JPH0713945B2 - Vapor growth method - Google Patents
Vapor growth methodInfo
- Publication number
- JPH0713945B2 JPH0713945B2 JP60070254A JP7025485A JPH0713945B2 JP H0713945 B2 JPH0713945 B2 JP H0713945B2 JP 60070254 A JP60070254 A JP 60070254A JP 7025485 A JP7025485 A JP 7025485A JP H0713945 B2 JPH0713945 B2 JP H0713945B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- flow rate
- group
- reaction furnace
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 50
- 239000013078 crystal Substances 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 22
- 229910021478 group 5 element Inorganic materials 0.000 claims description 17
- 238000001947 vapour-phase growth Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 81
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 29
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 7
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 7
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000003685 thermal hair damage Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000700560 Molluscum contagiosum virus Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- UIESIEAPEWREMY-UHFFFAOYSA-N hydridoarsenic(2.) (triplet) Chemical compound [AsH] UIESIEAPEWREMY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02392—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02543—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、所望の半導体結晶層を得ることができる気相
成長方法に関するものである。TECHNICAL FIELD The present invention relates to a vapor phase growth method by which a desired semiconductor crystal layer can be obtained.
従来の技術 半導体装置を製作する上で必要な半導体結晶の成長技術
として、結晶成長用ガスのある種の反応を利用した気相
成長方がある。たとえばモノシラン(SiH4)を用いたシ
リコン(Si)の気相成長法や、金属の塩化物などを原料
に用いるハライド気相成長法,金属の水素化物を原料に
用いるハイドライド気相成長法、および有機金属(アル
キル化物)を用いた有機金属気相成長法(Metal−Organ
ic Chemical Vapor Deposition、略してMOCVD法)など
がある。これらの気相成長法では、基板を一定の温度に
まで加熱し、基板表面上で結晶成長用ガスを反応させ
て、基板表面上に所望の結晶を成長させる。例えばMOCV
D法によりInP基板上にInGaAsPを成長する場合を第4図
に示すガス系統概略図で説明する。反応炉2にInP基板
1を載置し、マスフロー3で流量制御された水素ガスを
メインガスライン4で供給し、反応炉2内を水素置換
し、かつロータリーポンプ9で減圧にする。その後基板
1の温度を上げ、200℃以上になると、InP基板表面のサ
ーマルダメージを防ぐため、ホスフィン(PH3)13をマ
スフロー11で流量制御しながら反応炉2へ供給する。基
板1が成長温度に達したとき、ホスフィン以外の結晶成
長用ガスであるアルシン(AsH3)17,トリエチルインジ
ウム(TEI)22,トリエチルガリウム(TEG)23をそれぞ
れマスフロー16,20,21,で流量制御しながら供給する。2. Description of the Related Art As a semiconductor crystal growth technique necessary for manufacturing a semiconductor device, there is a vapor phase growth method utilizing a certain reaction of a crystal growth gas. For example, vapor phase epitaxy of silicon (Si) using monosilane (SiH 4 ), halide vapor phase epitaxy using a chloride of metal as a raw material, hydride vapor phase epitaxy using a hydride of metal as a raw material, and Metal-organic vapor phase epitaxy using metal-organic compounds
ic Chemical Vapor Deposition, MOCVD method for short). In these vapor phase epitaxy methods, the substrate is heated to a constant temperature and a crystal growth gas is reacted on the substrate surface to grow a desired crystal on the substrate surface. For example MOCV
The case of growing InGaAsP on the InP substrate by the D method will be described with reference to the schematic diagram of the gas system shown in FIG. The InP substrate 1 is placed in the reaction furnace 2, hydrogen gas whose flow rate is controlled by the mass flow 3 is supplied through the main gas line 4, the inside of the reaction furnace 2 is replaced with hydrogen, and the pressure is reduced by the rotary pump 9. After that, when the temperature of the substrate 1 is raised to 200 ° C. or higher, phosphine (PH 3 ) 13 is supplied to the reaction furnace 2 while controlling the flow rate by the mass flow 11 in order to prevent thermal damage to the surface of the InP substrate. When the substrate 1 reaches the growth temperature, arsine (AsH 3 ) 17, triethylindium (TEI) 22, and triethylgallium (TEG) 23, which are crystal growth gases other than phosphine, are mass flowed 16, 20 and 21, respectively. Supply while controlling.
TEI22,TEG23は、揮発性の液体であるためキャリアガス
である水素をそれぞれの容器に流し、蒸気の形で供給す
る。それぞれの結晶成長用ガスは基板表面上で熱分解反
応をおこし、InGaAsPが成長する。Since TEI22 and TEG23 are volatile liquids, hydrogen, which is a carrier gas, is caused to flow into each container and supplied in the form of vapor. Each crystal growth gas causes a thermal decomposition reaction on the substrate surface, and InGaAsP grows.
このような気相成長法では、それぞれの結晶成長用ガス
の流量により、成長した結晶の組成,成長速度が変わる
ので、精密に制御しなくてはならない。また、反応炉内
の圧力も結晶性、成長速度に大きく影響するため、正確
に制御する必要がある。In such a vapor phase growth method, the composition and growth rate of the grown crystal change depending on the flow rate of each crystal growth gas, and therefore must be precisely controlled. Further, the pressure in the reaction furnace has a great influence on the crystallinity and the growth rate, and therefore it is necessary to control it accurately.
発明が解決しようとする問題点 ところが、従来の気相成長方法では、結晶成長用ガスを
供給し、結晶成長を始める以前に、反応炉内の圧力やガ
スの流量,流れ方,基板温度等を結晶成長に対し最適の
条件で設定しておいた。これは、成長開始後では遅すぎ
るためである。このため成長を始めるとき等、結晶成長
用ガスを反応炉に供給を始めた際、反応炉内を流れるガ
スの流量が増え、反応炉内の圧力が増すことになる。し
たがって、これまで供給していた他のガスの流量も変化
をうけてしまう。更に反応炉のガスの流れ方も影響を受
ける。故に、結晶成長に対し最適に設定しておいた条件
が変わってしまうことになった。そこで結晶成長用ガス
を供給してから最適になるように条件を設定しておくこ
とも考えられるが、それを予測することは難かしく、ま
た、結晶成長用ガスを供給し始めてから、ガスの流れ方
や流量、圧力が最適条件になるまでの過渡期が生じてし
まう。更に、組成の異なる結晶を連続成長する場合、結
晶成長用ガスの流量がそれぞれ異なるため、この方法を
とることは困難であった。The problem to be solved by the invention is that, in the conventional vapor phase growth method, the pressure in the reaction furnace, the gas flow rate, the flow direction, the substrate temperature, etc. are controlled before the crystal growth gas is supplied and crystal growth is started. The optimum conditions were set for crystal growth. This is because it is too late after the start of growth. Therefore, when the crystal growth gas is supplied to the reaction furnace, for example, when the growth is started, the flow rate of the gas flowing in the reaction furnace is increased and the pressure in the reaction furnace is increased. Therefore, the flow rates of other gases that have been supplied so far will also change. Further, the flow of gas in the reactor is also affected. Therefore, the optimum conditions for crystal growth have changed. Therefore, it may be possible to supply the crystal growth gas and then set the conditions so as to be optimal, but it is difficult to predict that, and after starting the supply of the crystal growth gas, the gas A transitional period occurs until the flow, flow rate, and pressure reach optimum conditions. Further, when continuously growing crystals having different compositions, it is difficult to adopt this method because the flow rates of the crystal growth gases are different.
本発明はかかる点を鑑みてなされたもので、簡易な方法
で、結晶成長用ガスを供給したり、供給を止めたりして
も、反応炉内のガスの流れ方や流量,圧力に変動を与え
ない気相成長方法を提供することを目的としている。The present invention has been made in view of the above point, and even if the crystal growth gas is supplied or stopped by a simple method, the gas flow, flow rate, and pressure in the reaction furnace are not changed. It is intended to provide a vapor phase growth method that does not give.
問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、結晶成長
用ガスを反応炉に供給し、反応させ、前記反応炉に載置
された基板上に結晶を成長させる気相成長方法におい
て、第1のガスの前記反応炉への供給量を変化させる
時、前記反応炉内を流れるガスの全流量が変化しないよ
うに第2のガスの前記反応炉への供給量を変化させるこ
とである。Means for Solving the Problems The technical means of the present invention for solving the above problems is to supply a crystal growth gas to a reaction furnace to cause a reaction, and grow a crystal on a substrate placed in the reaction furnace. In the vapor phase growth method, when the amount of the first gas supplied to the reaction furnace is changed, the second gas is supplied to the reaction furnace so that the total flow rate of the gas flowing in the reaction furnace does not change. It is to change the quantity.
作用 この技術的手段による作用は次のとおりである。すなわ
ち、第1のガスの反応炉への供給量を変化させても、そ
の変化量の分だけ、第2のガスの反応炉への供給量を増
減することによって、反応炉内を流れるガスの全流量を
変化させないため、反応炉内のガスの流れ方や、他のガ
スの反応炉への供給量や、反応炉内の圧力に変動を与え
ずに済む。Action The action of this technical means is as follows. That is, even if the supply amount of the first gas to the reaction furnace is changed, the supply amount of the second gas to the reaction furnace is increased / decreased by the amount of the change so that the gas flowing in the reaction furnace is changed. Since the total flow rate is not changed, it is not necessary to change the gas flow in the reaction furnace, the supply amount of other gas to the reaction furnace, and the pressure in the reaction furnace.
実施例 以下、本発明の一実施例として、InP基板上にMOCVD方で
InGaAsPを結晶成長する場合について第1図〜第3図と
ともに説明する。IN,Ga,As,Pの結晶成長用ガスとして
は、それぞれトリエチルインジウネム(TEI),トリエ
チルガリウム(TEG),アルシン(AsH3),ホスフィン
(PH3)が用いられる。有機金属であるTEI,TEGは蒸気圧
の高い液体であるため、キャリアガス(水素ガス)を通
すことによって、蒸気の形で供給することになる。成長
に用いたMOCVD装置のガス系統概略図を第1図に示す。
成長方法は次の通りである。Example As one example of the present invention, a MOCVD method was used on an InP substrate.
The case of crystal growth of InGaAsP will be described with reference to FIGS. As the crystal growth gas for IN, Ga, As, P, triethylindiunium (TEI), triethylgallium (TEG), arsine (AsH 3 ) and phosphine (PH 3 ) are used, respectively. Since TEI and TEG, which are organic metals, are liquids having a high vapor pressure, they are supplied in the form of vapor by passing a carrier gas (hydrogen gas). A schematic diagram of the gas system of the MOCVD apparatus used for growth is shown in FIG.
The growth method is as follows.
まず、InP基板1を反応炉2に載置したあと、マスフロ
ー3で4l/minに流量制御した水素ガスをメインガスライ
ン4で供給し、反応炉2内を水素ガス置換する。更に、
マスフロー5で1/minに流量制御した水素ガス101をI
II族元素供給ライン6から反応炉2に供給、またマスフ
ロー7で1/minに流量制御した水素ガス102をV族元
素供給ライン8から反応炉2に供給する。したがって反
応炉2内を流れるガスの全流量は6l/minである。First, after placing the InP substrate 1 in the reaction furnace 2, hydrogen gas whose flow rate is controlled to 4 l / min by the mass flow 3 is supplied through the main gas line 4 to replace the inside of the reaction furnace 2 with hydrogen gas. Furthermore,
The hydrogen gas 101 whose flow rate was controlled to 1 / min by the mass flow 5
The hydrogen gas 102 is supplied to the reaction furnace 2 from the group II element supply line 6, and the hydrogen gas 102 whose flow rate is controlled to 1 / min by the mass flow 7 is supplied to the reaction furnace 2 from the group V element supply line 8. Therefore, the total flow rate of the gas flowing in the reaction furnace 2 is 6 l / min.
次にロータリーポンプ9で反応炉2内を150Torrに減圧
にし、高周波加熱方式で基板1を加熱する。10は高周波
用コイルである。基板温度が200℃ぐらいになると、InP
基板1の表面のサーマルダメージを防ぐため、あらかじ
め水素ガスで5%に希釈され、マスフロー11で200C.C./
minに流量制御して、直接排気系12へ流していたPH213を
バルブ14を閉めバルブ15を開けることによりV族元素供
給ライン8を通して反応炉2へ供給する。この時、同時
にV族元素供給ライン8で供給していた水素ガス102をP
H3の供給量200C.C./min分、マスフロー7を調節して減
らし、800C.C./minに変えて供給する。したがってV族
元素供給ライン8から反応炉2へ供給されるガスは、水
素ガス102とPH313とであり、合計流量はPH3を流す前と
同じく1/minである。ゆえに反応炉2内のガスの流れ
方、流量、圧力に変動を与えない。Next, the pressure inside the reaction furnace 2 is reduced to 150 Torr by the rotary pump 9, and the substrate 1 is heated by the high frequency heating method. Reference numeral 10 is a high frequency coil. When the substrate temperature reaches around 200 ℃, InP
To prevent thermal damage on the surface of substrate 1, it was diluted to 5% with hydrogen gas in advance, and 200 C.C./
The flow rate is controlled to min, and PH 2 13 which has been flowing directly to the exhaust system 12 is supplied to the reaction furnace 2 through the group V element supply line 8 by closing the valve 14 and opening the valve 15. At this time, at the same time, the hydrogen gas 102 supplied through the group V element supply line 8
The amount of H 3 supplied is 200 C.C./min, and the mass flow 7 is adjusted to be reduced to 800 C.C./min. Gas supplied from the group V element supply line 8 to the reactor 2 therefore is hydrogen gas 102 and PH 3 13 DOO, total flow rate is also 1 / min and before flowing the PH 3. Therefore, the gas flow, flow rate, and pressure in the reaction furnace 2 are not changed.
基板温度が成長温度に達すると、あらかじめ水素ガスで
5%に希釈され、マスフロー16で100C.C./minに流量制
御して直接、排気系12へ流していたAsH317をバルブ18を
閉めバルブ19を開けることにより、V族供給ライン8を
通して供給する。また、マスフロー20および21でそれぞ
れ350C.C./min,140C.C./minにあらかじめ流量制御され
た水素ガスを、それぞれTEI22,TEG23,の中を通してその
蒸気を含ませて直線排気系12へ流していたガスを、バル
ブ24を閉め、バルブ25を開けてIII族元素供給ライン6
を通して供給する。それと同時にマスフロー7を調節し
てAsH3の供給量100C.C./min分減らし、700C.C./minとし
て水素ガス102をV族元素供給ライン8に流す。一方、
同様にしてマスフロー5を調節して、TEIおよびTEGの供
給量490C.C./min分減らし510C.C./minとして水素ガス10
1をIII族元素供給ライン6に流す。したがってV族元素
供給ライン8から反応炉2に供給されるガスは、水素70
0C.C./min,AsH3100C.C./min,PH3200C.C./minで合計1
/minであり、変化していない。一方、III族元素供給ラ
イン6から反応炉2に供給されるガスは、TEI,350C.C./
min,TEG140C.C./min,水素510C.C./minであり、合計1
/minで変化していない。したがって反応炉2内を流れる
ガスの流れ方,全流量,圧力に変動は与えない。以上の
ようにして結晶成長用ガスを供給してInGaAsP成長を行
なう。When the substrate temperature reached the growth temperature, it was diluted to 5% with hydrogen gas in advance, the flow rate was controlled to 100 C.C./min by the mass flow 16, and the AsH 3 17 that had been directly flowing to the exhaust system 12 was closed by the valve 18. It is supplied through the group V supply line 8 by opening the valve 19. In addition, the hydrogen gas whose flow rate was previously controlled to 350 C.C./min and 140 C.C./min by the mass flows 20 and 21, respectively, was passed through the TEI22 and TEG23, respectively, and the vapor was included in the linear exhaust system 12. For the gas that was flowing, close the valve 24 and open the valve 25 to supply the Group III element supply line 6
Supply through. At the same time, the mass flow 7 is adjusted to reduce the AsH 3 supply amount by 100 C.C./min, and the hydrogen gas 102 is supplied to the group V element supply line 8 at 700 C.C./min. on the other hand,
In the same manner, adjust the mass flow 5 to reduce the supply amount of TEI and TEG by 490 C.C./min and 510 C.C./min as hydrogen gas.
1 is passed through the group III element supply line 6. Therefore, the gas supplied to the reaction furnace 2 from the group V element supply line 8 is 70% hydrogen.
0C.C./min,AsH 3 100C.C./min,PH 3 total 200C.C./min 1
/ min, which is unchanged. On the other hand, the gas supplied to the reaction furnace 2 from the group III element supply line 6 is TEI, 350C.C. /
min, TEG140C.C./min, hydrogen 510C.C./min, total 1
No change at / min. Therefore, the flow of gas, the total flow rate, and the pressure of the gas flowing in the reactor 2 are not changed. InGaAsP growth is performed by supplying the crystal growth gas as described above.
成長後、TEI,TEG,AsH3の供給を止める時、III族元素供
給ライン6,V族元素供給ライン8に流す水素ガス101,102
をそれぞれ490C.C./min,100C.C./min増やして反応炉2
への全供給量を変えないようにする。その後、基板を冷
却し、200℃以下でPH3を止める。この時も同時に、V族
元素供給ライン8への水素ガスを200C.C./min増加させ
て、全供給量を変化させないようにする。以上で成長プ
ロセスを終わる。なお、反応炉2へガスを供給するガス
ライン(メインガスライン4,III族元素供給ライン6,V族
元素供給ライン8)の流れるガスとその流量の変動を次
表に示す。After the growth, when the supply of TEI, TEG, AsH 3 is stopped, the hydrogen gas 101,102 which flows into the group III element supply line 6 and the group V element supply line 8
Increase by 490C.C./min and 100C.C./min respectively.
Do not change the total supply to After that, the substrate is cooled and PH 3 is stopped at 200 ° C or lower. At this time, at the same time, the hydrogen gas to the group V element supply line 8 is increased by 200 C.C./min so as not to change the total supply amount. This completes the growth process. The following table shows the gas flowing through the gas lines (main gas line 4, group III element supply line 6, group V element supply line 8) for supplying gas to the reaction furnace 2 and fluctuations in the flow rate thereof.
以上の実施例では、TEI22,TEG23,PH313,AsH317が結晶成
長用ガスであり、第1のガスである。そして水素ガス10
1,102が第2のガスである。 In the above embodiments, a TEI22, TEG23, PH 3 13, AsH 3 17 crystal growth gas, a first gas. And hydrogen gas 10
1,102 is the second gas.
このように各ガスを操作することによって、反応炉内の
ガスの流れ方、全流量、圧力は最初に成長に対し最適に
設定したまま変動することなく、成長を行なうことがで
きる。By manipulating each gas in this way, it is possible to grow without changing the gas flow, total flow rate, and pressure in the reaction furnace, which are initially set optimally for growth.
なお、この実施例では結晶成長用ガスの変化に対し、水
素ガスの流量を制御するマスフローを調節することによ
って、反応炉内への供給量が変動しないようにしたが、
他の方法でもかまわない。例えば、第2図に示すよう
に、マスフロー30を水素ガスを流量制御するマスフロー
5と並列に設け、結晶成長用ガスの供給量と同量に設定
して水素ガス201を流しておく。結晶成長用ガスを反応
炉2へ供給する時、マスフロー30で流しておいた水素ガ
ス201の供給を止めることにより、供給ライン6から反
応炉2へ供給するガスの流量を変化させないで結晶成長
用ガス202を反応炉2へ供給することができる。また、
結晶成長用ガス202の供給を止める時には、再びマスフ
ロー30を流れる水素ガス201を供給すれば良い。In addition, in this embodiment, with respect to the change of the crystal growth gas, by adjusting the mass flow for controlling the flow rate of the hydrogen gas, the supply amount into the reaction furnace was not changed,
Other methods are also acceptable. For example, as shown in FIG. 2, a mass flow 30 is provided in parallel with the mass flow 5 for controlling the flow rate of the hydrogen gas, and the hydrogen gas 201 is set to be the same as the supply amount of the crystal-growing gas. When the crystal growth gas is supplied to the reaction furnace 2, the supply of the hydrogen gas 201 which has been flown by the mass flow 30 is stopped so that the flow rate of the gas supplied from the supply line 6 to the reaction furnace 2 is not changed. The gas 202 can be supplied to the reaction furnace 2. Also,
When the supply of the crystal growth gas 202 is stopped, the hydrogen gas 201 flowing through the mass flow 30 may be supplied again.
更に他の方法として、第3図のように、水素ガスを流量
制御するマスフロー5とその水素ガス301と結晶成長用
ガス302との合流部40との間に、直接排気系へ流れるガ
スライン41とバルブ42、マスフロー43を設け、結晶成長
用ガス301を供給する時、結晶成長用ガス301の供給量と
同量の水素ガス303をマスフロー43で流量制御しながら
ガスライン41を通して排気系へ直接流すことにより、反
応炉2へのガス供給量は変化しないようにする。As another method, as shown in FIG. 3, between the mass flow 5 for controlling the flow rate of the hydrogen gas and the confluence 40 of the hydrogen gas 301 and the crystal growth gas 302, a gas line 41 which directly flows to the exhaust system. When the crystal growth gas 301 is supplied by providing the valve 42 and the mass flow 43, the hydrogen gas 303 of the same amount as the supply amount of the crystal growth gas 301 is controlled by the mass flow 43, and directly to the exhaust system through the gas line 41. By flowing the gas, the gas supply amount to the reaction furnace 2 is kept unchanged.
要するに、本発明結晶成長用ガスを反応炉に供給すると
き、反応炉への供給するガスの全流量が変化しないよう
に、水素ガスで補償すればよいわけで、その方法、手段
はとわない。また、これまでの説明で第2のガスを水素
ガスで説明したが、他のガス、例えば窒素ガスでも良
い。更に、第1のガスが結晶成長用ガスで説明したが、
他のガス、例えば、窒素ガス置換工程を含む場合の窒素
ガス,気相エッチング工程を含む場合のエッチングガス
でも良い。In short, when the crystal-growing gas of the present invention is supplied to the reaction furnace, hydrogen gas may be used to compensate so that the total flow rate of the gas supplied to the reaction furnace does not change. . Further, although the second gas has been described as the hydrogen gas in the above description, other gas such as nitrogen gas may be used. Further, although the first gas has been described as the crystal growth gas,
Other gas, for example, nitrogen gas when the nitrogen gas replacement step is included, or etching gas when the vapor phase etching step is included may be used.
また、減圧成長で説明を行ったが、炉内の圧力は減圧、
常圧を問わない。ただ反応炉の圧力が低ければ低いほど
本発明の効果は大きい。In addition, although the explanation was given using reduced pressure growth, the pressure inside the furnace was reduced.
Regardless of atmospheric pressure. However, the lower the pressure of the reaction furnace, the greater the effect of the present invention.
更に、結晶組成の異なる結晶を連続成長行うときにも、
各々の結晶成長用ガスについて、前述と同様の操作を行
えば、反応炉内のガスの流れ方、全流量、圧力に変動を
与えないで、連続成長が可能である。Furthermore, when continuously growing crystals with different crystal compositions,
If the same operation as described above is performed for each crystal growth gas, continuous growth is possible without changing the gas flow in the reaction furnace, the total flow rate, and the pressure.
発明の効果 以上のように本発明によれば、反応炉内のガスの流れ
方、全流量、圧力を最初に結晶成長に最適な条件に設定
しておけば、その後変動させることなく結晶成長が行え
る。したがって、反応炉内のガスの流れ方や全流量、圧
力の変動から生じる成長層の結晶性の悪さ、組成のバラ
ツキ、基板面内の不均一性を防ぐことができる。EFFECTS OF THE INVENTION As described above, according to the present invention, if the gas flow in the reaction furnace, the total flow rate, and the pressure are first set to the optimum conditions for crystal growth, then the crystal growth can be performed without fluctuation. You can do it. Therefore, it is possible to prevent poor crystallinity of the growth layer, variation in composition, and inhomogeneity in the substrate surface, which are caused by fluctuations in gas flow and total flow rate and pressure in the reaction furnace.
第1図は本発明の一実施例における気相成長方法を説明
するためのMOCVD装置のガス系統の概略図、第2図は本
発明の他の実施例方法を説明するためのガス系統の部分
的概略図、第3図は本発明のさらに他の実施例方法を説
明するためのガス系統の部分的概略図、第4図は従来の
気相成長方法を説明するためのガス系統の概略図であ
る。 1……基板、2……反応炉、13,17,22,23……第1のガ
ス(結晶成長用ガス)、101,102……第2のガス。FIG. 1 is a schematic diagram of a gas system of an MOCVD apparatus for explaining a vapor phase growth method in one embodiment of the present invention, and FIG. 2 is a part of a gas system for explaining a method of another embodiment of the present invention. 3 is a partial schematic view of a gas system for explaining a method of still another embodiment of the present invention, and FIG. 4 is a schematic view of a gas system for explaining a conventional vapor phase growth method. Is. 1 ... Substrate, 2 ... Reactor, 13,17,22,23 ... First gas (crystal growth gas), 101,102 ... Second gas.
Claims (3)
せ、前記反応炉内に載置された基板上に結晶を成長させ
る気相成長方法であって、 3族元素ガス供給ラインとは別の、3族元素ガス流量制
御用ガスラインから前記反応炉に、流量がX(cc/min)
に制御された流量制御用ガスを供給する工程と、 前記3族元素ガス流量制御用ガスラインに接続された、
第1の3族元素ガス供給ラインと第2の3族元素ガス供
給ラインとから、それぞれ第1の3族元素ガスを含むガ
スをA1(cc/min)、第2の3族元素ガスを含むガスをA2
(cc/min)前記反応炉に供給するのと同時に、前記3族
元素ガス流量制御用ガスラインの前記流量制御用ガスの
流量が、X(cc/min)からA1+A2(cc/min)分少なくさ
れる工程と、 を有することを特徴とする気相成長方法。1. A vapor phase growth method for supplying a crystal-growing gas to a reaction furnace to cause a reaction to grow a crystal on a substrate placed in the reaction furnace, which comprises a Group 3 element gas supply line. From another group 3 element gas flow rate control gas line to the reactor, the flow rate is X (cc / min)
The step of supplying a controlled flow rate control gas to the group 3 element gas flow rate control gas line,
From the first group 3 element gas supply line and the second group 3 element gas supply line, a gas containing the first group 3 element gas is A1 (cc / min), and a second group 3 element gas is contained. A2 gas
(Cc / min) The flow rate of the flow rate control gas in the group 3 element gas flow rate control gas line is reduced from X (cc / min) by A1 + A2 (cc / min) at the same time as being supplied to the reactor. A vapor phase growth method comprising:
素ガス流量制御用ガスラインから前記反応炉に、流量が
Y(cc/min)に制御された流量制御用ガスを供給する工
程と、 前記5族元素ガス流量制御用ガスラインに接続された、
第1の5族元素ガス供給ラインと第2の5族元素ガス供
給ラインとから、それぞれ第1の5族元素ガスを含むガ
スをB1(cc/min)、第2の5族元素ガスを含むガスをB2
(cc/min)前記反応炉に供給するのと同時に、前記5族
元素ガス流量制御用ガスラインの前記流量制御用ガスの
流量が、Y(cc/min)からB1+B2(cc/min)分少なくさ
れる工程と、 を有することを特徴とする特許請求の範囲第1項に記載
の気相成長方法。2. A flow rate control gas having a flow rate controlled to Y (cc / min) is supplied to the reaction furnace from a gas line for controlling the flow rate of the group 5 element gas, which is separate from the gas supply line for the group 5 element gas. And a step of connecting to the gas line for controlling the group 5 element gas flow rate,
From the first group 5 element gas supply line and the second group 5 element gas supply line, a gas containing the first group 5 element gas is B1 (cc / min), and a second group 5 element gas is contained. Gas B2
(Cc / min) At the same time as the gas is supplied to the reactor, the flow rate of the flow rate control gas in the group 5 element gas flow rate control gas line is reduced from Y (cc / min) by B1 + B2 (cc / min). The vapor phase growth method according to claim 1, further comprising:
減圧であることを特徴とする特許請求の範囲第1項また
は第2項に記載の気相成長方法。3. The vapor phase growth method according to claim 1, wherein the pressure in the reaction furnace is reduced when the crystal is grown on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60070254A JPH0713945B2 (en) | 1985-04-03 | 1985-04-03 | Vapor growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60070254A JPH0713945B2 (en) | 1985-04-03 | 1985-04-03 | Vapor growth method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10657594A Division JPH07153705A (en) | 1994-05-20 | 1994-05-20 | Vapor phase growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61229321A JPS61229321A (en) | 1986-10-13 |
JPH0713945B2 true JPH0713945B2 (en) | 1995-02-15 |
Family
ID=13426235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60070254A Expired - Lifetime JPH0713945B2 (en) | 1985-04-03 | 1985-04-03 | Vapor growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713945B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078758B2 (en) * | 1987-05-28 | 1995-02-01 | 古河電気工業株式会社 | Exhaust method for vapor phase epitaxial growth system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5513922A (en) * | 1978-07-14 | 1980-01-31 | Matsushita Electric Ind Co Ltd | Vapor phase growthing method and its device |
JPS5959877A (en) * | 1982-09-30 | 1984-04-05 | Fujitsu Ltd | Chemical vapor growth method |
-
1985
- 1985-04-03 JP JP60070254A patent/JPH0713945B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61229321A (en) | 1986-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6048398A (en) | Device for epitaxially growing objects | |
EP1796150B1 (en) | Method for algan vapor-phase growth | |
JPH0331678B2 (en) | ||
JPH0713945B2 (en) | Vapor growth method | |
JPH08316151A (en) | Semiconductor manufacturing method | |
US5266127A (en) | Epitaxial process for III-V compound semiconductor | |
JPS59188118A (en) | Manufacture of vapor phase epitaxial crystal | |
JPH07153705A (en) | Vapor phase growth equipment | |
JP2736655B2 (en) | Compound semiconductor crystal growth method | |
JP3406504B2 (en) | Semiconductor manufacturing method | |
JPS61275191A (en) | Vapor-phase growth method for gaas thin film | |
JPH0897149A (en) | Metal-organic vapor phase epitaxy method and metal-organic vapor phase epitaxy apparatus | |
JP2736417B2 (en) | Semiconductor element manufacturing method | |
JP2722489B2 (en) | Semiconductor crystal growth method | |
JP2847198B2 (en) | Compound semiconductor vapor phase growth method | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JPS5948787B2 (en) | Vapor phase epitaxial growth equipment | |
JPS5820795A (en) | Growing method of single crystal | |
JPS61135111A (en) | Method of epitaxial growth of compound semiconductor | |
JPH0760800B2 (en) | Vapor growth method for compound semiconductors | |
JPH06314658A (en) | Vapor growing apparatus | |
JPS6131393A (en) | Vapor phase growth device | |
JPH02122521A (en) | Manufacture of compound semiconductor crystal layer | |
JPH0686355B2 (en) | Group III-V vapor deposition method for group V compound semiconductors | |
JPH02253612A (en) | Method and device for vapor growth of compound semiconductor of organic metal |