JPH07138084A - Gradient porosity lightweight ceramics molding and method for manufacturing the same - Google Patents
Gradient porosity lightweight ceramics molding and method for manufacturing the sameInfo
- Publication number
- JPH07138084A JPH07138084A JP28524793A JP28524793A JPH07138084A JP H07138084 A JPH07138084 A JP H07138084A JP 28524793 A JP28524793 A JP 28524793A JP 28524793 A JP28524793 A JP 28524793A JP H07138084 A JPH07138084 A JP H07138084A
- Authority
- JP
- Japan
- Prior art keywords
- porosity
- molded body
- slurry
- oxide
- dense layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/10—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】
【目的】高い強度及び表面平滑性を有するとともに優れ
た耐熱衝撃性を発揮し得る気孔率傾斜軽量セラミックス
成形体を提供することを主な目的とする。
【構成】1.酸化物系又は非酸化物系セラミックスから
なる成形体であって、(a) 成形体全体の気孔率が30〜
90%であり、(b) 緻密質層が表面から5〜50μmの
深さにわたって存在し、かつ(c) 気孔率が当該緻密質層
から成形体中心部に向かって連続的に増加することを特
徴とする気孔率傾斜型軽量セラミックス成形体。
2.酸化物系又は非酸化物系セラミックス粉末スラリー
に、気泡の直径が10〜2000μmである発泡液を加
えて撹拌してなるスラリーを着肉速度110μm/分以
下で鋳込み成形した後、脱型し、脱脂し、焼成すること
を特徴とする気孔率傾斜型軽量セラミックス成形体の製
造方法。(57) [Summary] [Purpose] The main object of the present invention is to provide a porosity-graded lightweight ceramics molded product having high strength and surface smoothness and capable of exhibiting excellent thermal shock resistance. [Configuration] 1. A molded body composed of oxide-based or non-oxide-based ceramics, wherein (a) the porosity of the entire molded body is 30 to
90%, (b) the dense layer exists over a depth of 5 to 50 μm from the surface, and (c) the porosity continuously increases from the dense layer toward the center of the compact. A characteristic lightweight ceramics compact with a porosity gradient. 2. After adding a foaming liquid having a bubble diameter of 10 to 2000 μm to an oxide-based or non-oxide-based ceramic powder slurry and stirring the slurry, the slurry is cast-molded at a deposition rate of 110 μm / min or less, and then demolded, A method for producing a porosity-graded lightweight ceramics molded body, which comprises degreasing and firing.
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子材料、セラミック
ス材料、粉末合金材料等の焼成時に用いるセッター、匣
鉢等をはじめ、各種産業分野において幅広く利用するこ
とができる気孔率傾斜型軽量セラミックス成形体とその
製造方法に関する。BACKGROUND OF THE INVENTION The present invention relates to a porosity-graded lightweight ceramic molding which can be widely used in various industrial fields such as setters and mortars used for firing electronic materials, ceramic materials, powder alloy materials and the like. The present invention relates to a body and a manufacturing method thereof.
【0002】[0002]
【従来技術とその問題点】多孔体からなる従来の軽量セ
ラミックス成形体は、これを焼成道具材として使用する
場合、その比重が小さいため、熱容量も小さくなる結
果、焼成治具の加熱に要する熱エネルギーが少なくて済
む。従って、通常のセラミックス成形体を用いる場合に
比して、良好な熱効率が得られ、製造コストを抑えるこ
とができるという利点がある。2. Description of the Related Art The conventional lightweight ceramics molded body made of a porous material has a small specific gravity when it is used as a firing tool material, resulting in a small heat capacity. It requires less energy. Therefore, as compared with the case of using an ordinary ceramic molded body, there are advantages that good thermal efficiency can be obtained and the manufacturing cost can be suppressed.
【0003】しかしながら、多孔体ゆえに強度が低く、
しかも表層に気孔が露出しているために小さな被焼成物
が露出気孔に落ち込んだりして焼成が不十分になるとい
う問題がある。However, the strength is low because of the porous body,
Moreover, since the pores are exposed on the surface layer, there is a problem that a small object to be fired falls into the exposed pores and the firing becomes insufficient.
【0004】しかも、一般に軽量セラミックス成形体は
耐熱衝撃性に劣るという欠点があるが、これは気孔の存
在に起因するものである。すなわち、多孔体からなる軽
量セラミックス成形体において、気孔が存在する限りは
耐熱衝撃性の改善にも自ずと限界があった。Moreover, generally, a lightweight ceramic molded body has a drawback that it is inferior in thermal shock resistance, but this is due to the existence of pores. That is, in the lightweight ceramics molded body made of a porous body, there is a limit to the improvement of thermal shock resistance as long as the pores are present.
【0005】[0005]
【発明が解決しようとする課題】従って、本発明は、高
い強度及び表面平滑性を有するとともに優れた耐熱衝撃
性を発揮し得る気孔率傾斜型軽量セラミックス成形体を
提供することを主な目的とする。さらに、本発明は、所
望の嵩比重に制御でき、上記構造をもつ成形体を比較的
容易に得られる製造方法を提供することをも目的とす
る。SUMMARY OF THE INVENTION Accordingly, the main object of the present invention is to provide a porosity-graded lightweight ceramics compact having high strength and surface smoothness and capable of exhibiting excellent thermal shock resistance. To do. A further object of the present invention is to provide a manufacturing method capable of controlling a desired bulk specific gravity and relatively easily obtaining a molded product having the above structure.
【0006】[0006]
【課題を解決するための手段】本発明者は、上記従来技
術の問題に鑑み、鋭意研究を重ねた結果、発泡液を多量
に導入した原料スラリーを一定条件下で鋳込み成形によ
り成形する場合には、特異な構造をもつ成形体が得られ
ることを見出し、さらにこの成形体は多孔質であるにも
拘らず高い強度と表面平滑性を有するとともに優れた耐
熱衝撃性を発揮することを見出し、本発明を完成するに
至った。The inventors of the present invention have conducted extensive studies in view of the above-mentioned problems of the prior art, and as a result, in the case of forming a raw material slurry into which a large amount of foaming liquid has been introduced by cast molding under constant conditions. Found that a molded product having a peculiar structure can be obtained, and further found that this molded product has high strength and surface smoothness and exhibits excellent thermal shock resistance in spite of being porous, The present invention has been completed.
【0007】すなわち、本発明は、下記の成形体及び製
造方法に係るものである。That is, the present invention relates to the following molded body and manufacturing method.
【0008】1.酸化物系又は非酸化物系セラミックス
からなる成形体であって、(a) 成形体全体の気孔率が3
0〜90%であり、(b) 緻密質層が表面から5〜50μ
mの深さにわたって存在し、かつ(c) 気孔率が当該緻密
質層から成形体中心部に向かって連続的に増加すること
を特徴とする気孔率傾斜型軽量セラミックス成形体。1. A molded body made of oxide-based or non-oxide-based ceramics (a) The porosity of the entire molded body is 3
0 to 90%, and (b) the dense layer is 5 to 50 μm from the surface.
A porosity-graded lightweight ceramics compact which is present over a depth of m and (c) has a porosity that continuously increases from the dense layer toward the center of the compact.
【0009】2.酸化物系又は非酸化物系セラミックス
粉末スラリーに、気泡の直径が10〜2000μmであ
る発泡液を加えて撹拌してなるスラリーを着肉速度11
0μm/分以下で鋳込み成形した後、脱型し、脱脂し、
焼成することを特徴とする気孔率傾斜型軽量セラミック
ス成形体の製造方法。2. A slurry obtained by adding a foaming liquid having a bubble diameter of 10 to 2000 μm to an oxide-based or non-oxide-based ceramics powder slurry and stirring the slurry is a deposition rate 11
After cast molding at 0 μm / min or less, demolding, degreasing,
A method of manufacturing a porosity-graded lightweight ceramics compact characterized by firing.
【0010】以下、本発明の成形体につき説明する。The molded article of the present invention will be described below.
【0011】本発明の気孔率傾斜型軽量セラミックス成
形体は、酸化物系又は非酸化物系セラミックスからなる
成形体であって、その表層に (a)成形体全体の気孔率が
30〜90%であり、 (b)緻密質層が表面から5〜50
μmの深さにわたってに存在し、かつ (c)気孔率が当該
緻密質層から成形体中心部に向かって連続的に増加す
る、という特異な構造を有する。The porosity-graded lightweight ceramics compact of the present invention is a compact comprising an oxide-based or non-oxide-based ceramic, and the surface layer of which (a) has a porosity of 30 to 90% as a whole. And (b) the dense layer is 5 to 50 from the surface.
It exists over a depth of μm, and (c) has a peculiar structure in which the porosity continuously increases from the dense layer toward the center of the compact.
【0012】成形体の材質としては、後記に示す製造方
法に適用できるものであればどのような種類のセラミッ
クスでも良く、公知の酸化物系又は非酸化物系の、実質
的にあらゆるセラミックスが本発明の成形体の材質とし
て採用することができる。具体的には、例えば酸化物系
のものとしてはアルミナ系、ムライト系、ジルコニア系
などがある。また、非酸化物系のものとしては炭化ケイ
素系、窒化ケイ素系、窒化アルミニウム系、窒化ホウ素
系、グラファイト系などが挙げられる。As the material of the molded body, any kind of ceramics can be used as long as it can be applied to the manufacturing method described below, and virtually any known oxide-based or non-oxide-based ceramics can be used. It can be used as a material for the molded article of the invention. Specifically, for example, oxide-based materials include alumina-based materials, mullite-based materials, and zirconia-based materials. Examples of non-oxide materials include silicon carbide materials, silicon nitride materials, aluminum nitride materials, boron nitride materials, and graphite materials.
【0013】成形体全体の気孔率は、通常30〜90%
程度、特に50〜80%であることが好ましい。上記気
孔率が30%未満の場合には、軽量体としての特性を発
揮できなくなることがあり好ましくない。90%を超え
ると強度が低下する。なお、気孔の大きさは、成形体を
構成する材質にもよるが、通常20〜4000μm程度
である。The porosity of the whole molded body is usually 30 to 90%.
It is preferably about 50 to 80%. When the porosity is less than 30%, the characteristics as a lightweight body may not be exhibited, which is not preferable. If it exceeds 90%, the strength decreases. The size of the pores depends on the material forming the molded body, but is usually about 20 to 4000 μm.
【0014】緻密質層は、成形体の表面から通常5〜5
0μmの深さにわたって存在する。ここで本発明でいう
緻密質層とは、気孔率が通常0〜5%程度の層をいう。
この緻密質層が表面から5μm未満と薄い層である場合
は、表面平滑性及び強度がともに低下する。なお、高い
強度が要求される場合は、軽量性を損なわない範囲にお
いて表面からの厚さが50μmを超えても良い。また、
成形体の肉厚が厚い場合には、その厚さの1/4を超え
ない範囲において50μmを超えても良い。The dense layer is usually 5 to 5 from the surface of the molded body.
Present over a depth of 0 μm. Here, the dense layer referred to in the present invention means a layer having a porosity of usually about 0 to 5%.
When this dense layer is a layer as thin as less than 5 μm from the surface, both surface smoothness and strength decrease. When high strength is required, the thickness from the surface may exceed 50 μm within a range that does not impair the lightness. Also,
When the wall thickness of the molded body is large, it may exceed 50 μm within a range not exceeding ¼ of the thickness.
【0015】なお、成形体表面の平滑度(Rmax)は、
被焼成物に含まれる有機物質量、焼成速度、被焼成物の
表面精度に応じて適宜設定すれば良く、通常は3〜50
μm程度である。なお、精密な面が要求されない場合
は、脱脂を促進する点からも表面粗さは大きい方が有利
であるので上記範囲外となっても良く、また必要に応じ
てエンボス模様に仕上げても良い。The smoothness (R max ) of the surface of the molded product is
It may be appropriately set according to the amount of organic substances contained in the object to be fired, the firing rate, and the surface accuracy of the object to be fired, usually 3 to 50.
It is about μm. If a precise surface is not required, it is advantageous that the surface roughness is large from the viewpoint of promoting degreasing, so that it may be out of the above range, and if necessary, it may be embossed. .
【0016】本発明の成形体は、気孔率が上記緻密質層
から成形体中心部に向かって連続的に増加するという構
造を有する。気孔率の増加の割合(気孔率の傾斜)は、
製造条件、使用する原料等によって異なり一様ではない
が、例えば後記の図1又は図2に示すように多孔質アル
ミナセラミックスでは、表層から一定の深さまでは比較
的高く、その後は比較的緩やかな傾斜となっている。成
形体中心部の気孔率は、強度の点から最大95%とする
ことが好ましい。このような特異な構造をもつ本発明成
形体においては、たとえクラックが成形体内部で発生し
ても、成形体表面にいくに従って気孔率が小さくなるた
めにクラックの進展が抑制され、クラックの成長を阻止
できる結果、優れた耐熱衝撃性を発現する。The molded product of the present invention has a structure in which the porosity continuously increases from the dense layer toward the center of the molded product. The rate of increase in porosity (gradient of porosity) is
Although it varies depending on the manufacturing conditions, the raw materials used, etc., it is not uniform, but for example, as shown in FIG. 1 or 2 below, in porous alumina ceramics, it is relatively high at a certain depth from the surface layer, and then relatively gentle. It is inclined. From the viewpoint of strength, the porosity of the central part of the molded body is preferably 95% at maximum. In the molded product of the present invention having such a peculiar structure, even if cracks occur inside the molded product, the progress of cracks is suppressed because the porosity decreases toward the surface of the molded product, and crack growth occurs. As a result, it exhibits excellent thermal shock resistance.
【0017】なお、成形体中の気孔は、細長い形状にな
ればなるほど欠陥としての応力集中が起こり易いため、
できるだけ球形に近いものが好ましい。また、連続気
孔、独立気孔又はこれらの混合型の構造のものであって
も良い。Since the pores in the molded body have elongated shapes, stress concentration tends to occur more easily as defects.
It is preferably as close to a spherical shape as possible. Further, it may have a structure of continuous pores, independent pores or a mixed type thereof.
【0018】次に、本発明の成形体の製造方法について
説明する。Next, the method for producing the molded article of the present invention will be described.
【0019】最初にセラミックススラリーの調製を行な
う。原料として前記成形体の材質のセラミックスの粉末
を用い、水を加えて常法に従ってスラリーを調製する。
水の配合量は、通常セラミックス原料100重量部に対
して20〜50重量部とするのが好ましい。20重量部
未満の場合にはスラリーの調整が困難となる。また50
重量部を超えると鋳込み後の硬化に長時間を要する。ま
た、本発明では必要に応じて、公知の滑剤、分散剤等の
各種添加剤を加えても良い。First, a ceramic slurry is prepared. A ceramic powder of the above-mentioned molded body is used as a raw material, water is added thereto, and a slurry is prepared according to a conventional method.
Usually, the amount of water is preferably 20 to 50 parts by weight with respect to 100 parts by weight of the ceramic raw material. If the amount is less than 20 parts by weight, it becomes difficult to adjust the slurry. Again 50
When it exceeds the weight part, it takes a long time to cure after casting. Further, in the present invention, various additives such as known lubricants and dispersants may be added as necessary.
【0020】次に、上記スラリーに、別途に発泡剤によ
り調製された発泡液を加えて撹拌することにより、或い
は上記スラリーに直接起泡剤を添加して攪拌することに
より、スラリー中に気泡を導入する。Next, by adding a foaming liquid separately prepared with a foaming agent to the above slurry and stirring, or by directly adding a foaming agent to the above slurry and stirring, air bubbles are generated in the slurry. Introduce.
【0021】ここで、本発明にいう発泡液とは公知の発
泡剤等により調製された気泡からなる泡状体をいい、ま
た本発明にいう起泡剤とはセラミックススラリーに添加
・混合することにより気泡を形成するものを総称する。
つまり、上記起泡剤は、気泡をつくることができるもの
であれば特に限定されず、発泡剤、起泡剤、界面活性剤
なども本発明の発泡剤に包含される。具体的には、発泡
剤としてはアルミニウム微粉末、シリコン微粉末など、
起泡剤としてはタンパク質系起泡剤、卵白など、界面活
性剤としてはアルキルベンゼンスルホン酸塩、高級アル
キルアミノ酸などが例示できる。なお、本発明では、特
に低価格という点でタンパク質系起泡剤を用いるのが好
ましい。また、本発明では必要に応じて、公知の増粘
剤、糊剤等を適宜添加することもできる。増粘剤、糊剤
等としては、メチルセルロース、ポリビニルアルコー
ル、サッカロース、糖蜜などが例示される。これらを添
加することによって、スラリー中の気泡の強度の向上を
図り、気泡を安定化することができる。発泡液の調製
は、上記発泡剤等を用いて常法により作製すれば良い。Here, the foaming liquid referred to in the present invention means a foam-like body composed of bubbles prepared by a known foaming agent and the like, and the foaming agent referred to in the present invention is to be added to and mixed with a ceramic slurry. Those that form bubbles are collectively referred to.
That is, the foaming agent is not particularly limited as long as it can form bubbles, and a foaming agent, a foaming agent, a surfactant and the like are also included in the foaming agent of the present invention. Specifically, as the foaming agent, aluminum fine powder, silicon fine powder,
Examples of the foaming agent include protein-based foaming agents and egg white, and examples of the surfactants include alkylbenzene sulfonates and higher alkyl amino acids. In addition, in the present invention, it is preferable to use a protein-based foaming agent in view of low cost. Further, in the present invention, known thickeners, sizing agents and the like can be appropriately added as necessary. Examples of the thickener, sizing agent and the like include methyl cellulose, polyvinyl alcohol, sucrose, molasses and the like. By adding these, the strength of the bubbles in the slurry can be improved and the bubbles can be stabilized. The foaming liquid may be prepared by a conventional method using the foaming agent or the like.
【0022】気泡を導入したスラリーを石膏型などの型
に流し込み、常法に従って鋳込み成形を行なう。この場
合、気泡表面に浮遊している固形分が表層へ移動する
が、その移動速度を鋳込み型の初期の着肉速度で110
μm/分以下、好ましくは80μm/分以下とすること
によって、成形体の気孔率傾斜特性を付与し、かつ制御
することができる。すなわち、鋳込み成形を行った際、
まず石膏型表面で気泡がつぶれて緻密質層が形成され、
その後着肉速度は緻密質層の形成により徐々に遅くなっ
て気泡が残留するようになる。しばらくすると、さらに
着肉速度が遅くなって成形体内部に残留する気泡の径が
大きくなり、かつ気泡量も増加する結果、表層から中心
部に向かって気孔率が変化した軽量セラミックス成形体
を得る。The slurry in which bubbles are introduced is poured into a mold such as a gypsum mold, and cast molding is performed according to a usual method. In this case, the solid content floating on the bubble surface moves to the surface layer, and the moving speed is 110 at the initial inking speed of the casting mold.
By setting it to be equal to or less than μm / min, preferably equal to or less than 80 μm / min, it is possible to impart and control the porosity inclination characteristic of the molded body. That is, when performing cast molding,
First, bubbles are crushed on the plaster mold surface to form a dense layer,
After that, the inking rate gradually becomes slower due to the formation of the dense layer, and the bubbles remain. After a while, the inking rate is further reduced, the diameter of the bubbles remaining inside the compact is increased, and the amount of bubbles is also increased. As a result, a lightweight ceramic compact whose porosity changes from the surface layer toward the center is obtained. .
【0023】上記着肉速度が120μm/分を超える場
合には気孔率の傾斜特性を付与することが困難となる。
即ち、気孔の分布が均一化するので好ましくない。着肉
速度の下限は、気泡を成形体内に閉じ込めることができ
る限り特に制限はなく、成形体の用途等によって適宜設
定すれば良い。When the above-mentioned deposition rate exceeds 120 μm / min, it becomes difficult to impart the graded porosity characteristics.
That is, the distribution of pores becomes uniform, which is not preferable. The lower limit of the inking rate is not particularly limited as long as bubbles can be confined in the molded body, and may be appropriately set depending on the use of the molded body and the like.
【0024】また、一般に着肉速度を速くすれば緻密質
層が厚くなる傾向がある。従って、例えば厚い緻密質層
が必要なときには、着肉速度を80〜110μm/分程
度とすれば通常10〜100μmの緻密質層を形成させ
ることができる。さらに、石膏型を減圧装置の中に入れ
て圧力をコントロールしながら石膏型の吸水を調整し、
緻密質層を所望の厚さに制御することも可能である。In general, the dense layer tends to be thicker when the inking speed is increased. Therefore, for example, when a thick dense layer is required, a dense layer having a thickness of 10 to 100 μm can usually be formed by setting the inking rate to about 80 to 110 μm / min. Furthermore, put the gypsum mold in the decompression device and adjust the water absorption of the gypsum mold while controlling the pressure,
It is also possible to control the dense layer to a desired thickness.
【0025】本発明では、気泡を導入したスラリーに任
意の形状の正極及び負極の多孔性電極を差し込み、電圧
を印加することによって、成形体の気孔率の傾斜の度合
を制御することも可能である。つまり、電圧の印加によ
って気泡表面に浮遊している固形分が粒子帯電と反対の
電極に向かって気泡とともに移動するが、この場合に電
圧を変化させることにより上記固形分の移動速度を制御
して傾斜度合を変化させることができる。印加すべき電
圧は通常100〜200Vの直流電圧とすれば良い。1
00V未満では固形分の移動が十分でなく、200Vを
超えると移動速度が速くなりすぎる結果、緻密質層が形
成されにくくなるので好ましくない。電圧の制御方法
は、成形体の用途、材質の種類によって異なるが、例え
ば最初に200Vの電圧を印加することによって緻密質
層を形成させ、緻密質層が所望の厚さになった後、電圧
を次第に下げていくことにより行うことができる。In the present invention, it is possible to control the degree of inclination of the porosity of the molded body by inserting a positive electrode and a negative electrode of a negative electrode into a slurry in which bubbles are introduced and applying a voltage. is there. That is, the solid content floating on the surface of the bubble moves along with the bubble toward the electrode opposite to the particle charging by applying a voltage, but in this case, the moving speed of the solid content is controlled by changing the voltage. The degree of inclination can be changed. The voltage to be applied may normally be a DC voltage of 100 to 200V. 1
If it is less than 00V, the solid content does not sufficiently move, and if it exceeds 200V, the moving speed becomes too fast, which makes it difficult to form a dense layer, which is not preferable. The method of controlling the voltage varies depending on the use of the molded body and the type of material. For example, the voltage of 200 V is first applied to form the dense layer, and the voltage is adjusted after the dense layer has a desired thickness. Can be done by gradually lowering.
【0026】次いで、常法に従い脱型、脱脂し、次いで
焼成を行なえば、本発明成形体が得られる。焼成条件
は、通常1300〜1700℃程度で1〜5時間程度行
えば良い。Then, the molded product of the present invention is obtained by demolding and degreasing according to a conventional method and then firing. The firing conditions are usually about 1300 to 1700 ° C. and about 1 to 5 hours.
【0027】[0027]
【発明の効果】本発明の製造方法では、気泡を大量に導
入したセラミックススラリーを特に着肉速度を制御しな
がら鋳込み成形にて成形を行なうので、気孔率が上記緻
密質層から成形体中心部に向かって連続的に増加すると
いう特異な構造を有するセラミックス成形体を得ること
ができる。According to the manufacturing method of the present invention, since the ceramics slurry containing a large amount of air bubbles is molded by casting while controlling the inking rate, the porosity of the dense layer to the central part of the molded body is increased. It is possible to obtain a ceramic molded body having a peculiar structure in which it continuously increases toward.
【0028】本発明成形体は、多孔質であるにも拘ら
ず、高い強度と表面平滑性を有するとともに、優れた耐
熱衝撃性を発揮することができる。その特異な構造を利
用して焼成用匣鉢、セッター、棚板、断熱レンガなどの
用途に幅広く活用することができる。Despite being porous, the molded article of the present invention has high strength and surface smoothness, and can exhibit excellent thermal shock resistance. Utilizing its unique structure, it can be widely used in applications such as firing jars, setters, shelves, and heat insulating bricks.
【0029】[0029]
【実施例】以下に実施例及び比較例を示し、本発明の特
徴とするところをより一層明瞭にする。EXAMPLES Examples and comparative examples will be shown below to further clarify the characteristics of the present invention.
【0030】実施例1 原料としてアルミナ系セラミックス粉末を用いて軽量セ
ラミックス成形体を作製した。Example 1 A lightweight ceramic compact was prepared using alumina ceramic powder as a raw material.
【0031】まず、アルミナ系セラミックス粉末300
gに対して水100g、ポリアクリル酸アンモニウム塩
系分散剤1.5gおよびパラフィン系ワックス系滑剤
1.5gを加え、プロペラ式ミキサーで撹拌することに
よりセラミックススラリーを調製した。First, the alumina-based ceramic powder 300
To 100 g of water, 100 g of water, 1.5 g of a polyacrylic acid ammonium salt-based dispersant and 1.5 g of a paraffin wax-based lubricant were added, and the mixture was stirred with a propeller mixer to prepare a ceramics slurry.
【0032】次いで、サッカロースを0.2%添加した
タンパク質系起泡剤により別途調製した平均約150μ
m(分布範囲20〜230μm)の大きさの気泡からな
る発泡液300mlを、上記スラリーに加え、プロペラ
式ミキサーで撹拌した。この泡スラリーを着肉速度80
μm/分の石膏型に鋳込み、24時間後に脱型し、得ら
れた生成形体のかさ比重を測定したところ、0.62で
あった。また、この成形体の破断面を観察すると表層に
35μmの緻密質層、その内部に40〜1500μmの
気孔が導入されていることが確認された。また、気孔は
ほぼ球形で、独立気孔と連続気孔との混合型の構造であ
った。Next, an average of about 150 μm prepared separately using a protein-based foaming agent containing 0.2% saccharose.
300 ml of a foaming liquid consisting of bubbles having a size of m (distribution range of 20 to 230 μm) was added to the above slurry and stirred with a propeller mixer. This foam slurry is applied to the inking speed of 80
It was cast in a gypsum mold of μm / min, demolded after 24 hours, and the bulk specific gravity of the obtained green body was measured. As a result, it was 0.62. Further, it was confirmed by observing the fracture surface of this molded body that a dense layer of 35 μm was introduced into the surface layer and pores of 40 to 1500 μm were introduced therein. The pores were almost spherical and had a mixed type structure of independent pores and continuous pores.
【0033】上記成形体を空気中600℃で5時間加熱
して脱脂した後、1500℃で2時間焼成を行なうこと
により、本発明の軽量セラミックス成形体を得た。この
とき、成形体には大きなソリや割れは認められず、また
成形体の破断面を観察すると表層に30μmの緻密質
層、その内部に30〜1200μmの気孔が導入されて
いることが確認された。また、成形体の表層から中心部
までの気孔率について調べた結果を図1に示す。これよ
り、気孔率が表層部分から中心部に向かって連続的に増
加していることがわかる。The above-mentioned compact was heated in air at 600 ° C. for 5 hours to be degreased, and then fired at 1500 ° C. for 2 hours to obtain a lightweight ceramic compact of the present invention. At this time, no large warp or crack was observed in the molded body, and it was confirmed by observing the fracture surface of the molded body that the dense layer of 30 μm was introduced in the surface layer and the pores of 30 to 1200 μm were introduced therein. It was Moreover, the result of having investigated the porosity from the surface layer to the central portion of the molded body is shown in FIG. From this, it is understood that the porosity continuously increases from the surface layer portion toward the central portion.
【0034】さらに、得られた成形体の気孔率、強度、
耐スポーリング特性などについての測定も行なった。そ
の結果を表1に示す。Furthermore, the porosity, strength, and
The spalling resistance and other properties were also measured. The results are shown in Table 1.
【0035】比較例1 着肉速度120μm/分の石膏型を用いて鋳込んだ後、
16時間後に脱型したほかは、実施例1と同様にして成
形体を作製した。得られた成形体を調べたところ、嵩比
重、緻密質層の厚さ、全体の気孔率は実施例1の成形体
とほぼ同様であったが、内部の気孔率は均一であった。
得られた成形体の強度、耐スポーリング特性などについ
ての測定も行なった結果を表1に示す。Comparative Example 1 After casting using a gypsum mold having a wall thickness of 120 μm / min,
A molded body was produced in the same manner as in Example 1 except that the mold was removed after 16 hours. When the obtained molded product was examined, the bulk specific gravity, the thickness of the dense layer, and the overall porosity were almost the same as those of the molded product of Example 1, but the internal porosity was uniform.
Table 1 shows the results obtained by measuring the strength and spalling resistance of the obtained molded product.
【0036】[0036]
【表1】 [Table 1]
【0037】表1の結果より、気孔率が傾斜的に増加す
る本発明成形体は、特に耐熱衝撃性に優れた効果を発揮
することがわかる。From the results shown in Table 1, it can be seen that the molded product of the present invention in which the porosity is increased in a tilted manner exhibits a particularly excellent effect on thermal shock resistance.
【0038】実施例2 サッカロースを0.2%添加したタンパク質系起泡剤に
より別途調製した平均約50μm(分布範囲10〜12
0μm)の大きさの気泡からなる発泡液200mlを添
加し、脱型を鋳込みから20時間後に行った以外は、実
施例1と同様にして成形体を作製した。Example 2 An average of about 50 μm (distribution range: 10 to 12) prepared separately with a protein-based foaming agent containing 0.2% of sucrose.
A molding was produced in the same manner as in Example 1 except that 200 ml of a foaming liquid consisting of bubbles having a size of 0 μm) was added and the mold was removed 20 hours after casting.
【0039】上記成形体の気孔率について調べた結果を
図1に示し、成形体の気孔率、強度、耐スポーリング特
性などを表2に示す。The results of examining the porosity of the molded body are shown in FIG. 1, and the porosity, strength and spalling resistance of the molded body are shown in Table 2.
【0040】比較例2 着肉速度120μm/分の石膏型を用いて鋳込んだ後、
12時間後に脱型したほかは、実施例1と同様にして成
形体を作製した。得られた成形体を調べたところ、嵩比
重、緻密質層の厚さ、全体の気孔率は実施例2の成形体
とほぼ同様であったが、内部の気孔率は均一であった。
得られた成形体の強度、耐スポーリング特性などについ
ての測定も行なった結果を表2に示す。Comparative Example 2 After being cast using a gypsum mold with a wall thickness of 120 μm / min,
A molded body was produced in the same manner as in Example 1 except that the mold was removed after 12 hours. When the obtained molded body was examined, the bulk specific gravity, the thickness of the dense layer, and the overall porosity were almost the same as those of the molded body of Example 2, but the internal porosity was uniform.
Table 2 shows the results obtained by measuring the strength and spalling resistance of the obtained molded product.
【0041】[0041]
【表2】 [Table 2]
【0042】実施例3 サッカロースを0.2%添加したタンパク質系起泡剤に
より別途調製した平均約200μm(分布範囲100〜
300μm)の大きさの気泡からなる発泡液400ml
を添加し、脱型を鋳込みから32時間後に行った以外
は、実施例1と同様にして成形体を作製した。Example 3 An average of about 200 μm (distribution range 100 to 100 μm) separately prepared by a protein-based foaming agent containing 0.2% saccharose.
400 ml of foaming liquid consisting of bubbles with a size of 300 μm)
Was added, and a molded body was produced in the same manner as in Example 1 except that the mold was removed 32 hours after casting.
【0043】上記成形体の気孔率について調べた結果を
図1に示し、成形体の気孔率、強度、耐スポーリング特
性などを表3に示す。The results of examining the porosity of the molded body are shown in FIG. 1, and the porosity, strength, spalling resistance, etc. of the molded body are shown in Table 3.
【0044】比較例3 着肉速度120μm/分の石膏型を用いて鋳込んだ後、
25時間後に脱型したほかは、実施例3と同様にして成
形体を作製した。得られた成形体を調べたところ、嵩比
重、緻密質層の厚さ、全体の気孔率は実施例3の成形体
とほぼ同様であったが、内部の気孔率は均一であった。
得られた成形体の強度、耐スポーリング特性などについ
ての測定も行なった結果を表3に示す。Comparative Example 3 After being cast using a gypsum mold having a deposition rate of 120 μm / min,
A molded body was produced in the same manner as in Example 3 except that the mold was removed after 25 hours. When the obtained molded product was examined, the bulk specific gravity, the thickness of the dense layer, and the overall porosity were almost the same as those of the molded product of Example 3, but the internal porosity was uniform.
Table 3 shows the results obtained by measuring the strength and spalling resistance of the obtained molded product.
【0045】[0045]
【表3】 [Table 3]
【0046】実施例4 原料として窒化ケイ素系セラミックス粉末を用いて軽量
セラミックス成形体を作製した。Example 4 A lightweight ceramic compact was produced using silicon nitride ceramic powder as a raw material.
【0047】まず、窒化ケイ素系セラミックス粉末30
0gに対して水100g、ポリアクリル酸アンモニウム
塩系分散剤3.5gおよびパラフィン系ワックス系滑剤
1.5gを加え、プロペラ式ミキサーで撹拌することに
よりセラミックススラリーを調製した。First, silicon nitride ceramic powder 30
100 g of water, 3.5 g of polyacrylic acid ammonium salt-based dispersant and 1.5 g of paraffin wax-based lubricant were added to 0 g, and the mixture was stirred with a propeller mixer to prepare a ceramics slurry.
【0048】次いで、メチルセルロースを0.1%添加
した樹脂系起泡剤により別途調製した平均約130μm
(分布範囲40〜250μm)の大きさの気泡からなる
発泡液300mlを上記スラリーに加え、プロペラ式ミ
キサーで撹拌した。この泡スラリーを着肉速度80μm
/分の石膏型に鋳込み、22時間後に脱型し、得られた
成形体のかさ比重を測定したところ0.81であった。
また、この成形体の破断面を観察すると表層に40μm
の緻密質層、その内部に40〜1980μmの気孔が導
入されていることが確認された。また、気孔はほぼ球形
で、独立気孔と連続気孔との混合型の構造であった。Next, an average of about 130 μm separately prepared by a resin-based foaming agent containing 0.1% of methyl cellulose.
300 ml of a foaming liquid consisting of bubbles having a size (distribution range of 40 to 250 μm) was added to the above slurry and stirred with a propeller mixer. This foam slurry is applied at a deposition rate of 80 μm
It was cast in a gypsum mold of 1 / min, demolded after 22 hours, and the bulk specific gravity of the obtained molded product was measured and found to be 0.81.
Also, observing the fracture surface of this molded body, 40 μm on the surface layer
It was confirmed that 40 to 1980 μm pores were introduced into the dense layer of FIG. The pores were almost spherical and had a mixed type structure of independent pores and continuous pores.
【0049】上記成形体を空気中500℃で10時間加
熱して脱脂した後、1400℃で2時間焼成を行なうこ
とにより、本発明の軽量セラミックス成形体を得た。こ
のとき、成形体には大きなソリや割れは認められず、ま
た成形体の破断面を観察すると表層に35μmの緻密質
層、その内部に32〜1800μmの気孔が導入されて
いることが確認された。また、成形体の表層から中心部
までの気孔率について調べた結果を図2に示す。これよ
り、気孔率が表層部分から中心部に向かって連続的に増
加していることがわかる。The above compact was heated in air at 500 ° C. for 10 hours to be degreased, and then fired at 1400 ° C. for 2 hours to obtain a lightweight ceramic compact of the present invention. At this time, no large warp or crack was observed in the molded body, and it was confirmed by observing the fracture surface of the molded body that a dense layer of 35 μm was introduced in the surface layer and pores of 32 to 1800 μm were introduced therein. It was Moreover, the result of having investigated the porosity from the surface layer to the center of the molded body is shown in FIG. From this, it is understood that the porosity continuously increases from the surface layer portion toward the central portion.
【0050】さらに、得られた成形体の気孔率、強度、
耐スポーリング特性などについての測定も行なった。そ
の結果を表4に示す。Furthermore, the porosity, strength, and
The spalling resistance and other properties were also measured. The results are shown in Table 4.
【0051】比較例4 着肉速度120μm/分の石膏型を用いて鋳込んだ後、
15時間後に脱型したほかは、実施例4と同様にして成
形体を作製した。得られた成形体を調べたところ、嵩比
重、緻密質層の厚さ、全体の気孔率は実施例4の成形体
とほぼ同様であったが、内部の気孔率は均一であった。
得られた成形体の強度、耐スポーリング特性などについ
ての測定も行なった結果を表4に示す。Comparative Example 4 After pouring using a gypsum mold having a wall thickness of 120 μm / min,
A molded body was produced in the same manner as in Example 4 except that the mold was removed after 15 hours. When the obtained molded product was examined, the bulk specific gravity, the thickness of the dense layer, and the overall porosity were almost the same as those of the molded product of Example 4, but the internal porosity was uniform.
Table 4 shows the results obtained by measuring the strength and spalling resistance of the obtained molded product.
【0052】[0052]
【表4】 [Table 4]
【0053】表4の結果より、気孔率が傾斜的に増加す
る本発明成形体は、特に耐熱衝撃性に優れた効果を発揮
することがわかる。From the results shown in Table 4, it can be seen that the molded product of the present invention in which the porosity increases in a tilted manner exhibits a particularly excellent effect on thermal shock resistance.
【0054】実施例5 メチルセルロースを0.1%添加した樹脂系起泡剤によ
り別途調製した平均約70μm(分布範囲30〜200
μm)の大きさの気泡からなる発泡液250mlを添加
し、脱型を鋳込みから30時間後に行った以外は、実施
例4と同様にして成形体を作製した。Example 5 An average of about 70 μm (distribution range: 30 to 200) prepared separately with a resin-based foaming agent containing 0.1% of methyl cellulose.
A molded product was produced in the same manner as in Example 4 except that 250 ml of a foaming liquid consisting of bubbles having a size of μm) was added and the mold was removed 30 hours after casting.
【0055】上記成形体の気孔率について調べた結果を
図2に示し、成形体の気孔率、強度、耐スポーリング特
性などを表5に示す。The results of examining the porosity of the above molded product are shown in FIG. 2, and Table 5 shows the porosity, strength, spalling resistance, etc. of the molded product.
【0056】比較例5 着肉速度120μm/分の石膏型を用いて鋳込んだ後、
11時間後に脱型したほかは、実施例5と同様にして成
形体を作製した。得られた成形体を調べたところ、嵩比
重、緻密質層の厚さ、全体の気孔率は実施例5の成形体
とほぼ同様であったが、内部の気孔率は均一であった。
得られた成形体の強度、耐スポーリング特性などについ
ての測定も行なった結果を表5に示す。Comparative Example 5 After pouring using a gypsum mold having a deposition rate of 120 μm / min,
A molded product was produced in the same manner as in Example 5 except that the mold was removed after 11 hours. When the obtained molded body was examined, the bulk specific gravity, the thickness of the dense layer, and the overall porosity were almost the same as those of the molded body of Example 5, but the internal porosity was uniform.
Table 5 shows the results obtained by measuring the strength and spalling resistance of the obtained molded product.
【0057】[0057]
【表5】 [Table 5]
【0058】実施例6 メチルセルロースを0.1%添加したタンパク質系起泡
剤により別途調製した平均約210μm(分布範囲10
0〜350μm)の大きさの気泡からなる発泡液400
mlを添加し、脱型を鋳込みから30時間後に行った以
外は、実施例4と同様にして成形体を作製した。Example 6 An average of about 210 μm (distribution range: 10) prepared separately with a protein-based foaming agent containing 0.1% of methylcellulose.
Foaming liquid 400 consisting of bubbles having a size of 0 to 350 μm)
A molded body was produced in the same manner as in Example 4 except that ml was added and demolding was performed 30 hours after casting.
【0059】上記成形体の気孔率について調べた結果を
図2に示し、成形体の気孔率、強度、耐スポーリング特
性などを表6に示す。The results of examining the porosity of the molded body are shown in FIG. 2, and Table 6 shows the porosity, strength, spalling resistance and the like of the molded body.
【0060】比較例6 着肉速度120μm/分の石膏型を用いて鋳込んだ後、
23時間後に脱型したほかは、実施例5と同様にして成
形体を作製した。得られた成形体を調べたところ、嵩比
重、緻密質層の厚さ、全体の気孔率は実施例6の成形体
とほぼ同様であったが、内部の気孔率は均一であった。
得られた成形体の強度、耐スポーリング特性などについ
ての測定も行なった結果を表6に示す。Comparative Example 6 After casting using a gypsum mold having a deposition rate of 120 μm / min,
A molded body was produced in the same manner as in Example 5 except that the mold was removed after 23 hours. When the obtained molded body was examined, the bulk specific gravity, the thickness of the dense layer, and the overall porosity were almost the same as those of the molded body of Example 6, but the internal porosity was uniform.
Table 6 shows the results obtained by measuring the strength and spalling resistance of the obtained molded product.
【0061】[0061]
【表6】 [Table 6]
【0062】実施例7 実施例1と同様に泡スラリーを調製し、これに初期電圧
200Vでステンレス鋼製の平板電極を印加し、2時間
で徐々に100Vまで下げて、電気泳動鋳込みを行った
後、脱型、乾燥、脱脂および焼成を実施例1と同様にし
て行った。表層から中心部までの気孔率の変化を図1に
示す。これより、気孔率が表層部分から中心部に向かっ
て連続的に増加していることがわかる。Example 7 A foam slurry was prepared in the same manner as in Example 1, and a flat plate electrode made of stainless steel was applied to this at an initial voltage of 200 V, and gradually lowered to 100 V in 2 hours to perform electrophoretic casting. Thereafter, demolding, drying, degreasing and baking were performed in the same manner as in Example 1. The change in porosity from the surface layer to the center is shown in FIG. From this, it is understood that the porosity continuously increases from the surface layer portion toward the central portion.
【0063】さらに、得られた成形体の気孔率、強度、
耐スポーリング特性などについての測定も行なった。そ
の結果を表7に示す。なお、参考のため、実施例1の結
果も併記する。Furthermore, the porosity, strength, and
The spalling resistance and other properties were also measured. The results are shown in Table 7. For reference, the results of Example 1 are also shown.
【0064】[0064]
【表7】 [Table 7]
【0065】実施例8 実施例4と同様に泡スラリーを調製し、これに初期電圧
200Vでステンレス鋼製の平板電極を印加し、2時間
で徐々に100Vまで下げて、電気泳動鋳込みを行った
後、脱型、乾燥、脱脂および焼成を実施例4と同様にし
て行った。表層から中心部までの気孔率の変化を図2に
示す。これより、気孔率が表層部分から中心部に向かっ
て連続的に増加していることがわかる。Example 8 A foam slurry was prepared in the same manner as in Example 4, a flat plate electrode made of stainless steel was applied at an initial voltage of 200 V, and the voltage was gradually lowered to 100 V in 2 hours for electrophoretic casting. Thereafter, demolding, drying, degreasing and baking were performed in the same manner as in Example 4. The change in porosity from the surface layer to the center is shown in FIG. From this, it is understood that the porosity continuously increases from the surface layer portion toward the central portion.
【0066】さらに、得られた成形体の気孔率、強度、
耐スポーリング特性などについての測定も行なった。そ
の結果を表8に示す。なお、参考のため、実施例4の結
果も併記する。Furthermore, the porosity, strength, and
The spalling resistance and other properties were also measured. The results are shown in Table 8. For reference, the results of Example 4 are also shown.
【0067】[0067]
【表8】 [Table 8]
【0068】以上のように、本発明成形体は、気孔率が
表層部分から中心部に向かって連続的に増加するという
特異な構造を有することにより、特に優れた耐熱衝撃性
を発揮し得ることがわかる。As described above, the molded product of the present invention has a peculiar structure in which the porosity continuously increases from the surface layer portion toward the central portion, and thus it is possible to exhibit particularly excellent thermal shock resistance. I understand.
【図1】実施例1〜3及び実施例7における本発明成形
体の表層から中心部までの気孔率の変化を示す図面であ
る。FIG. 1 is a drawing showing changes in porosity from a surface layer to a central portion of molded articles of the present invention in Examples 1 to 3 and Example 7.
【図2】実施例4〜6及び実施例8における本発明成形
体の表層から中心部までの気孔率の変化を示す図面であ
る。FIG. 2 is a drawing showing changes in porosity from a surface layer to a central portion of molded articles of the present invention in Examples 4 to 6 and Example 8.
フロントページの続き (72)発明者 四方 良一 大阪府河内長野市片添町36番6号 (72)発明者 田中 伸一 大阪府大阪市福島区福島8丁目11番11号 (72)発明者 神原 雄三 大阪府堺市浜寺諏訪ノ森町2丁113番地19 (72)発明者 三木 康夫 大阪府貝塚市二色2丁目12−3 406号 (72)発明者 山崎 雄右 和歌山県和歌山市新堀東2丁目8番6Front Page Continuation (72) Inventor Ryoichi Shikata 36-6 Katatazoe, Kawachinagano City, Osaka Prefecture (72) Inventor Shinichi Tanaka 8-11-11 Fukushima, Fukushima-ku, Osaka-shi (72) Inventor Yuzo Kanbara Osaka 2-113, Suwanomorimachi, Hamadera, Sakai-shi 19 (72) Inventor Yasuo Miki 2-12-3406, Nishiki, Kaizuka-shi, Osaka (72) Inventor Yusuke Yamazaki 2-8, Shinborihigashi, Wakayama, Wakayama Prefecture 6
Claims (4)
なる成形体であって、 (a) 成形体全体の気孔率が30〜90%であり、 (b) 緻密質層が表面から5〜50μmの深さにわたって
存在し、かつ (c) 気孔率が当該緻密質層から成形体中心部に向かって
連続的に増加することを特徴とする気孔率傾斜型軽量セ
ラミックス成形体。1. A molded body comprising oxide-based or non-oxide-based ceramics, wherein (a) the porosity of the entire molded body is 30 to 90%, and (b) the dense layer is 5 to 5% from the surface. A porosity-graded lightweight ceramics compact which is present over a depth of 50 μm, and (c) has a porosity that continuously increases from the dense layer toward the center of the compact.
スラリーに、気泡の直径が10〜2000μmである発
泡液を加えて撹拌してなるスラリーを着肉速度110μ
m/分以下で鋳込み成形した後、脱型し、脱脂し、焼成
することを特徴とする気孔率傾斜型軽量セラミックス成
形体の製造方法。2. A slurry obtained by adding a foaming liquid having a bubble diameter of 10 to 2000 μm to an oxide-based or non-oxide-based ceramic powder slurry and stirring the slurry to obtain a deposition rate of 110 μm.
A method for producing a porosity-graded lightweight ceramics molded product, which comprises cast-molding at m / min or less, and then demolding, degreasing, and firing.
する請求項2記載の製造方法。3. The method according to claim 2, wherein the casting rate is 80 μm / min or less.
することにより、得られる成形体の気孔率の傾斜度合を
制御することを特徴とする請求項2又は3に記載の製造
方法。4. The manufacturing method according to claim 2, wherein the degree of porosity inclination of the obtained molded body is controlled by casting the slurry while applying a voltage to the slurry.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28524793A JPH07138084A (en) | 1993-11-15 | 1993-11-15 | Gradient porosity lightweight ceramics molding and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28524793A JPH07138084A (en) | 1993-11-15 | 1993-11-15 | Gradient porosity lightweight ceramics molding and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07138084A true JPH07138084A (en) | 1995-05-30 |
Family
ID=17689026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28524793A Pending JPH07138084A (en) | 1993-11-15 | 1993-11-15 | Gradient porosity lightweight ceramics molding and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07138084A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001172090A (en) * | 1999-10-08 | 2001-06-26 | Toray Ind Inc | Ceramics |
WO2004063124A1 (en) * | 2003-01-15 | 2004-07-29 | Commonwealth Scientific And Industrial Research Organisation | Cementitious products |
JP2007326733A (en) * | 2006-06-07 | 2007-12-20 | Nippon Steel Corp | Method of manufacturing heat insulating gradient material and heat insulating gradient material |
JP2008013430A (en) * | 2006-06-07 | 2008-01-24 | Nippon Steel Corp | Insulating material manufacturing method, insulating material, kiln furnace, insulating material construction method, and insulating material recycling method |
CN113480330A (en) * | 2021-07-04 | 2021-10-08 | 内蒙古建能兴辉陶瓷有限公司 | Preparation method and raw materials of composite ceramic plate based on double foaming layers and application of composite ceramic plate |
CN113968722A (en) * | 2021-11-01 | 2022-01-25 | 山东瀚实环保设备有限公司 | A kind of method that utilizes potassium feldspar washing waste to prepare porous ceramics |
-
1993
- 1993-11-15 JP JP28524793A patent/JPH07138084A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001172090A (en) * | 1999-10-08 | 2001-06-26 | Toray Ind Inc | Ceramics |
WO2004063124A1 (en) * | 2003-01-15 | 2004-07-29 | Commonwealth Scientific And Industrial Research Organisation | Cementitious products |
CN100395216C (en) * | 2003-01-15 | 2008-06-18 | 海希尔股份有限公司 | cement products |
US8815133B2 (en) | 2003-01-15 | 2014-08-26 | Hyssil Pty Ltd. | Method of making a cementitious product |
JP2007326733A (en) * | 2006-06-07 | 2007-12-20 | Nippon Steel Corp | Method of manufacturing heat insulating gradient material and heat insulating gradient material |
JP2008013430A (en) * | 2006-06-07 | 2008-01-24 | Nippon Steel Corp | Insulating material manufacturing method, insulating material, kiln furnace, insulating material construction method, and insulating material recycling method |
CN113480330A (en) * | 2021-07-04 | 2021-10-08 | 内蒙古建能兴辉陶瓷有限公司 | Preparation method and raw materials of composite ceramic plate based on double foaming layers and application of composite ceramic plate |
CN113968722A (en) * | 2021-11-01 | 2022-01-25 | 山东瀚实环保设备有限公司 | A kind of method that utilizes potassium feldspar washing waste to prepare porous ceramics |
CN113968722B (en) * | 2021-11-01 | 2022-10-25 | 山东瀚实环保设备有限公司 | A kind of method that utilizes potassium feldspar washing waste to prepare porous ceramics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5900201A (en) | Binder coagulation casting | |
US4710480A (en) | Method of ceramic molding which produces a porosity gradient and the manufacture of compound moldings using this method | |
Dhara et al. | Shape forming of ceramics via gelcasting of aqueous particulate slurries | |
Graule et al. | DIRECT COAGULATION CASTING- A NEW GREEN SHAPING TECHNIQUE. PT. 1. PROCESSING PRINCIPLES | |
JP4176278B2 (en) | Ceramic porous body and method for producing the same | |
JPH07138084A (en) | Gradient porosity lightweight ceramics molding and method for manufacturing the same | |
GB2232115A (en) | Ceramic castings | |
US4814302A (en) | Stable slip-casting compositions having a base of powders containing finely divided aluminum nitride | |
CN109265175B (en) | A kind of high-strength ceramic product and preparation method thereof | |
JP4671501B2 (en) | Lightweight ceramic member and manufacturing method thereof | |
KR101928998B1 (en) | Ceramic plate-shaped body and method for producing same | |
US5573982A (en) | Slurry composition, shaping method using the same, and fired body | |
JP2002128563A (en) | Ceramic member for thermal treatment which has good thermal shock resistance | |
Rabinovich et al. | Slip casting of silicon nitride for pressureless sintering | |
JPH05310482A (en) | Lightweight ceramic compact and its production | |
JP3337308B2 (en) | Slurry composition for cast molding, method for molding cast body using the same, and sintered body fired therefrom | |
US20030183969A1 (en) | Production method of lightweight ceramic molding | |
JPH06157152A (en) | Fiber reinforced composite gradient material and it production | |
Wildhack et al. | Freeze casting of aluminium nitride | |
JP2003071555A (en) | MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL | |
JPS6197157A (en) | Ceramics molding method | |
RU2024344C1 (en) | Method for manufacture of ceramic molds | |
JPH04280854A (en) | Method for centrifugal casting | |
JPH06293572A (en) | Light weight fire ceramic molding and its production | |
JPH10231184A (en) | Porous reinforced lightweight ceramic body containing inorganic fiber material and method for producing the same |