス中の窒素酸化物(NOx)を除去する脱硝
装置に係り、特に排ガスが水平流に流れる内部保温型脱
硝装置に関するものである。TECHNICAL FIELD The present invention relates to a denitration device for removing nitrogen oxides (NOx) in combustion exhaust gas discharged from a waste heat recovery device of a combined cycle power plant, and particularly to exhaust gas. The present invention relates to an internal heat retention type denitration device in which a horizontal flow occurs.
急増する電力需要に応えるために大容量の火力発電所が
建設されているが、これらのボイラは部分負荷時におい
ても高い発電効率を得るために変圧運転を行なうことが
要求されている。Large-capacity thermal power plants have been constructed to meet the rapidly increasing demand for electric power, but these boilers are required to perform a transformer operation in order to obtain high power generation efficiency even under partial load.
これは最近の電力需要の特徴として、原子力発電の伸び
と共に、負荷の最大と最小の差も増大し、火力発電はベ
ースロード用から負荷調整用へと移行する傾向にある。This is a feature of recent electric power demand, and the difference between the maximum and minimum loads increases along with the growth of nuclear power generation, and thermal power generation tends to shift from base load use to load adjustment use.
つまり、火力発電ボイラはボイラ負荷を常に全負荷で運
転されるものは少なく、負荷を75%負荷、50%負荷、25
%負荷へと負荷を上げ、下げして運転したり、ボイラの
運転を停止するなど、いわゆる毎日起動停止(Daily St
art Stop以下単にDSSという)や、週末起動停止(Weekl
y Start Stop以下単にWSSという)運転を行なつて中間
負荷を担い、発電効率を向上させることが行なわれてい
る。In other words, there are few thermal power generation boilers that are always operated at full load, with 75% load, 50% load, and 25% load.
% The load is increased and decreased to operate, the boiler operation is stopped, and so on.
art Stop (hereinafter simply referred to as DSS) or weekend stop (Weekl
y Start Stop (hereinafter simply referred to as WSS) is performed to carry an intermediate load and improve power generation efficiency.
例えば高効率発電の一環として、最近複合発電プラント
が注目されている。この複合発電プラントはまず、ガス
タービンによる発電を行なうと共に、ガスタービンから
排出される排ガス中の熱を廃熱回収装置(廃熱回収ボイ
ラ)によつて回収し、この廃熱回収ボイラで発生した蒸
気により蒸気タービンを駆動させて発電するものであ
る。For example, as a part of high-efficiency power generation, a combined power generation plant has recently attracted attention. This combined cycle power generation plant first performs power generation by the gas turbine, and at the same time, recovers heat in the exhaust gas discharged from the gas turbine by a waste heat recovery device (waste heat recovery boiler), which is generated in this waste heat recovery boiler. A steam turbine drives a steam turbine to generate electricity.
この複合発電プラントはガスタービンによる発電と、蒸
気タービンによる発電を行なうために発電効率が高いう
えにガスタービンは負荷応答性に優れ、このために急激
な電力需要の上昇にも十分対応し得る負荷追従性に優れ
た利点もあり、特にDSS運転やWSS運転には有効である。This combined cycle power plant has a high power generation efficiency because it uses a gas turbine and a steam turbine to generate power, and the gas turbine has excellent load responsiveness. It also has the advantage of excellent followability and is particularly effective for DSS operation and WSS operation.
ところが、この複合発電プラントにおいては、LNG、灯
油などのクリーンな燃料を使用するので、SOx量やダス
ト量は少なくなるが、ガスタービンの燃焼においては酸
素量が多く、高温燃焼を行なうために、排ガス中のNOx
量が増加するので、脱硝装置を内蔵した廃熱回収ボイラ
が開発されている。However, in this combined cycle power plant, since clean fuels such as LNG and kerosene are used, the SOx amount and the dust amount are reduced, but in the combustion of the gas turbine, since the oxygen amount is large and high temperature combustion is performed, NOx in exhaust gas
As the volume increases, a waste heat recovery boiler with a built-in denitration device has been developed.
第6図は内部保温型脱硝装置が配置された複合発電プラ
ントの概略系統図である。第6図において、1はガスタ
ービン、2はガスタービン1からの排ガスGを導入する
排ガス通路、3は過熱器、4は第1の蒸発器、5は脱硝
装置、6は第2の蒸発器、7は節炭器である。過熱器
3、第1および第2の蒸発器4,6、脱硝装置5、節炭器
7は排ガス通路2内に配置されている。8は蒸気を発生
するドラム、9はドラム8で発生した蒸気により駆動さ
れる蒸気タービン、10は蒸気を凝縮して水に戻す復水
器、11は復水器10の水をドラム8に給水する復水ポン
プ、12は給水管路である。FIG. 6 is a schematic system diagram of a combined cycle power generation plant in which an internal heat insulation type denitration device is arranged. In FIG. 6, 1 is a gas turbine, 2 is an exhaust gas passage for introducing exhaust gas G from the gas turbine 1, 3 is a superheater, 4 is a first evaporator, 5 is a denitration device, and 6 is a second evaporator. , 7 are economizers. The superheater 3, the first and second evaporators 4, 6, the denitration device 5, and the economizer 7 are arranged in the exhaust gas passage 2. 8 is a drum for generating steam, 9 is a steam turbine driven by the steam generated in the drum 8, 10 is a condenser for condensing the steam and returning it to water, 11 is water for supplying water from the condenser 10 to the drum 8. A condensate pump, 12 is a water supply line.
復水器10の水は復水ポンプ11により給水Wとなつて給水
管路12を経て節炭器6で排ガスGにより予熱されてドラ
ム8内に供給される。ドラム8内の水は下降管13を通つ
て下降し、管路14a、14bを経て蒸発器4,6へ導入され管
路15a、15bを経てドラム8内に戻る。このようにして、
循環流動する間に、蒸発器4,6において排ガスGとの熱
交換により生じた蒸気は飽和蒸気管16により過熱器3に
導入され、ここで排ガスGにより過熱され、過熱蒸気と
して主蒸気管17を経て蒸気タービン9へ供給される。18
は主蒸気管に接続され、蒸気タービン9をバイパスして
蒸気を直接復水器10に導くタービンバイパス管である。
又、19は蒸気タービン9への蒸気の流量を調節する蒸気
タービン加減弁、20は蒸気タービン9への蒸気の供給量
により蒸気のバイパス量を調節するタービンバイパス
弁、21は排ガスダクト2のダンパである。The water in the condenser 10 is supplied to the water W by the condensate pump 11, passes through the water supply line 12, is preheated by the exhaust gas G in the economizer 6, and is supplied into the drum 8. The water in the drum 8 descends through the downcomer pipe 13, is introduced into the evaporators 4 and 6 via the pipe lines 14a and 14b, and returns into the drum 8 via the pipe lines 15a and 15b. In this way
While circulating, the steam generated by heat exchange with the exhaust gas G in the evaporators 4 and 6 is introduced into the superheater 3 by the saturated steam pipe 16, where it is superheated by the exhaust gas G, and the main steam pipe 17 serves as superheated steam. Is supplied to the steam turbine 9. 18
Is a turbine bypass pipe that is connected to the main steam pipe and bypasses the steam turbine 9 to directly guide steam to the condenser 10.
Further, 19 is a steam turbine control valve that adjusts the flow rate of steam to the steam turbine 9, 20 is a turbine bypass valve that adjusts the bypass amount of steam by the supply amount of steam to the steam turbine 9, and 21 is a damper of the exhaust gas duct 2. Is.
以上の説明は複合発電プラントの概要であるが一般に、
排熱回収ボイラ内には、過熱器3、蒸発器4,6および節
炭器7が組み込まれ排ガス中の熱を回収すると共に排ガ
スの脱硝を行なう脱硝装置5が配置されている。The above explanation is an outline of the combined cycle power plant, but in general,
In the exhaust heat recovery boiler, there is arranged a denitration device 5 in which a superheater 3, evaporators 4 and 6 and a economizer 7 are incorporated to recover heat in the exhaust gas and denitrate the exhaust gas.
第7図は従来の内部保温型脱硝装置の横断面図、第8図
は、第7図のA部を拡大した支持装置のVII−VII線断面
拡大図である。排ガスGが通過する排ガス通路2のケー
シング22の内側には保温材23が内張され、その内部に脱
硝装置5が受台24上に載置されている。また、脱硝装置
5は第9図に示す様に触媒ユニツト25を数ユニツトに総
めて触媒ブロツク26を形成し、さらにこの触媒ブロック
26を第7図に示す様に積み重ねて脱硝装置5が形成さ
れ、この脱硝装置5の中を排ガスGが通過することによ
つて脱硝反応が行なわれる。FIG. 7 is a transverse sectional view of a conventional internal heat retention type denitration apparatus, and FIG. 8 is an enlarged sectional view taken along line VII-VII of a supporting device in which the portion A of FIG. 7 is enlarged. A heat insulating material 23 is lined inside the casing 22 of the exhaust gas passage 2 through which the exhaust gas G passes, and the denitration device 5 is placed on the pedestal 24 inside the heat insulating material 23. As shown in FIG. 9, the denitration device 5 also forms a catalyst block 26 by combining the catalyst unit 25 into several units, and further forms the catalyst block 26.
26 are stacked as shown in FIG. 7 to form the denitration device 5, and the exhaust gas G passes through the denitration device 5 to perform the denitration reaction.
ところが、前述した様にこれらの複合発電プラントにお
いては、DSS運転やWSS運転によつて頻繁に起動、停止を
繰り返すために、特に起動時においては触媒ブロツク26
がガスタービン1からの排ガスGによつて一方的に加熱
されるために、第8図に示す実線の位置に位置する触媒
ブロツク26が破線や一点鎖線で示すように伸び、運転停
止時には逆に実線の位置に戻る、いわゆる積み重ねられ
た触媒ブロツク26が伸縮を繰り返す。However, as mentioned above, in these combined cycle power plants, since the start and stop are frequently repeated by the DSS operation and WSS operation, the catalyst block 26
Is unilaterally heated by the exhaust gas G from the gas turbine 1, the catalyst block 26 located at the position indicated by the solid line in FIG. 8 extends as indicated by the broken line or the alternate long and short dash line. The so-called stacked catalyst block 26, which returns to the position indicated by the solid line, repeatedly expands and contracts.
この様に従来の脱硝装置5は内部保温型であるためガス
タービン1からの熱を受ける触媒ブロツク26は熱伸縮す
るが、排ガス通路2のケーシング22は断熱材で保護され
ているので熱伸縮はほとんど無く、触媒ブロツク26をケ
ーシング22に直接固定して支持することができない。As described above, since the conventional denitration device 5 is an internal heat retention type, the catalyst block 26 that receives heat from the gas turbine 1 expands and contracts thermally, but since the casing 22 of the exhaust gas passage 2 is protected by a heat insulating material, the expansion and contraction of heat does not occur. Almost none, the catalyst block 26 cannot be directly fixed to and supported by the casing 22.
従つて、地震等の振動に対しては、第8図に示す構造の
複雑な油圧防振器27等を用いてケーシング22の外部より
触媒ブロツク26を支持する支持装置28が採用されてい
た。Therefore, with respect to vibrations such as earthquakes, a supporting device 28 for supporting the catalyst block 26 from the outside of the casing 22 by using a complex hydraulic vibration isolator 27 having a structure shown in FIG. 8 has been adopted.
この支持装置28は油圧防振器27と支持棒29から成り油圧
防振器27は排ガスGによる温度上昇を防ぐため排ガス通
路2の外側に配置する。したがつて、サポート部材20と
触媒ブロツク26を連結する支持棒29は排ガス通路2のケ
ーシング22及び保温材23を貫通する構造となり支持棒29
は触媒ブロツク26の熱伸縮に追従して動くためシール構
造や断熱構造は第8図に示す様に複雑になる。The support device 28 comprises a hydraulic vibration isolator 27 and a support rod 29, and the hydraulic vibration isolator 27 is arranged outside the exhaust gas passage 2 in order to prevent the temperature rise due to the exhaust gas G. Therefore, the support rod 29 connecting the support member 20 and the catalyst block 26 has a structure penetrating the casing 22 and the heat insulating material 23 of the exhaust gas passage 2.
Since it moves following the thermal expansion and contraction of the catalyst block 26, the sealing structure and heat insulating structure become complicated as shown in FIG.
この様に従来の内部保温型脱硝装置においてはDSS運
転、WSS運転を行なつて起動、運転を繰り返すために触
媒ブロツクの支持構造が追従できず、しかも積み重ねた
触媒ブロツクは地震等の振動に対しては非常に弱い支持
構造であつた。In this way, in the conventional internal heat retention type denitration device, the catalyst block support structure cannot follow because it starts and repeats the DSS operation and WSS operation, and the stacked catalyst blocks are resistant to vibrations such as earthquakes. It had a very weak support structure.
また従来、特開昭54−71766号に記載されているような
脱硝装置の提案があった。この装置は、触媒を充填した
枠体の両側に垂直な支持部材を設けた立方形の触媒支持
装置を形成する。一方、反応器本体内にH型鋼からなる
案内フレームを所定の間隔をおいて立設し、各案内フレ
ームの間に前記触媒支持装置を順次挿入して、案内フレ
ームの各触媒支持装置と対向する位置に設けられたピン
の先端をハンドルで触媒支持装置の側面に押圧すること
により、各触媒支持装置の側端を案内フレームに密着す
る構造になっている。Further, conventionally, there has been proposed a denitration device as described in JP-A-54-71766. This device forms a cubic catalyst support device with vertical support members on both sides of a catalyst-filled frame. On the other hand, guide frames made of H-shaped steel are erected at predetermined intervals in the reactor body, and the catalyst supporting devices are sequentially inserted between the guide frames to face the catalyst supporting devices of the guide frames. By pressing the tip of the pin provided at the position against the side surface of the catalyst supporting device with the handle, the side end of each catalyst supporting device is brought into close contact with the guide frame.
ところがこの脱硝装置では、反応器本体に固定された案
内フレームが各触媒支持装置と一体となるから、各触媒
支持装置が縦方向ならびに横方向に熱伸縮を繰り返す度
毎に案内フレームに応力が作用し、案内フレームならび
にそれを取り付けている反応器本体に疲労による損傷を
生じる。However, in this denitrification device, the guide frame fixed to the reactor body is integrated with each catalyst support device, so stress is applied to the guide frame every time each catalyst support device repeats thermal expansion and contraction in the vertical and horizontal directions. However, the guide frame and the reactor body to which it is attached are damaged by fatigue.
またこのようなことが起こらないようにするために、前
記ピンによる押圧力を緩めると、案内フレームと触媒支
持装置の間に隙間が生じて、そこから未反応の排ガスが
リークして、脱硝効率が低下するなどの欠点を有してい
る。Further, in order to prevent this from happening, when the pressing force by the pin is loosened, a gap is created between the guide frame and the catalyst supporting device, and unreacted exhaust gas leaks from there, resulting in denitration efficiency. Has the drawback that
本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、触媒ブロツクの熱伸縮に追従
でき、しかも地震等の振動に対しても強固に支持するこ
とができる内部保温型脱硝装置を提供するものである。The present invention is intended to eliminate such conventional drawbacks,
It is an object of the present invention to provide an internal heat retention type denitration device which can follow the thermal expansion and contraction of a catalyst block and can firmly support vibration such as an earthquake.
本発明は前述の問題点を解消するとともに、排ガス温度
が低い場合でも高い脱硝効率が得られ、さらにケーシン
グの熱による変形などが有効に防止するために、 ケーシングの内側を保温材で内張りして形成した排ガス
通路に触媒ブロックの集合体を配置して、その排ガス通
路を通過する排ガスを脱硝するものにおいて、 前記触媒ブロック集合体の外周を囲む枠形部材と、この
枠形部材を連結する梁部材によって形成した箱形支持部
材の内面全体を板部材で内張りして、 その箱形支持部材を触媒ブロック集合体の外周との間に
隙間を設けて配置し、 前記箱形支持部材と触媒ブロック集合体との間の隙間の
排ガス流れ方向上流側と下流側とを第1のシールプレー
トでそれぞれシールして、触媒ブロック集合体の外周を
囲む第1の空間部を形成し、 前記箱形支持部材を保温材の内側に隙間を設けて配置し
て、その箱形支持部材と保温材との間の隙間を第2のシ
ールプレートでシールして、前記第1の空間部の外周を
囲む第2の空間部を形成して、 保温材の内側を二重の空間部構造にしたことを特徴とす
るものである。The present invention solves the above-mentioned problems, provides high denitration efficiency even when the exhaust gas temperature is low, and in order to effectively prevent deformation due to heat of the casing, the inside of the casing is lined with a heat insulating material. A catalyst block assembly is arranged in the formed exhaust gas passage to denitrate exhaust gas passing through the exhaust gas passage, wherein a frame-shaped member surrounding the outer periphery of the catalyst block assembly and a beam connecting the frame-shaped member The entire inner surface of the box-shaped support member formed by the members is lined with a plate member, and the box-shaped support member is arranged with a gap between the box-shaped support member and the outer periphery of the catalyst block assembly. The upstream side and the downstream side of the gap between the assembly and the exhaust gas flow direction are sealed by a first seal plate to form a first space portion surrounding the outer periphery of the catalyst block assembly. The box-shaped support member is arranged inside the heat insulating material with a gap, and the gap between the box-shaped support member and the heat insulating material is sealed with a second seal plate to form the first space portion. A second space portion surrounding the outer periphery of the heat insulating material is formed, and the inside of the heat insulating material has a double space portion structure.
このように本発明では、 .箱形支持部材の内側に隙間を介して触媒ブロック集
合体が配置されているから、触媒ブロック集合体の熱伸
縮は箱形支持部材によって拘束されず、またその箱形支
持部材は隙間を介して保温材の内側に配置されているか
ら、箱形支持部材の熱伸縮は保温材によって拘束されず
に自由に伸縮可能であり、伸縮による箱形支持部材なら
びに保温材の損傷は起こらない。Thus, according to the present invention, Since the catalyst block assembly is arranged inside the box-shaped support member with a gap therebetween, the thermal expansion and contraction of the catalyst block assembly is not restrained by the box-shaped support member, and the box-shaped support member also has a gap. Since it is arranged inside the heat insulating material, the thermal expansion and contraction of the box-shaped support member can freely expand and contract without being restrained by the heat insulating material, and the box-shaped support member and the heat insulating material are not damaged by expansion and contraction.
.箱形支持部材の内面全体を板部材で内張りして、箱
形支持部材と触媒ブロツク集合体との間の隙間の排ガス
流れ方向上流側と下流側とを第1のシールプレートでそ
れぞれシールしているから、排ガスが箱形支持部材と触
媒ブロック集合体の間をリークしたり、触媒ブロック集
合体の中の一部を通過して他の部分でリークするような
ことがない。. The entire inner surface of the box-shaped support member is lined with a plate member, and the upstream side and the downstream side in the exhaust gas flow direction of the gap between the box-shaped support member and the catalyst block assembly are sealed with the first seal plates, respectively. Therefore, the exhaust gas does not leak between the box-shaped support member and the catalyst block assembly or pass through a part of the catalyst block assembly and leak at another part.
さらに箱形支持部材と保温材の間の隙間は第2のシール
プレートでシールしているため、箱形支持部材と保温材
の隙間からガスリークするようなことがない。Furthermore, since the gap between the box-shaped support member and the heat insulating material is sealed by the second seal plate, gas leakage does not occur from the gap between the box-shaped support member and the heat insulating material.
このようなことから排ガスは必ず触媒ブロック集合体の
中を通過し、高い脱硝効率が得られる。Due to this, the exhaust gas always passes through the catalyst block assembly, and high denitration efficiency can be obtained.
.保温材の内側が、箱形支持部材と触媒ブロック集合
体と第1のシールプレートで囲まれた第1の空間部と、
箱形支持部材と保温材と第2のシールプレートで囲まれ
た第2の空間部との二重構造になっているから、ボイラ
の負荷変動などによって排ガス温度が低くなった場合で
も触媒ブロック集合体の周囲の温度は脱硝反応に適した
温度が維持され、高い脱硝効率が保持できる。特に前記
第1の空間部はほぼ密室状体になっており、それで触媒
ブロック集合体が囲まれているから、保温効率が高く、
脱硝反応に適した温度が長時間維持される。. A first space part surrounded by a box-shaped support member, a catalyst block assembly, and a first seal plate, the inside of the heat insulating material;
Due to the double structure of the box-shaped support member, the heat insulating material, and the second space surrounded by the second seal plate, even if the exhaust gas temperature becomes low due to load fluctuation of the boiler, the catalyst block assembly The temperature around the body is maintained at a temperature suitable for the denitration reaction, and high denitration efficiency can be maintained. In particular, the first space portion is a substantially closed chamber-like body, and the catalyst block assembly is surrounded by it, so that the heat retention efficiency is high,
The temperature suitable for the denitration reaction is maintained for a long time.
またこの二重の空間部構造と保温材とによってケーシン
グへの熱伝達が有効に防止でき、ケーシングの熱による
変形ならびに装置外部への熱の放散などが有効に防止で
きる。Further, heat transfer to the casing can be effectively prevented by the double space structure and the heat insulating material, so that deformation of the casing due to heat and heat dissipation to the outside of the device can be effectively prevented.
以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の実施例に係る縦断面図、第2図は第1
図の正面断面図、第3図は第1図の横断面図、第4図は
第3図のB部を拡大した詳細図、第5図は箱型支持部材
の斜視図である。FIG. 1 is a longitudinal sectional view according to an embodiment of the present invention, and FIG.
FIG. 3 is a front sectional view of the drawing, FIG. 3 is a lateral sectional view of FIG. 1, FIG. 4 is an enlarged detailed view of a portion B of FIG. 3, and FIG. 5 is a perspective view of a box-shaped support member.
第1図から第5図において、2は排ガス通路、5は脱硝
装置、22はケーシング、23は保温材、24は受台、26は触
媒ブロツクで従来のものと同一のものを示すが、説明の
都合上、26aを上流側触媒ブロツク、26bを下流側触媒ブ
ロツクと呼ぶ。1 to 5, 2 is an exhaust gas passage, 5 is a denitration device, 22 is a casing, 23 is a heat insulating material, 24 is a pedestal, and 26 is a catalyst block, which is the same as the conventional one. For the sake of convenience, 26a is called an upstream catalyst block and 26b is called a downstream catalyst block.
31a、31b、31cは触媒ブロツク26a、26bの外周を囲む枠
形部材、32a、32bは枠形部材31a、31b、31cを連結する
梁部材、33は枠形部材31a、31b、31cと梁部材32a、32b
によつて形成された箱形支持部材、34は箱形支持部材33
の内側に配置した上流側、下流側触媒ブロック26a、26b
を支持するストッパー部材、35は箱形支持部材33の内側
に排ガス流れ方向に内張された薄板部材、36は排ガス通
路2と箱形支持部材33の隙間50の排ガス流れ方向上流側
を箱形支持部材33が伸縮可能なようにシールする断面形
状がほぼL字型の第2のシールプレート、37は箱形支持
部材33と上流側、下流側触媒ブロツク26a、26bの隙間51
をシールする第1のシールプレート、38は積み増し触媒
ブロツク、39は積み増し触媒ブロツク38の積み増し触媒
ブロツク用枠形部材、40は積み増し触媒ブロツク用梁部
材である。31a, 31b, 31c are frame-shaped members surrounding the outer circumference of the catalyst blocks 26a, 26b, 32a, 32b are beam members connecting the frame-shaped members 31a, 31b, 31c, and 33 are frame-shaped members 31a, 31b, 31c and beam members. 32a, 32b
A box-shaped support member formed by
Upstream and downstream catalyst blocks 26a, 26b arranged inside the
35 is a stopper member, 35 is a thin plate member that is lined inside the box-shaped support member 33 in the exhaust gas flow direction, and 36 is a box-shaped upstream side of the gap 50 between the exhaust gas passage 2 and the box-shaped support member 33 in the exhaust gas flow direction. A second seal plate having a substantially L-shaped cross section that seals the support member 33 so that it can expand and contract, and 37 is a gap 51 between the box-shaped support member 33 and the upstream and downstream catalyst blocks 26a and 26b.
Is a first seal plate for sealing the above, 38 is an additional catalyst block, 39 is an additional catalyst block 38 frame member for an additional catalyst block, and 40 is a beam member for an additional catalyst block.
この様な構造において、枠形部材31a、31b、31cは第1
図に示す如く上流側触媒ブロツク26a、下流側触媒ブロ
ツク26bの外周を囲む枠形に形成され、この枠形部材31a
は第1図および第3図に示す様に上流側触媒ブロツク26
aの上流側に、枠形部材31bは上流側触媒ブロツク26aと
下流側触媒ブロツク26bの間に、枠形部材31cは下流側触
媒ブロツク26bの下流側にそれぞれ配置されている。In such a structure, the frame-shaped members 31a, 31b, 31c are the first
As shown in the figure, the upstream side catalyst block 26a and the downstream side catalyst block 26b are formed in a frame shape surrounding the outer periphery of the frame-shaped member 31a.
Is the upstream catalyst block 26 as shown in FIG. 1 and FIG.
On the upstream side of a, the frame member 31b is arranged between the upstream catalyst block 26a and the downstream catalyst block 26b, and the frame member 31c is arranged on the downstream side of the downstream catalyst block 26b.
そして、この枠形部材31aと枠形部材31b、枠形部材31b
と枠形部材31cは梁部材32a、32bによつて連結され、第
5図の斜視図に最もよく示されているように箱形支持部
材33を構成し、この箱形支持部材33によつて第1図、第
2図および第3図に示すように銃流側触媒ブロツク26
a、下流側触媒ブロツク26bを排ガス通路2内で支持して
いる。Then, the frame-shaped member 31a, the frame-shaped member 31b, and the frame-shaped member 31b
The frame-shaped member 31c and the frame-shaped member 31c are connected by beam members 32a and 32b to form a box-shaped support member 33 as best shown in the perspective view of FIG. As shown in FIGS. 1, 2, and 3, the gun flow side catalyst block 26
a, the downstream side catalyst block 26b is supported in the exhaust gas passage 2.
なお、箱形支持部材33の内側における排ガスGの流れ方
向には第4図および第5図に示す様に薄板部材35が内張
され、枠形部材31a、31b、31Cと上流側触媒ブロツク26
a、下流側触媒ブロツク26bの間にはストツパー部材34が
介在されている。A thin plate member 35 is lined inside the box-shaped support member 33 in the flow direction of the exhaust gas G as shown in FIGS. 4 and 5, and the frame-shaped members 31a, 31b, 31C and the upstream catalyst block 26 are provided.
A stop member 34 is interposed between the a and the downstream catalyst block 26b.
この様に本発明においては、第1図から第3図に示す様
に上流側、下流側触媒ブロツク26a,26bの外周を取巻く
形で隙間51を介して箱形支持部材33内に配置されている
から、触媒ブロツク26a,26bの熱伸縮は拘束されない。
また箱形支持部材33の外周を取巻く形で隙間50を介して
保温材23内に配置されているから、箱形支持部材33の熱
伸縮は拘束されない。また上流側、下流側触媒ブロツク
26a、26bは箱形支持部材33によりストツパー部材34を介
して一体化されているため、触媒ブロツク26a、26b毎の
転倒は無く脱硝装置5の底部のみで触媒ブロツク26a、2
6b全体を支持すれば強度上の問題はなくなる。As described above, in the present invention, as shown in FIGS. 1 to 3, the outer circumferences of the upstream and downstream catalyst blocks 26a and 26b are arranged in the box-shaped support member 33 through the gap 51. Therefore, the thermal expansion and contraction of the catalyst blocks 26a and 26b are not restricted.
Further, since the box-shaped supporting member 33 is arranged in the heat insulating material 23 so as to surround the outer periphery of the box-shaped supporting member 33, the thermal expansion and contraction of the box-shaped supporting member 33 is not restricted. In addition, upstream and downstream catalyst blocks
Since 26a, 26b are integrated by the box-shaped support member 33 via the stopper member 34, there is no fall of each catalyst block 26a, 26b, and only the bottom of the denitration device 5 does the catalyst block 26a, 26b.
Supporting the entire 6b eliminates the problem of strength.
さらに、箱形支持部材33の内面周囲には薄板部材35が内
張りされ、また第3図に示すように隙間51の排ガス流れ
方向上流側と下流側と第1のシールプレート37でそれぞ
れシールしているから、排ガスが箱形支持部材33と触媒
ブロック26a、26bの間をリークしたり、例えば上流側触
媒ブロック26aを通過して下流側触媒ブロック26bでリー
クするようなことがなく、この空間部での空気の移動は
ほとんどない。Further, a thin plate member 35 is lined around the inner surface of the box-shaped support member 33, and, as shown in FIG. 3, is sealed by the first seal plate 37 on the upstream and downstream sides of the gap 51 in the exhaust gas flow direction. Therefore, the exhaust gas does not leak between the box-shaped support member 33 and the catalyst blocks 26a, 26b, and does not leak, for example, through the upstream catalyst block 26a and the downstream catalyst block 26b, and this space There is almost no movement of air in.
前記隙間51の所には、箱形支持部材33と触媒ブロック26
a、26bと前後の第1のシールプレート37で囲まれた、ほ
ぼ密室状の第1の空間部が形成される。また、前記隙間
50の所には、箱形支持部材33と保温材23と第2のシール
プレート36で囲まれた第2の空間部が形成される。そし
て前記第1の空間部の外周が第2の空間部で覆われ、さ
らにその第2の空間部が保温材23で覆われ、結局、保温
材23の内側が、第1の空間部と第2の空間部との二重空
間部構造になっている。At the gap 51, the box-shaped support member 33 and the catalyst block 26.
A substantially closed chamber-shaped first space surrounded by a and 26b and the front and rear first seal plates 37 is formed. Also, the gap
At 50, a second space portion surrounded by the box-shaped support member 33, the heat insulating material 23 and the second seal plate 36 is formed. The outer periphery of the first space portion is covered with the second space portion, and the second space portion is further covered with the heat insulating material 23, so that the inner side of the heat insulating material 23 and the first space portion are It has a double space part structure with two space parts.
そのため、ボイラの負荷変動などによって排ガス温度が
低くなった場合でも触媒ブロック26a、26bの温度は脱硝
反応に適した温度が維持され、高い脱硝効率が保持でき
る。Therefore, even if the exhaust gas temperature becomes low due to a change in the load of the boiler, the temperature of the catalyst blocks 26a and 26b is maintained at a temperature suitable for the denitration reaction, and high denitration efficiency can be maintained.
またこの二重の空間部構造と保温材23とによってケーシ
ング22への熱伝達が有効に防止でき、薄板からなるケー
シング22の熱による変形ならびに装置外部への熱の放散
などが有効に防止できる。Further, heat transfer to the casing 22 can be effectively prevented by the double space structure and the heat insulating material 23, and deformation of the casing 22 made of a thin plate due to heat and heat dissipation to the outside of the device can be effectively prevented.
また、脱硝装置5を箱形支持部材33によつて支持するこ
とによつて、工場で脱硝装置5全体をブロツク化して建
設現場へ輸送し、ブロツク工法によつて短時間に建設す
ることもできる。Further, by supporting the denitration device 5 by the box-shaped support member 33, the entire denitration device 5 can be blocked and transported to the construction site at the factory, and the block construction method can be used for short-time construction. .
なお、第1図および第3図における積み増し触媒ブロツ
ク38は銃流側触媒ブロツク26a、下流側触媒ブロツク26b
の触媒が劣化した場合に、下流側触媒ブロツク26bの下
流側に積み増し触媒ブロツク38を第1図および第3図の
破線で示す様に積み増しして同一の脱硝効率を得る場合
に用いる。The additional catalyst block 38 in FIGS. 1 and 3 is the gun flow side catalyst block 26a and the downstream side catalyst block 26b.
This is used when the same catalyst is deteriorated and the same denitration efficiency is obtained by further stacking the catalyst block 38 on the downstream side of the downstream side catalyst block 26b as shown by the broken lines in FIGS. 1 and 3.
この様に枠形部材31cの下流に積み増し触媒ブロツク用
の枠形部材39と梁部材40を箱形支持部材33と一体にして
おけば、積み増し触媒ブロツク38を迅速に積み増しする
ことができ、他の上流側、下流側触媒ブロツク26a、26b
と同様に支持することもできる。In this way, if the frame-shaped member 39 and the beam member 40 for the catalyst block that are added downstream of the frame-shaped member 31c are integrated with the box-shaped support member 33, the added catalyst block 38 can be quickly added, and the like. Upstream and downstream of the catalyst block 26a, 26b
Can be supported as well.
以上本発明の実施例においては複合発電プラントの脱硝
装置について説明したが、本発明は複合発電プラントの
脱硝装置に限定されるものではなく、火力発電用ボイ
ラ、他の燃焼炉等の脱硝装置へも応用することができ
る。Although the denitration apparatus of the combined cycle power plant has been described in the embodiments of the present invention, the present invention is not limited to the denitration apparatus of the combined cycle power plant, and to a denitration apparatus such as a thermal power generation boiler or another combustion furnace. Can also be applied.
本発明によれば、箱形支持部材の内側に隙間を介して触
媒ブロツクが配置されているから、触媒ブロツクの熱伸
縮は箱形支持部材によって拘束されず、またその箱形支
持部材は隙間を介して保温財の内側に配置されているか
ら、箱形支持部材の熱伸縮は保温材によって拘束されず
に自由に伸縮可能であるから、伸縮による箱形支持部材
ならびに保温材の損傷は起こらない。According to the present invention, since the catalyst block is arranged inside the box-shaped support member with a gap therebetween, thermal expansion and contraction of the catalyst block is not restrained by the box-shaped support member, and the box-shaped support member does not have the gap. Since it is placed inside the heat insulating article, the thermal expansion and contraction of the box-shaped support member can be freely expanded and contracted without being restrained by the heat insulation material, so that the box-shaped support member and the heat insulation material are not damaged by expansion and contraction. .
また箱形支持部材の内面全体を板部材で内張りして、箱
形支持部材と触媒ブロツクの外周との間の隙間を第1の
シールプレートでシールしているから、箱形支持部材と
触媒ブロツクの間ならびに箱形支持部材を通してのガス
リークが防止できる。さらに箱形支持部材と保温材の隙
間の排ガス流れ方向上流側が第2のシールプレートでシ
ールしているから、箱形支持部材と保温材の隙間からの
ガスリークが防止でき、高い脱硝効率が維持できる。Further, since the entire inner surface of the box-shaped support member is lined with a plate member and the gap between the box-shaped support member and the outer periphery of the catalyst block is sealed by the first seal plate, the box-shaped support member and the catalyst block are sealed. It is possible to prevent gas leakage between the space and the box-shaped support member. Further, since the upstream side of the gap between the box-shaped support member and the heat insulating material in the exhaust gas flow direction is sealed by the second seal plate, gas leakage from the gap between the box-shaped support member and the heat insulating material can be prevented, and high denitration efficiency can be maintained. .
さらに地震などの振動に対して、触媒ブロツクは箱形支
持部材との間で隙間分だけしか揺れず、また箱形支持部
材は保温材との間で隙間分だけしか揺れず、大きな揺れ
は生じない。Furthermore, in response to vibration such as an earthquake, the catalyst block sways only between the box-shaped support member and the heat-insulating material, and the box-shaped support member sways only between the heat-insulating material and the vibration. Absent.
第1図から第5図は本発明の実施例に係る脱硝装置を示
すもので、第1図は脱硝装置の縦断面図、第2図は第1
図の正面断面図、第3図は横断面図、第4図は第3図の
B部を拡大した詳細図、第5図は箱形支持部材の斜視
図、第6図は複合発電プラントの概略構成図、第7図は
従来の脱硝装置の正面断面図、第8図は第7図のA部を
拡大した詳細図、第9図は触媒ブロツクの斜視図であ
る。 2……排ガス通路、20……ケーシング、23……保温材、
26a、26b、38……触媒ブロツク、31a、311b、31c、39…
…枠形部材、32a、32b、40……梁部材、33……箱形支持
部材、35……薄板部材、36……第2のシールプレート、
37……第1のシールプレート、50、51……隙間。1 to 5 show a denitration apparatus according to an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of the denitration apparatus, and FIG.
Front sectional view of the figure, FIG. 3 is a transverse sectional view, FIG. 4 is an enlarged detailed view of portion B of FIG. 3, FIG. 5 is a perspective view of a box-shaped support member, and FIG. FIG. 7 is a schematic sectional view of a conventional denitration apparatus, FIG. 8 is an enlarged detailed view of a portion A of FIG. 7, and FIG. 9 is a perspective view of a catalyst block. 2 ... Exhaust gas passage, 20 ... Casing, 23 ... Heat insulation material,
26a, 26b, 38 ... Catalyst block, 31a, 311b, 31c, 39 ...
... Frame member, 32a, 32b, 40 ... Beam member, 33 ... Box-shaped support member, 35 ... Thin plate member, 36 ... Second seal plate,
37 …… First seal plate, 50,51 …… Gap.
Claims (1)
成した排ガス通路に触媒ブロックの集合体を配置して、
その排ガス通路を通過する排ガスを脱硝するものにおい
て、 前記触媒ブロック集合体の外周を囲む枠形部材と、この
枠形部材を連結する梁部材によって形成した箱形支持部
材の内面全体を板部材で内張りして、 その箱形支持部材を触媒ブロック集合体の外周との間に
隙間を設けて配置し、 前記箱形支持部材と触媒ブロック集合体との間の隙間の
排ガス流れ方向上流側と下流側とを第1のシールプレー
トでそれぞれシールして、触媒ブロック集合体の外周を
囲む第1の空間部を形成し、 前記箱形支持部材を保温材の内側に隙間を設けて配置し
て、その箱形支持部材と保温材との間の隙間を第2のシ
ールプレートでシールして、前記第1の空間部の外周を
囲む第2の空間部を形成して、 保温材の内側を二重の空間部構造にしたことを特徴とす
る脱硝装置。1. An assembly of catalyst blocks is arranged in an exhaust gas passage formed by lining the inside of a casing with a heat insulating material,
In denitrifying the exhaust gas passing through the exhaust gas passage, a frame-shaped member surrounding the outer periphery of the catalyst block assembly and a box-shaped support member formed by beam members connecting the frame-shaped members are entirely plate-shaped on the inner surface. It is lined, and the box-shaped supporting member is arranged with a gap between the box-shaped supporting member and the outer periphery of the catalyst block assembly, and the gap between the box-shaped supporting member and the catalyst block assembly is upstream and downstream in the exhaust gas flow direction. Each side is sealed with a first seal plate to form a first space surrounding the outer periphery of the catalyst block assembly, and the box-shaped support member is arranged inside the heat insulating material with a gap, A gap between the box-shaped support member and the heat insulating material is sealed with a second seal plate to form a second space portion that surrounds the outer periphery of the first space portion, and the inside of the heat insulating material is divided into two parts. It is characterized by having a heavy space structure Denitration equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61029895A JPH0714461B2 (en) | 1986-02-15 | 1986-02-15 | Denitration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61029895A JPH0714461B2 (en) | 1986-02-15 | 1986-02-15 | Denitration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62191026A JPS62191026A (en) | 1987-08-21 |
JPH0714461B2 true JPH0714461B2 (en) | 1995-02-22 |
Family
ID=12288708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61029895A Expired - Lifetime JPH0714461B2 (en) | 1986-02-15 | 1986-02-15 | Denitration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0714461B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3883689B2 (en) * | 1998-03-16 | 2007-02-21 | バブコック日立株式会社 | Waste heat recovery boiler |
DE102014203618A1 (en) * | 2014-02-27 | 2015-08-27 | Johnson Matthey Catalysts (Germany) Gmbh | Catalyst module, receiving unit for such a catalyst module and method for producing such a catalyst module |
AT516467A1 (en) | 2014-11-10 | 2016-05-15 | Ge Jenbacher Gmbh & Co Og | Catalyst device for a stationary internal combustion engine |
JP2020134047A (en) * | 2019-02-21 | 2020-08-31 | 三菱日立パワーシステムズ株式会社 | Denitration device |
JP7356367B2 (en) * | 2020-02-06 | 2023-10-04 | 三菱重工業株式会社 | Catalytic reactor with ash accumulation prevention function |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5471766A (en) * | 1977-11-18 | 1979-06-08 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for installing honeycomb-shaped catalyst |
JPS5546586U (en) * | 1978-09-22 | 1980-03-26 | ||
JPS5687126U (en) * | 1979-12-07 | 1981-07-13 | ||
JPS5824323A (en) * | 1981-08-06 | 1983-02-14 | Babcock Hitachi Kk | Denitrating device |
JPS5886239U (en) * | 1981-12-09 | 1983-06-11 | バブコツク日立株式会社 | Denitration equipment |
-
1986
- 1986-02-15 JP JP61029895A patent/JPH0714461B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62191026A (en) | 1987-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100306672B1 (en) | Heat exchanger unit | |
JPH0714461B2 (en) | Denitration equipment | |
US4685511A (en) | Tube support for moisture separator reheater | |
JP3640028B2 (en) | Vertical waste heat recovery boiler | |
JP3883689B2 (en) | Waste heat recovery boiler | |
JP2815163B2 (en) | Denitration equipment | |
JP3763856B2 (en) | Heat transfer tube group support device | |
JPH03211397A (en) | Support device for heat exchanger tube | |
JPH0443682Y2 (en) | ||
WO2022113484A1 (en) | Support mechanism for exhaust heat recovery boilers | |
JPH0428961B2 (en) | ||
JP2653570B2 (en) | Exhaust heat recovery boiler header support device | |
JPH0311524Y2 (en) | ||
JPS62221425A (en) | Denitration device | |
JP7090492B2 (en) | Exhaust heat recovery boiler | |
JP2023114253A (en) | SEAL STRUCTURE, EXHAUST HEAT RECOVERY BOILER AND METHOD OF SEALING EXHAUST GAS | |
JPH0565761B2 (en) | ||
JPS6391494A (en) | Device for supporting heat exchanger | |
JPS641719B2 (en) | ||
JPS61143698A (en) | Exhaust heat recovery heat exchanger | |
JP2001193901A (en) | Exhaust heat recovery boiler | |
JPS597820A (en) | Reinforcement for duct | |
JP2000304203A (en) | Waste heat recovery boiler | |
JPS61213501A (en) | Moisture separating reheater | |
JP3029192B2 (en) | Denitration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |