[go: up one dir, main page]

JPH07142591A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07142591A
JPH07142591A JP5162762A JP16276293A JPH07142591A JP H07142591 A JPH07142591 A JP H07142591A JP 5162762 A JP5162762 A JP 5162762A JP 16276293 A JP16276293 A JP 16276293A JP H07142591 A JPH07142591 A JP H07142591A
Authority
JP
Japan
Prior art keywords
region
film
type high
ion implantation
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5162762A
Other languages
Japanese (ja)
Inventor
Junji Koga
淳二 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5162762A priority Critical patent/JPH07142591A/en
Publication of JPH07142591A publication Critical patent/JPH07142591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To decrease the number of manufacturing steps, which are increasing with the miniaturization of an element, and to decrease the manufacturing cost by forming the source/drain region of a CMOS structure by one patterning in a self-aligning mode. CONSTITUTION:A resist film 6 is formed on a PMOS region. With the film 6 as a mask, ion implantation is performed, and a shallow N-type high- concentration impurity-diffused-layer region 7 is formed. Thereafter, a silicon nitride film 8 is selectively grown in a region other the resist film 6 by a liquid- phase growing method. The silicon nitride film 8 is made to remain only at the side wall of the gate electrode of an NMOS by anisotropic etching, and ion implantation is performed. Thus, the deep N-type high-concentration impurity-diffused-layer region 7 is formed. A silicon oxide film 9 is selectively grown in a region other than the resist film 6. After the resist film 6 is peeled, ion implantation is performed, and a shallow P-type high-concentration impurity- diffused-layer region 10 is formed. A silicon nitride film is deposited again. After anisotropic etching, ion implantation is performed, and the deep P-type high-concentration impurity diffused region 10 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り、特に自己整合的にイオン注入を行うことによって
CMOSを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a CMOS by performing ion implantation in a self-aligned manner.

【0002】[0002]

【従来の技術】スケーリング則に従って、MOS素子の
ゲート長を短くしていくことにより、高密度・高性能の
LSIが実現されている。しかしながら、高密度化・高
性能化が進むにつれて、製造のプロセス工程は複雑化
し、製造工程数も大幅に上昇しているのが現状である。
2. Description of the Related Art A high-density, high-performance LSI is realized by shortening the gate length of a MOS element according to a scaling rule. However, as the densification and performance increase, the manufacturing process steps become more complicated, and the number of manufacturing steps is increasing significantly.

【0003】DRAMを例にとると、256K,1MD
RAMで200,300であった工程数が、4MDRA
Mで400であり、さらに、16M,64MDRAMで
は、550,700にも達すると予想されている。製造
工程数の増大は、リソグラフィーによるパターニングの
回数の増加によるところが大きく、製造コストの大幅な
上昇や製品の歩留まり率の急激な低下などの大きな問題
をもたらしている。
Taking DRAM as an example, 256K, 1MD
The number of processes was 200,300 in RAM, but 4MDRA
It is 400 in M, and is expected to reach 550,700 in 16M, 64M DRAM. The increase in the number of manufacturing steps is largely due to the increase in the number of times of patterning by lithography, which causes major problems such as a large increase in manufacturing cost and a sharp decrease in the yield rate of products.

【0004】また、素子レベルに着目すると、通常のC
MOSプロセスでは、LDD構造等の浅い接合と深い接
合から成るソース/ドレイン領域を形成するのに、4回
のリソグラフィーによるパターニングを行っている。図
5及び図6にその製造方法を示す。通常のCMOSプロ
セスを用いてゲート加工まで行うと、図5(a)に示す
断面が得られる。即ち、N型半導体基板1にP型不純物
領域2が形成され、LOCOSによるシリコン酸化膜3
で分離された各領域に、ゲート絶縁膜4を介してゲート
電極が夫々設けられている。次に1回目のパターニング
を行って、PMOS領域にイオン注入されないようにレ
ジスト膜6を形成する。これをマスクにひ素のイオン注
入を行って、図5(b)に示す浅いN型高濃度不純物拡
散層領域7を形成する。レジスト膜6を剥離した後、2
回目のパターニングを行って、今度はNMOS領域にイ
オン注入されないようにレジスト膜6を形成する。これ
をマスクにボロンのイオン注入を行って、図5(c)に
示す浅いP型高濃度不純物拡散層領域10を形成する。
このレジスト膜6を除去した後、ゲート電極の側壁にシ
リコン窒化膜8を形成して、引き続き、3回目、4回目
のパターニング及び自己整合的にイオン注入を1回目、
2回目と同様に行って、図6(a)に示す深いN型高濃
度不純物拡散層領域7、および、図6(b)に示す深い
P型高濃度不純物拡散層領域10を順次形成する。もし
この製造プロセスが1回のパターニングで可能になれ
ば、製造工程数や製造コストが大幅に低下することにな
る。
Also, focusing on the element level, a normal C
In the MOS process, patterning by lithography is performed four times to form a source / drain region having a shallow junction and a deep junction such as an LDD structure. 5 and 6 show the manufacturing method. When the gate processing is performed using a normal CMOS process, the cross section shown in FIG. 5A is obtained. That is, the P-type impurity region 2 is formed on the N-type semiconductor substrate 1, and the silicon oxide film 3 by LOCOS is formed.
A gate electrode is provided in each of the regions separated by (1) through a gate insulating film 4. Next, the first patterning is performed to form a resist film 6 so that the PMOS region is not ion-implanted. Arsenic ions are implanted using this as a mask to form the shallow N-type high-concentration impurity diffusion layer region 7 shown in FIG. 5B. After removing the resist film 6, 2
By performing the patterning for the second time, the resist film 6 is formed this time so that ions are not implanted into the NMOS region. Boron ions are implanted using this as a mask to form the shallow P-type high-concentration impurity diffusion layer region 10 shown in FIG. 5C.
After removing the resist film 6, a silicon nitride film 8 is formed on the side wall of the gate electrode, followed by third and fourth patterning and first self-aligned ion implantation.
As in the second time, the deep N-type high concentration impurity diffusion layer region 7 shown in FIG. 6A and the deep P-type high concentration impurity diffusion layer region 10 shown in FIG. 6B are sequentially formed. If this manufacturing process can be performed by patterning only once, the number of manufacturing steps and the manufacturing cost will be significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
手法では、素子の微細化にともなう製造工程数の増大が
非常に大きな問題となっている。
As described above, in the conventional method, an increase in the number of manufacturing steps associated with the miniaturization of elements has become a very serious problem.

【0006】本発明は、製造工程数を低減し、製造コス
トを低下するための製造方法を提案することを目的とし
ている。
An object of the present invention is to propose a manufacturing method for reducing the number of manufacturing steps and manufacturing costs.

【0007】[発明の構成][Constitution of Invention]

【0008】[0008]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法は、半導体基板の一部を第1の保護膜で覆う
工程と、この第1の保護膜で覆われていない前記半導体
基板に対して不純物拡散を行う工程と、液相成長法によ
り前記第1の保護膜以外の前記半導体基板に対して選択
的に第2の保護膜を形成する工程と、前記第1の保護膜
を除去する工程と、前記第2の保護膜で覆われていない
前記半導体基板に対して不純物拡散を行う工程とからな
ることを特徴とする。
A method of manufacturing a semiconductor device according to the present invention comprises a step of covering a part of a semiconductor substrate with a first protective film and the semiconductor substrate not covered with the first protective film. And a step of selectively forming a second protective film on the semiconductor substrate other than the first protective film by a liquid phase growth method, and a step of forming the first protective film. It is characterized by comprising a step of removing and a step of performing impurity diffusion on the semiconductor substrate not covered with the second protective film.

【0009】[0009]

【作用】本発明によれば、1回のパターニングにより、
CMOS構造のソース/ドレイン領域を自己整合的に形
成できるので、製造工程数が低減し、製造コストが大幅
に低下する。
According to the present invention, by one patterning,
Since the source / drain regions of the CMOS structure can be formed in a self-aligned manner, the number of manufacturing steps is reduced and the manufacturing cost is significantly reduced.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1及び図2は本発明の一実施例に係るC
MOSFETの製造方法を示す製造工程断面図である。
以下、図に従いながら、本発明の製造方法を説明する。
1 and 2 show a C according to an embodiment of the present invention.
It is a manufacturing step sectional view showing a method for manufacturing a MOSFET.
Hereinafter, the manufacturing method of the present invention will be described with reference to the drawings.

【0012】通常のCMOSプロセスを使って、N型シ
リコン基板1上にP型不純物領域2を形成し、酸化シリ
コン膜3によってLOCOS型の素子分離を行う。ゲー
ト酸化膜4を形成した後、LPCVD法を用いて多結晶
シリコン膜5を堆積し、パターニングを行ってゲート電
極5を形成する。図1(a)は、ゲート電極5の加工ま
で終了したときの断面図である。
A normal CMOS process is used to form a P-type impurity region 2 on the N-type silicon substrate 1, and a silicon oxide film 3 is used for LOCOS type element isolation. After forming the gate oxide film 4, a polycrystalline silicon film 5 is deposited by the LPCVD method and patterned to form the gate electrode 5. FIG. 1A is a cross-sectional view when the processing of the gate electrode 5 is completed.

【0013】次にフォトリソグラフィーによってパター
ニングを行い、PMOS領域上にレジスト膜6を形成す
る。これをマスクにひ素のイオン注入を行って、浅いN
型高濃度不純物拡散層領域7を形成する。この後、窒化
シリコンをフッ酸に飽和するまで溶解させた窒化シリコ
ン飽和溶液中にウェハーを浸漬させて、レジスト膜6以
外の領域にシリコン窒化膜8を選択的に成長させる。こ
の液相成長法により図1(b)のような断面が得られ
る。
Next, patterning is performed by photolithography to form a resist film 6 on the PMOS region. Using this as a mask, arsenic ion implantation is performed to obtain a shallow N
A type high concentration impurity diffusion layer region 7 is formed. After that, the wafer is dipped in a saturated silicon nitride solution in which silicon nitride is dissolved in hydrofluoric acid to selectively grow the silicon nitride film 8 in a region other than the resist film 6. A cross section as shown in FIG. 1B is obtained by this liquid phase growth method.

【0014】次に、シリコン窒化膜8をRIE等で異方
性エッチングすると、レジスト膜6はエッチングされず
に、NMOSのゲート電極側壁のみにシリコン窒化膜8
が残る。この後、全面にひ素のイオン注入を行い、図1
(c)に示すように深いN型高濃度不純物拡散層領域7
を形成する。
Next, when the silicon nitride film 8 is anisotropically etched by RIE or the like, the resist film 6 is not etched and the silicon nitride film 8 is formed only on the side wall of the gate electrode of the NMOS.
Remains. After that, arsenic ion implantation is performed on the entire surface, and
As shown in (c), the deep N-type high-concentration impurity diffusion layer region 7
To form.

【0015】次に、石英をフッ酸に飽和するまで溶解さ
せた酸化シリコン飽和溶液中にウェハーを浸漬させて、
レジスト膜6以外の領域にシリコン酸化膜9を選択的に
成長させる。レジスト膜6を剥離した後、ボロンのイオ
ン注入を行って、図2(a)に示すような浅いP型高濃
度不純物拡散層領域10を形成する。このとき、シリコ
ン酸化膜9がマスクとなり、NMOS領域上にはボロン
は打たれない。
Then, the wafer is immersed in a saturated solution of silicon oxide in which quartz is dissolved in hydrofluoric acid until saturated,
A silicon oxide film 9 is selectively grown in a region other than the resist film 6. After removing the resist film 6, boron ion implantation is performed to form a shallow P-type high-concentration impurity diffusion layer region 10 as shown in FIG. At this time, the silicon oxide film 9 serves as a mask, and boron is not hit on the NMOS region.

【0016】再度、窒化シリコン飽和溶液中にウェハー
を浸漬させて、シリコン窒化膜を堆積させる。今度は、
レジスト膜が存在しないため、シリコン窒化膜はウェハ
ー全面に成長する。異方性エッチングしてPMOSのゲ
ート電極の側壁にシリコン窒化膜8を残し、ボロンのイ
オン注入で深いP型高濃度不純物拡散層領域10を形成
する。最後に、希弗酸処理を行って、シリコン酸化膜9
を除去すれば図2(b)のような断面となる。素子分離
領域3上にもシリコン窒化膜8が残るが、このまま放置
しておいて全く問題はない。必要に応じてこの後、自己
整合的に金属シリサイドを形成することも可能である。
The wafer is again immersed in a saturated silicon nitride solution to deposit a silicon nitride film. Next time,
Since there is no resist film, the silicon nitride film grows on the entire surface of the wafer. Anisotropic etching is performed to leave the silicon nitride film 8 on the sidewall of the PMOS gate electrode, and a deep P-type high-concentration impurity diffusion layer region 10 is formed by boron ion implantation. Finally, dilute hydrofluoric acid treatment is performed to form the silicon oxide film 9
2B is removed, the cross section becomes as shown in FIG. Although the silicon nitride film 8 remains on the element isolation region 3, there is no problem if it is left as it is. After that, if necessary, it is possible to form the metal silicide in a self-aligned manner.

【0017】以上の様に、CMOSFETが完成する。
各要素の物理量の一例を以下に示す。シリコン基板1の
不純物濃度は1x1015cm-3乃至1x1018cm-3
P型不純物領域2の不純物濃度は1x1016cm-3乃至
1x1018cm-3、不純物拡散領域7、10の不純物濃
度は夫々1x1018cm-3乃至1x1020cm-3であ
る。深い不純物拡散領域7の深さは1000Å乃至20
00Å、浅い不純物拡散領域10の深さは300Å乃至
1000Åである。場合によっては、深い不純物拡散領
域の不純物濃度よりも浅い不純物拡散領域の不純物濃度
を小さくして、短チャネル効果をより抑制してもよい。
As described above, the CMOSFET is completed.
An example of the physical quantity of each element is shown below. The impurity concentration of the silicon substrate 1 is 1 × 10 15 cm −3 to 1 × 10 18 cm −3 ,
The impurity concentration of the P-type impurity region 2 is 1 × 10 16 cm −3 to 1 × 10 18 cm −3 , and the impurity concentration of the impurity diffusion regions 7 and 10 is 1 × 10 18 cm −3 to 1 × 10 20 cm −3 , respectively. The depth of the deep impurity diffusion region 7 is 1000Å to 20
The depth of the shallow impurity diffusion region 10 is 00Å to 300Å to 1000Å. In some cases, the impurity concentration of the shallow impurity diffusion region may be made smaller than the impurity concentration of the deep impurity diffusion region to further suppress the short channel effect.

【0018】このようにして、図6(b)と全く同じソ
ース/ドレイン構造が、1回のパターニングで自己整合
的に得られたことになる。これにより、工程数が低下す
るとともに、リソグラフィーと比べると、ここで示した
選択成長やエッチングは低コストで実現できるため、製
造コストの大幅な低減が可能となる。
In this way, the source / drain structure exactly the same as that shown in FIG. 6B is obtained in a self-aligned manner by patterning once. As a result, the number of steps is reduced, and the selective growth and etching shown here can be realized at low cost as compared with lithography, so that the manufacturing cost can be significantly reduced.

【0019】図3及び図4は、本発明の実施例に係る他
の半導体装置の製造方法を示す製造工程断面図である。
先の実施例では、NMOSとPMOSは完全に対称な構
造となっているが、以下に示すように非対称なCMOS
を製造することも可能である。
3 and 4 are sectional views of manufacturing steps showing another method of manufacturing a semiconductor device according to the embodiment of the present invention.
In the above embodiment, the NMOS and the PMOS have a completely symmetrical structure, but as shown below, the asymmetric CMOS is used.
It is also possible to manufacture

【0020】この実施例では、図2(a)で拡散層領域
10を形成する前迄、先の実施例と同一の工程を行う。
すなわち、図3(a)はNMOSのイオン注入が終了
し、レジスト膜が剥離された直後の断面である。この
後、ボロンのイオン注入は行わずにシリコン窒化膜8を
堆積し、異方性エッチングしてPMOSのゲート電極の
側壁にシリコン窒化膜8を残す。それから、ボロンのイ
オン注入を行って、図3(b)に示すような浅いP型高
濃度不純物拡散層領域10を形成する。ここで、シリコ
ン窒化膜8が存在する為、領域10はゲート電極5直下
に入り込むことはない。次に、図3(c)に示す様に、
再度シリコン酸化膜11を全面に形成し、異方性エッチ
ングによりゲート電極5の側壁にシリコン酸化膜9を残
す(図4(a))。これによって、側壁には2重膜8,
9が形成される。最後に、この2重膜8,9とゲート電
極5をマスクとして、ボロンのイオン注入を行い、P型
高濃度不純物拡散層領域10を形成して図4(b)の構
造を得る。尚、シリコン酸化膜9は、必要に応じて適宜
希フッ酸を用いて除去される。
In this embodiment, the same steps as in the previous embodiment are performed until the diffusion layer region 10 is formed in FIG. 2 (a).
That is, FIG. 3A is a cross section immediately after the ion implantation of the NMOS is completed and the resist film is peeled off. After that, the silicon nitride film 8 is deposited without boron ion implantation and anisotropically etched to leave the silicon nitride film 8 on the side wall of the gate electrode of the PMOS. Then, boron ions are implanted to form a shallow P-type high-concentration impurity diffusion layer region 10 as shown in FIG. 3B. Here, since the silicon nitride film 8 exists, the region 10 does not enter directly under the gate electrode 5. Next, as shown in FIG.
The silicon oxide film 11 is again formed on the entire surface, and the silicon oxide film 9 is left on the side wall of the gate electrode 5 by anisotropic etching (FIG. 4A). As a result, the double film 8,
9 is formed. Finally, boron ions are implanted using the double films 8 and 9 and the gate electrode 5 as a mask to form a P-type high-concentration impurity diffusion layer region 10 to obtain the structure of FIG. 4B. The silicon oxide film 9 is appropriately removed using dilute hydrofluoric acid as needed.

【0021】ひ素に比べてボロンの方が浅い接合が達成
しにくいために、図2(b)のように対称型にすると、
PMOSの方が短チャネル効果が悪くなる。図4(b)
のように非対称型にすれば、結果的にNMOSとPMO
Sの実効チャネル長をほぼ等しくすることができ、短チ
ャネル効果の少ないCMOSを実現できる。このよう
に、本発明では、パターニングの回数を増やすことな
く、側壁の膜厚や構造の異なるNMOSとPMOSを同
時に形成することも可能である。
Since it is difficult to achieve a shallow junction with boron as compared with arsenic, if a symmetric type is used as shown in FIG.
The short channel effect is worse in the PMOS. Figure 4 (b)
If it is made asymmetrical, the result is NMOS and PMO
The effective channel lengths of S can be made almost equal, and a CMOS with little short channel effect can be realized. As described above, according to the present invention, it is possible to simultaneously form an NMOS and a PMOS having different sidewall film thicknesses and structures without increasing the number of times of patterning.

【0022】本発明は、その趣旨を逸脱しない範囲で種
々変形して用いることができる。
The present invention can be variously modified and used without departing from the spirit thereof.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、1回
のパターニングで自己整合的にCMOSのソース/ドレ
イン領域を形成することができるので、製造工程数が低
下し、製造コストが大幅に低減できる。
As described above, according to the present invention, the source / drain regions of the CMOS can be formed in a self-aligning manner by patterning once, so that the number of manufacturing steps is reduced and the manufacturing cost is significantly reduced. Can be reduced to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体装置の製造方法
を示す工程断面図。
FIG. 1 is a process sectional view showing a method of manufacturing a semiconductor device according to an embodiment of the invention.

【図2】本発明の一実施例に係る半導体装置の製造方法
を示す工程断面図。
2A to 2D are process cross-sectional views showing a method of manufacturing a semiconductor device according to an embodiment of the invention.

【図3】本発明の他の実施例に係る半導体装置の製造方
法を示す工程断面図。
3A to 3C are process cross-sectional views showing a method of manufacturing a semiconductor device according to another embodiment of the invention.

【図4】本発明の他の実施例に係る半導体装置の製造方
法を示す工程断面図。
FIG. 4 is a process sectional view showing a method of manufacturing a semiconductor device according to another embodiment of the invention.

【図5】従来の製造方法を示す工程断面図。FIG. 5 is a process sectional view showing a conventional manufacturing method.

【図6】従来の製造方法を示す工程断面図。FIG. 6 is a process sectional view showing a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 N型シリコン基板 2 P型不純物領域 3 素子分離領域 4 ゲート酸化膜 5 ゲート電極 6 レジスト膜 7 N型高濃度不純物拡散層領域 8 シリコン窒化膜 9,11 シリコン酸化膜 10 P型高濃度不純物拡散層領域 1 N-type silicon substrate 2 P-type impurity region 3 Element isolation region 4 Gate oxide film 5 Gate electrode 6 Resist film 7 N-type high-concentration impurity diffusion layer region 8 Silicon nitride film 9, 11 Silicon oxide film 10 P-type high-concentration impurity diffusion Layer area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一部を第1の保護膜で覆う
工程と、この第1の保護膜で覆われていない前記半導体
基板に対して不純物拡散を行う工程と、液相成長法によ
り前記第1の保護膜以外の前記半導体基板に対して選択
的に第2の保護膜を形成する工程と、前記第1の保護膜
を除去する工程と、前記第2の保護膜で覆われていない
前記半導体基板に対して不純物拡散を行う工程とからな
る半導体装置の製造方法。
1. A step of covering a part of a semiconductor substrate with a first protective film, a step of diffusing impurities into the semiconductor substrate not covered with the first protective film, and a liquid phase epitaxy method. A step of selectively forming a second protective film on the semiconductor substrate other than the first protective film; a step of removing the first protective film; and a step of covering with the second protective film. And a step of diffusing impurities in the semiconductor substrate that is not present.
JP5162762A 1993-06-30 1993-06-30 Manufacture of semiconductor device Pending JPH07142591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5162762A JPH07142591A (en) 1993-06-30 1993-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5162762A JPH07142591A (en) 1993-06-30 1993-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07142591A true JPH07142591A (en) 1995-06-02

Family

ID=15760749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162762A Pending JPH07142591A (en) 1993-06-30 1993-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07142591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12022668B2 (en) 2021-09-22 2024-06-25 Kioxia Corporation Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12022668B2 (en) 2021-09-22 2024-06-25 Kioxia Corporation Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2663402B2 (en) Method for manufacturing CMOS integrated circuit device
JP3077630B2 (en) Semiconductor device and manufacturing method thereof
US5716887A (en) Method of manufacturing BiCMOS device
JP2982383B2 (en) Method for manufacturing CMOS transistor
JP3489832B2 (en) Self-aligned CMOS process
US5573962A (en) Low cycle time CMOS process
US5677217A (en) Method for fabricating a mosfet device, with local channel doping and a titanium silicide gate
US5915181A (en) Method for forming a deep submicron MOSFET device using a silicidation process
JPH07321340A (en) Structure of thin film transistor and manufacturing method thereof
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH07142591A (en) Manufacture of semiconductor device
US5702967A (en) Method of fabricating a deep submicron MOSFET device using a recessed, narrow polysilicon gate structure
KR0124642B1 (en) Manufacture of semiconductor device
KR0179860B1 (en) Method of manufacturing c-mos element
JPH06140590A (en) Manufacture of semiconductor device
JPH04343264A (en) Manufacture of semiconductor device
KR100287872B1 (en) Manufacturing method of semiconductor device
KR100497221B1 (en) Method For Manufacturing Semiconductor Devices
JPS6129551B2 (en)
JP2508857B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacturing method of semiconductor device
KR0166795B1 (en) Method for manufacturing cmos transistor
JPH05343418A (en) Manufacture of semiconductor device
JPH04254371A (en) Manufacture of semiconductor device
JPH0737994A (en) Manufacture of semiconductor device