[go: up one dir, main page]

JPH07136516A - Production of catalyst for hydrogenating, desulfurizing and denitrifying hydrocarbonaceous oil - Google Patents

Production of catalyst for hydrogenating, desulfurizing and denitrifying hydrocarbonaceous oil

Info

Publication number
JPH07136516A
JPH07136516A JP6171762A JP17176294A JPH07136516A JP H07136516 A JPH07136516 A JP H07136516A JP 6171762 A JP6171762 A JP 6171762A JP 17176294 A JP17176294 A JP 17176294A JP H07136516 A JPH07136516 A JP H07136516A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
alumina
silica
boria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6171762A
Other languages
Japanese (ja)
Other versions
JP2920186B2 (en
Inventor
Kisao Uekusa
吉幸男 植草
Toshio Yamaguchi
敏男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6171762A priority Critical patent/JP2920186B2/en
Publication of JPH07136516A publication Critical patent/JPH07136516A/en
Application granted granted Critical
Publication of JP2920186B2 publication Critical patent/JP2920186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To eliminate the defects of the conventional hydrocarbon oil hydrogenation catalyst and provide a catalyst capable of efficiently hydrogenating, desulfurizing and denitrifying the hydrocarbonaceous oil. CONSTITUTION:An oxide carrier consisting essentially of boriasilica-alumina is impregnated with an.aq. metallic salt soln. contg. 17-28wt.% of at least one kind of metal selected from group VIa metals, expressed in terms of the oxide, and 3-8wt.% of at least one kind selected from group VIII metals, expressed in terms of the oxide, as active metal components and then dried.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素油中に含まれ
る硫黄化合物ならびに窒素化合物の両者を効果的に除去
するための水素化処理用触媒の製造方法に関する。さら
に詳しくは硫黄化合物、特に窒素化合物を多量に含有す
る炭化水素油を水素加圧下で処理し、硫化水素とアンモ
ニアに転換させ、原料炭化水素油中の硫黄および窒素の
含有量を同時に低減させるために使用される水素化処理
触媒の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrotreating catalyst for effectively removing both sulfur compounds and nitrogen compounds contained in a hydrocarbon oil. More specifically, in order to reduce the content of sulfur and nitrogen in the raw hydrocarbon oil at the same time by treating a hydrocarbon oil containing a large amount of sulfur compounds, especially nitrogen compounds, under hydrogen pressure and converting it into hydrogen sulfide and ammonia. The present invention relates to a method for producing a hydrotreating catalyst used in.

【0002】[0002]

【従来の技術】従来の水素化脱硫を主体とする水素化処
理用触媒は、多孔性アルミナを基体とする触媒担体に、
周期律表第6a族金属および第8族金属を担持させた触
媒が一般に用いられている。しかしこれらの水素化処理
用の触媒は、水素化脱硫反応が行わせる際の水素消費量
を少なくし、水素化脱硫反応には高活性を示すが、水素
化脱窒素反応には十分な活性を示さない。一方、ガソリ
ン、灯油、軽油(沸点約340℃程度)を得た残りの一
般に残渣油ともいわれる炭化水素油からは水素化脱硫工
程を経て燃料油が製造されるが、近年公害防止の観点か
ら窒素分の少ない燃料油が望まれている。
2. Description of the Related Art A conventional hydrotreating catalyst mainly composed of hydrodesulfurization is composed of a porous alumina-based catalyst carrier,
A catalyst supporting a Group 6a metal and a Group 8 metal of the periodic table is generally used. However, these hydrotreating catalysts reduce the amount of hydrogen consumed when the hydrodesulfurization reaction is performed and show high activity for the hydrodesulfurization reaction, but sufficient activity for the hydrodenitrogenation reaction. Not shown. On the other hand, from gasoline, kerosene, and light oil (boiling point about 340 ° C), the remaining hydrocarbon oil, which is generally called residual oil, is used to produce fuel oil through a hydrodesulfurization process. Fuel oil with less consumption is desired.

【0003】ところで炭化水素油を処理して硫黄化合物
と窒素化合物とを同時に除去するためには従来から知ら
れている水素化脱硫活性に加えて、C−N結合を開裂さ
せる水素化脱窒素活性を具備した触媒が必要である。
By the way, in order to treat a hydrocarbon oil to simultaneously remove a sulfur compound and a nitrogen compound, in addition to the conventionally known hydrodesulfurization activity, a hydrodenitrogenation activity for cleaving a C--N bond is also used. A catalyst equipped with is required.

【0004】水素化脱硫、脱窒素の両活性を備えた触媒
としては種々研究が行われており、例えば米国特許第
3,446,730号には、1.2〜2.6の結晶水を
含有する水酸化アルミニウムを焼成して作られたアルミ
ナ担体にニッケルまたは第6族金属またはそれらの金属
の酸化物または硫化物を担持し、さらに0.1〜2.6
重量%のリン、珪素またはバリウムからなる促進剤を添
加した触媒が提案されているが、担体の特性については
何ら記載されていない。しかも処理油に関しては残留油
を含め如何なる溜分にも適用可能であることが記載され
ているが、実際には溜出油のみを対象とするものである
ことは明らかである。
Various studies have been carried out as a catalyst having both hydrodesulfurization and denitrification activities. For example, US Pat. No. 3,446,730 discloses 1.2 to 2.6 of water of crystallization. Nickel or Group 6 metals or oxides or sulfides of these metals are supported on an alumina carrier prepared by firing aluminum hydroxide contained therein, and further 0.1 to 2.6.
A catalyst with a promoter consisting of wt.% Phosphorus, silicon or barium has been proposed, but no mention is made of the properties of the support. Moreover, it is described that the treated oil can be applied to any distillate including the residual oil, but it is clear that only the distillate oil is actually targeted.

【0005】また、米国特許3,749,664号には
アルミナまたはシリカ−アルミナ担体にモリフデンとニ
ッケルとリンとを特定の割合で担持させた触媒が記載さ
れており、担体は一般的には0.6〜1.4cc/gの
細孔容積を有するものが好ましいと説明されているが、
細孔構造については全く検討されておらず炭化水素の水
素化処理に対して満足し得る性能を有していない。
Further, US Pat. No. 3,749,664 describes a catalyst in which molyfden, nickel and phosphorus are supported on an alumina or silica-alumina carrier in a specific ratio, and the carrier is generally 0. Although it is described that those having a pore volume of 0.6 to 1.4 cc / g are preferable,
The pore structure has not been studied at all, and it does not have satisfactory performance for hydrotreating hydrocarbons.

【0006】前記の改良として特開昭56−40432
号公報には、酸化チタンを担体として、触媒成分として
同様に周期律表第6族金属並びに第8族金属およびリン
またはホウ素を担持させたものが提案されているが、担
体として用いる酸化チタンは価格が高く、その物理的性
質上アルミナに較べて比表面積を大きくすることが困難
であり、しかも触媒成分担持後の焼成に際して比表面積
が低下し易く、アルミナのようにその細孔分布を所望の
範囲に維持することが困難である。
As an improvement of the above, Japanese Laid-Open Patent Publication No. 56-40432
The publication discloses titanium oxide as a carrier on which a metal of Group 6 and a metal of Group 8 of the Periodic Table and phosphorus or boron are similarly supported as a catalyst component. However, titanium oxide used as a carrier is The price is high, and it is difficult to increase the specific surface area compared to alumina due to its physical properties. Moreover, the specific surface area tends to decrease during calcination after supporting the catalyst component. Difficult to maintain in range.

【0007】このように、何れの触媒も触媒成分として
周期律表第6a族並びに周期律表第8族に属する活性金
属に触媒促進効果のあるリンなどを併せて担持させて触
媒の持つ酸点を高めるように改良したものであるが、例
えばリンを触媒上に均一に担持させたとしても、触媒を
大気中に放置するとリンが吸湿して担持状態が変化して
しまうという欠点がある。
As described above, in any of the catalysts, an active metal belonging to Groups 6a and 8 of the Periodic Table as a catalyst component is also loaded with phosphorus or the like, which has a catalytic promoting effect, on the acid point of the catalyst. However, even if phosphorus is evenly supported on the catalyst, if the catalyst is left in the atmosphere, phosphorus will absorb moisture and the supported state will change.

【0008】一般に炭化水素油の水素化処理触媒の製造
方法は、無機酸化物担体に活性金属水溶液を含浸し、乾
燥し、次いで焼成するという製造工程を採るが、後述す
るように本発明のような担体に活性金属水溶液を含浸さ
せた後、乾燥し、該乾燥状態のものをそのまま水素化処
理用触媒として適用する試みはなされていない。
Generally, a method for producing a hydrotreating catalyst for hydrocarbon oils comprises the steps of impregnating an inorganic oxide carrier with an aqueous solution of an active metal, drying, and then calcining. No attempt has been made to impregnate such a carrier with an aqueous solution of an active metal and then to dry it, and apply the dried product as it is as a hydrotreating catalyst.

【0009】[0009]

【発明が解決しようとする課題】本発明者らは、先に触
媒の基体となる担体の酸点を高めることを目的として担
体の改良を行った結果としてボリア−シリカ−アルミナ
組成物からなる担体を見出し、該担体に、従来から行わ
れている周期律表第6a族金属および周期律表第8族金
属を担持させた触媒についての性能について検討を行っ
たところ、水素化脱硫、脱窒素の両反応を同時に満足す
るためには、担体であるボリア−シリカ−アルミナ組成
物における組成比および細孔径に好ましい特定範囲が存
在し、また担持金属量についても好適な範囲が存在する
ことを見出し、これについて特許出願を行ったが、更に
水素化脱硫、脱窒素の両活性を向上すべく鋭意研究を進
めた結果本発明に到達したものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention The inventors of the present invention have previously improved the carrier for the purpose of increasing the acid point of the carrier that is the base of the catalyst, and as a result, have the carrier composed of the boria-silica-alumina composition. Was found and the performance of a catalyst in which a metal of Group 6a of the periodic table and a metal of Group 8 of the periodic table were carried on the carrier was examined, and the performance of the catalyst was confirmed. In order to satisfy both reactions at the same time, it was found that there is a preferred specific range for the composition ratio and the pore size in the carrier boria-silica-alumina composition, and there is also a suitable range for the amount of supported metal, A patent application was filed for this, and the present invention was reached as a result of further intensive research to improve both hydrodesulfurization and denitrification activities.

【0010】即ち、本発明は、先に述べたような従来の
炭化水素油の水素化触媒の持つ問題点を解消し、炭化水
素油の水素化脱硫並びに脱窒素の両活性を十分に備え、
且つ工程を簡略化した水素化脱硫脱窒素用触媒の製造方
法を提供することを目的とするものである。
That is, the present invention solves the problems of the conventional hydrocarbon oil hydrogenation catalysts as described above, and is sufficiently equipped with both hydrodesulfurization and denitrification activities of hydrocarbon oils.
Moreover, it is an object of the present invention to provide a method for producing a catalyst for hydrodesulfurization and denitrification, in which the steps are simplified.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、ボリア−シリカ−アルミナを基体とする
酸化物担体に対し活性金属成分として周期律表第6a族
金属から選ばれた少なくとも1種の金属を酸化物換算で
17〜28重量%と、周期律表第8族金属から選ばれた
少なくとも1種の金属を酸化物換算で3〜8重量%とを
含む金属塩水溶液を含浸し、乾燥することを特徴とする
炭化水素油の水素化脱硫脱窒素用触媒の製造方法であ
る。
Means for Solving the Problems The present invention for achieving the above object is selected from metals of Group 6a of the periodic table as an active metal component for an oxide carrier based on boria-silica-alumina. An aqueous metal salt solution containing 17 to 28% by weight of at least one metal in terms of oxide and 3 to 8% by weight in terms of oxide of at least one metal selected from Group 8 metals of the periodic table. A method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oil, which comprises impregnating and drying.

【0012】本発明において、ボリア−シリカ−アルミ
ナを基体とする酸化物担体の組成はBとして3〜
10重量%の範囲であり、SiOとして3〜8重量%
の範囲であることが好ましく、また該酸化物担体の細孔
特性は、水銀圧入法で測定した細孔分布で60〜90オ
ングストロームの平均細孔直径を有し、かつ平均細孔直
径±10オングストロームの範囲の細孔容積が全細孔容
積の少なくとも60%を占める範囲であることが好まし
い。
In the present invention, the composition of the oxide carrier based on boria-silica-alumina is 3 to 3 as B 2 O 3.
The range is 10% by weight, and 3 to 8% by weight as SiO 2.
And the pore characteristics of the oxide support have an average pore diameter of 60 to 90 angstrom in terms of pore distribution measured by mercury porosimetry, and an average pore diameter of ± 10 angstrom. It is preferable that the pore volume in the range is at least 60% of the total pore volume.

【0013】また担持させる触媒活性成分としては、周
期律表第6a族金属のうちから選ばれた少なくとも1種
および第8族金属のうちから選ばれた少なくとも1種を
前記した含有範囲で担持させる必要があり、これらの活
性金属の担持させるには、これら活性金属塩水溶液を含
浸し、乾燥する。得られた乾燥状態の触媒は、水素化処
理を行う前に一般的に行われている方法と同様の硫化処
理を行って使用に供することができる。
As the catalytically active component to be supported, at least one selected from the metals of Group 6a of the periodic table and at least one selected from the metals of Group 8 of the Periodic Table are supported within the above-mentioned content range. It is necessary to impregnate these active metal salt aqueous solutions and dry them in order to support these active metals. The obtained catalyst in a dried state can be subjected to the same sulfurization treatment as a generally used method before being subjected to the hydrotreating treatment before being used.

【0014】[0014]

【作用】以下に本発明の詳細およびその作用について説
明する。本発明の担体は、ボリア−シリカ−アルミナ組
成物からなり、その組成がBとして3〜10重量
%の範囲であり、SiOとして3〜8重量%で、残部
がAlでないと脱窒素活性について飛躍的な向上
が認められない。この活性向上は担体の持つ上記3成分
の相乗効果によるものと考えられる。
The operation of the present invention will be described in detail below. The carrier of the present invention comprises a boria-silica-alumina composition having a composition in the range of 3 to 10% by weight as B 2 O 3 , 3 to 8% by weight as SiO 2 , and the balance Al 2 O 3. Otherwise, no dramatic improvement in denitrification activity will be observed. It is considered that this improvement in activity is due to the synergistic effect of the above three components of the carrier.

【0015】周期律表第6a族金属として用いられるも
のは、クロム、モリブデン、タングステンであり、これ
らのうちで特に好ましいものはモリブデンである。また
周期律表第8族金属として用いられるものは鉄、コバル
ト、ニッケルであり、これらのうちで特に好ましいもの
は、ニッケルおよび/またはコバルトであり、これら周
期律表第6a族金属と周期律表第8族金属の両者を適宜
組み合わせて用いる。活性金属の含有量は、周期律表第
6a族金属については酸化物換算で触媒全体量に対して
17〜28重量%、周期律表第8族金属については酸化
物換算で3〜8重量%である。そして、これら金属成分
の下限値は水素化脱硫、脱窒素活性の所望の発生に必要
な最低限を示し、上限値以上ではこれ以上の量を添加し
ても、水素化脱硫、脱窒素活性の増加は認められない。
The metals used as Group 6a metals of the periodic table are chromium, molybdenum and tungsten, and of these, particularly preferred is molybdenum. Further, those used as the Group 8 metal of the periodic table are iron, cobalt, and nickel, and particularly preferable among these are nickel and / or cobalt. Both Group 8 metals are used in appropriate combination. The content of the active metal is 17 to 28% by weight based on the total amount of the catalyst in terms of oxide for Group 6a metal in the periodic table, and 3 to 8% by weight in terms of oxide for Group 8 metal in the periodic table. Is. And the lower limit of these metal components shows the minimum necessary for the desired generation of hydrodesulfurization, denitrification activity, above the upper limit, even if added in an amount more than this, hydrodesulfurization, denitrification activity of No increase is observed.

【0016】ボリア−シリカ−アルミナを基体とする触
媒担体の細孔直径や細孔分布については、脱硫および脱
窒素に有効な細孔径を有する細孔をできるだけ多くし、
他の有害な反応を抑制するためには、その細孔分布が狭
く、且つ平均細孔径±10オングストロームの細孔の占
める容積が全細孔容積の少なくとも60%以上であると
きに得られる乾燥触媒の脱硫、脱窒素の効果が最も優れ
ている。
With respect to the pore diameter and the pore distribution of the catalyst carrier based on boria-silica-alumina, the number of pores having a pore diameter effective for desulfurization and denitrification should be increased as much as possible.
In order to suppress other harmful reactions, a dry catalyst obtained when the pore distribution is narrow and the volume occupied by pores having an average pore diameter of ± 10 Å is at least 60% or more of the total pore volume. The effect of desulfurization and denitrification is most excellent.

【0017】ボリア−シリカ−アルミナ担体の平均細孔
径がこれより小さいときは、反応物質の触媒粒子内での
拡散抵抗が大きく、水素化脱硫、脱窒素の両活性を低下
させることになる。また、ボリア−シリカ−アルミナ担
体の平均細孔径が60〜90オングストロームの範囲内
には入っても平均細径孔±10オングストロームの細孔
の占める容積が全細孔容積の60%未満のときには、炭
化水素油の水素化脱硫、脱窒素反応に有効な細孔が減少
することになり両活性は低下する。
If the average pore size of the boria-silica-alumina carrier is smaller than this, the diffusion resistance of the reactant within the catalyst particles is large, and both hydrodesulfurization and denitrification activities are reduced. Further, even if the average pore size of the boria-silica-alumina carrier falls within the range of 60 to 90 angstroms, when the volume occupied by the pores of the average small diameter ± 10 angstrom is less than 60% of the total pore volume, Both pores effective for hydrodesulfurization and denitrification of hydrocarbon oil are reduced, and both activities are reduced.

【0018】前記したような細孔分布が狭く平均細孔径
が所定の範囲内にあるボリア−シリカ−アルミナを基体
とする担体は、例えば混合法などの一般的な触媒担体製
造方法によって製造し得るものであって、硫酸アルミニ
ウム水溶液とアルミン酸ナトリウムを混合し、加水分解
させて生成したアルミナ水和物スラリーに、触媒担体と
したときのシリカ含有量がSiOとして3〜8重量%
となるようにケイ酸ナトリウム水溶液を添加して、濾
過、洗浄を行うことによって、NaOとして0.05
重量%、SOとして0.20重量%を含むシリカ−ア
ルミナ触媒を得て、該水和物に担体としたときのボリア
含有量がBとして3〜10重量%となるようにホ
ウ酸水溶液を添加し、成型可能な水分になるまで混捏し
て、円筒状、球状、三つ葉型、四つ葉型などの一般的な
触媒担体形状に成型した後、乾燥し、次いで焼成するこ
とによって製造することができる。
The carrier based on boria-silica-alumina having a narrow pore distribution and an average pore diameter within a predetermined range as described above can be manufactured by a general catalyst carrier manufacturing method such as a mixing method. Alumina hydrate slurry produced by mixing an aqueous solution of aluminum sulfate and sodium aluminate and hydrolyzing the mixture has a silica content of 3 to 8 wt% as SiO 2 when used as a catalyst carrier.
Become so by adding sodium silicate solution 0.05, filtered, by performing washing, as Na 2 O
% Silica, and a silica-alumina catalyst containing 0.20% by weight of SO 4 is obtained, and when the hydrate is used as a carrier, the boria content is 3-10% by weight as B 2 O 3. By adding an aqueous acid solution and kneading until the water content becomes moldable, molding into a general catalyst carrier shape such as cylindrical, spherical, three-leaf type, four-leaf type, etc., then drying and then firing It can be manufactured.

【0019】なお、前記アルミナ水和物を得るに際して
の加水分解反応時にグルコン酸、酒石酸等の有機酸を添
加すると、細孔分布を特定の範囲内に集中させた触媒を
得るために効果的である。
It should be noted that the addition of an organic acid such as gluconic acid or tartaric acid during the hydrolysis reaction for obtaining the alumina hydrate is effective for obtaining a catalyst having a pore distribution concentrated in a specific range. is there.

【0020】また、前記ボリア−シリカ−アルミナ組成
物を製造するに際して用いられるボリア原料としては、
例えば、ホウ酸、四ホウ酸などの水溶性塩が挙げられ、
シリカ原料としては、例えば、ケイ酸ナトリウム、四塩
化ケイ素などの水溶性塩が挙げられ、またアルミナ原料
としては、例えば、硝酸アルミニウム、硫酸アルミニウ
ム、塩化アルミニウム、アルミン酸ナトリウムなどおよ
びこれらの水溶性塩類が挙げられる。
Further, as the boria raw material used for producing the boria-silica-alumina composition,
For example, water-soluble salts of boric acid, tetraboric acid and the like,
Examples of the silica raw material include water-soluble salts such as sodium silicate and silicon tetrachloride, and examples of the alumina raw material include aluminum nitrate, aluminum sulfate, aluminum chloride, sodium aluminate and the like, and water-soluble salts thereof. Is mentioned.

【0021】このようにして得られた所望の細孔構造を
有するボリア−シリカ−アルミナを基体とする担体に活
性金属成分を担持させるには、例えば、三酸化モリブデ
ンおよび炭酸ニッケル、炭酸コバルトを水に懸濁させた
スラリーにクエン酸、酒石酸などの有機酸を添加し、加
熱溶解させた水溶液を準備し、この水溶液中にボリア−
シリカ−アルミナ担体を含浸して該液を吸収させて、所
望量の活性金属成分を担持できるように水溶液の濃度を
調整するか、あるいは前記所望の活性金属を溶解させて
おいて水溶液全量を吸着させ、次いで乾燥することによ
り本発明の触媒を得ることができる。
To support the active metal component on the boria-silica-alumina-based carrier having the desired pore structure thus obtained, for example, molybdenum trioxide, nickel carbonate, and cobalt carbonate are added to water. An organic acid such as citric acid or tartaric acid was added to the slurry suspended in to prepare an aqueous solution that was heated and dissolved.
Silica-alumina carrier is impregnated to absorb the liquid, and the concentration of the aqueous solution is adjusted so that a desired amount of active metal component can be supported, or the desired active metal is dissolved and the total amount of the aqueous solution is adsorbed. Then, the catalyst of the present invention can be obtained by drying.

【0022】従来の触媒製造工程においては、担体に活
性金属塩水溶液を含浸させた後、乾燥し、焼成すること
により触媒を得ているが、本発明の製造方法において
は、製造工程中における焼成工程が不要になるために熱
エネルギー的にも有利である。本発明の製造方法により
得られた触媒は、炭化水素油の水素化脱硫、脱窒素反応
において、酸化物担体に活性金属を含浸し、乾燥、焼成
する従来技術の触媒製造方法で得られる触媒に対して硫
化処理を施したものに比べて著しく優れた活性を示す。
その理由については明らかではないが、従来技術におい
て最終的に焼成することにより得られる触媒中に含まれ
る活性金属成分は酸化物状態になっているために硫化処
理の工程で生成する硫化モリブデン等の粒径が本発明に
よるものに比べて小さく、且つ高分散状態になっている
ため本発明によるものに比べて活性が劣るのではないか
と考えられる。
In the conventional catalyst manufacturing process, the catalyst is obtained by impregnating the carrier with the active metal salt aqueous solution, then drying and calcining. In the manufacturing method of the present invention, the catalyst is calcined during the manufacturing process. It is also advantageous in terms of thermal energy because it eliminates the need for steps. The catalyst obtained by the production method of the present invention is a catalyst obtained by the conventional catalyst production method of impregnating an oxide support with an active metal in a hydrodesulfurization and denitrification reaction of hydrocarbon oil, followed by drying and calcination. On the other hand, it shows remarkably superior activity as compared with the one subjected to sulfurization treatment.
Although the reason for this is not clear, since the active metal component contained in the catalyst obtained by the final calcination in the prior art is in an oxide state, the active metal component such as molybdenum sulfide produced in the step of sulfurization treatment is not formed. It is considered that the activity is inferior to that according to the present invention because the particle size is smaller than that according to the present invention and is in a highly dispersed state.

【0023】[0023]

【実施例】次に本発明の実施例について述べる。(1)触媒担体の製造 実施例1 内容積100リットルの攪拌機付きステンレス製反応槽
に、水49.5リットルと濃度50%のグルコン酸溶液
(和光純薬工業(株)製)204g(加水分解により生
成するAlに対して0.05重量%)を反応槽に
入れ、70℃まで加温保持し、攪拌しながらAl
として774gを含む硫酸アルミニウム水溶液((株)
島田商店販売、8%硫酸バンド)9540gと、Al
として1275gを含むアルミン酸ナトリウム水溶
液(住友化学工業(株)製NA−170)6930gを
混合してpHが9.0のアルミナ水和物スラリーを得
た。次に、このスラリーを30分熟成した後、濃度31
%の硝酸25gを加えてpH8.3とし、次いで、Si
として130gを含むケイ酸ナトリウム水溶液(光
純薬工業(株)製)929gを全量滴下して、pHが
8.8のシリカ−アルミナ水和物を得た。この水和物を
30分間熟成した後、濾過し、洗浄して得られたシリカ
−アルミナ水和物ケーキ2500g(SiO−Al
として20重量%を含む)にホウ酸(和光純薬工業
(株)製)47g(Bとして26.6g)を加
え、加熱ジャケット付きニーダー中で加熱混捏して、B
−SiO−Al濃度として63重量%の
可塑性のある捏和物を得、次いでこの捏和物を直径1.
5mmφのダイスを有する押出成型機で成型し、乾燥
後、電気炉で700℃で2時間焼成してB5重量
%、SiOとして5.7重量%を含むボリア−シリカ
−アルミナ担体Aを得た。 実施例2 実施例1で得られたシリカ−アルミナ水和物に添加する
ホウ酸の添加量を変えたこと以外は実施例1に示す方法
とほぼ同様にして、Bとして3重量%、SiO
として5.8重量%を含むボリア−シリカ−アルミナ担
体BとBとして10重量%、SiOとして5.
4重量%を含むボリア−シリカ−アルミナ担体Cを得
た。 実施例3 実施例1とほぼ同様にして得られたアルミナ水和物スラ
リーに添加するケイ酸ナトリウム水溶液の添加量をSi
として3重量%および8.5重量%とした以外は実
施例1とほぼ同様の方法でBとして5重量%を添
加し、それぞれSiO2.9重量%、B5重量
%を含むボリア−シリカ−アルミナ担体DおよびSiO
8.1%、B5重量%を含むボリア−シリカ−
アルミナ担体Eを得た。
EXAMPLES Next, examples of the present invention will be described. (1) Production of Catalyst Carrier Example 1 204 g (hydrolysis) of gluconic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a content of 49.5 liters of water and a concentration of 50% was placed in a stainless steel reactor having an internal volume of 100 liters equipped with a stirrer. 0.05 wt% with respect to Al 2 O 3 produced by the above) was put in a reaction tank, and the mixture was heated and maintained at 70 ° C. and stirred while Al 2 O 3 was added.
Aluminum sulfate aqueous solution containing 774 g as
9540g of 8% sulfuric acid band sold by Shimada Shoten, and Al 2
6930 g of a sodium aluminate aqueous solution (NA-170 manufactured by Sumitomo Chemical Co., Ltd.) containing 1275 g as O 3 was mixed to obtain an alumina hydrate slurry having a pH of 9.0. Next, after aging this slurry for 30 minutes, a concentration of 31
% Nitric acid 25 g to bring the pH to 8.3, then Si
A total of 929 g of an aqueous sodium silicate solution (manufactured by Ko Pure Chemical Industries, Ltd.) containing 130 g as O 2 was added dropwise to obtain a silica-alumina hydrate having a pH of 8.8. After aging this hydrate for 30 minutes, it was filtered and washed to obtain 2500 g of a silica-alumina hydrate cake (SiO 2 -Al 2
O 3 of 20% by weight of the total composition) boric acid (Wako Pure Chemical Industries, Ltd. and manufactured) 47 g (26.6 g as B 2 O 3) was added and heated kneading in a heating jacketed kneader, B
63% by weight of a plastic knead as a concentration of 2 O 3 —SiO 2 —Al 2 O 3 was obtained, and the kneaded product was then given a diameter of 1.
A boria-silica-alumina carrier containing 5% by weight of B 2 O 3 and 5.7% by weight as SiO 2 after being molded by an extruder having a 5 mmφ die, dried, and fired at 700 ° C. for 2 hours in an electric furnace. I got A. Example 2 Except for changing the addition amount of boric acid added to the silica-alumina hydrate obtained in Example 1, 3% by weight as B 2 O 3 was prepared in substantially the same manner as in Example 1. , SiO 2
Boria containing 5.8% by weight - silica - alumina support B and B 2 O 3 as a 10 wt%, 5 as SiO 2.
A boria-silica-alumina carrier C containing 4% by weight was obtained. Example 3 The amount of the sodium silicate aqueous solution added to the alumina hydrate slurry obtained in substantially the same manner as in Example 1 was changed to Si.
5% by weight of B 2 O 3 was added in the same manner as in Example 1 except that O 2 was 3% by weight and 8.5% by weight, respectively, and SiO 2 was 2.9% by weight and B 2 O 3 was added. Boria-silica-alumina support D and SiO containing 5% by weight
2 8.1%, B 2 O 3 5 % by weight of the total composition boria - silica -
Alumina carrier E was obtained.

【0024】実施例1、2および3で得た担体A、B、
C、DおよびEについて水銀圧入法で細孔構造を測定し
たところ、平均細孔径はいずれも65±5オングストロ
ームの範囲であり、平均細孔径±10オングストローム
の範囲の占める容積が全細孔の占める容積の60%以上
を占めていた。 比較例1 実施例1とほぼ同様にして得られたアルミナ水和物スラ
リーを濾過、洗浄して得られたアルミナ水和物ケーキ2
500gを加温ジャケット付きニーダー中で加熱捏和
し、Al濃度として60重量%の可塑性のある捏
和物を得、次いでこの捏和物を直径1.5mmφのダイ
スを有する押出成型機で成型し、乾燥後電気炉で500
℃で2時間焼成してアルミナ担体Fを得た。
Carriers A, B obtained in Examples 1, 2 and 3,
When the pore structures of C, D and E were measured by the mercury porosimetry, the average pore diameters were all in the range of 65 ± 5 Å, and the volume occupied by the average pore diameter ± 10 Å was occupied by all the pores. It occupied over 60% of the volume. Comparative Example 1 Alumina hydrate cake 2 obtained by filtering and washing the alumina hydrate slurry obtained in substantially the same manner as in Example 1
Kneading 500 g in a kneader with a heating jacket to obtain a kneaded product having a plasticity of 60% by weight as an Al 2 O 3 concentration, and then the kneaded product was extruded with a die having a diameter of 1.5 mmφ. Molded in, dried and 500 in an electric furnace
Alumina carrier F was obtained by firing for 2 hours at ℃.

【0025】得られた担体Fについて水銀圧入法で細孔
構造を測定した結果、平均細孔径は70オングストロー
ムであり、平均細孔径±10オングストロームの範囲の
細孔の占める容積は全細孔の占める容積の61%であっ
た。 比較例2 実施例1とほぼ同様にして得られたシリカ−アルミナ水
和物ケーキ2500gを加温ジャケット付きニーダー中
で加熱捏和し、SiO−Al濃度として62重
量%の可塑性のある捏和物を得、次いでこの捏和物を直
径1.5mmφのダイスを有する押出成型機で成型し、
乾燥後電気炉で700℃で2時間焼成してSiOとし
て6重量%を含むシリカ−アルミナ担体Gを得た。
As a result of measuring the pore structure of the obtained carrier F by the mercury penetration method, the average pore diameter is 70 Å, and the volume occupied by the pores in the range of average pore diameter ± 10 Å is occupied by all the pores. It was 61% of the volume. Comparative Example 2 2500 g of a silica-alumina hydrate cake obtained in substantially the same manner as in Example 1 was heat-kneaded in a kneader with a heating jacket to give a 62% by weight plasticity of SiO 2 —Al 2 O 3 concentration of 62% by weight. A certain kneaded product is obtained, and then this kneaded product is molded with an extruder having a die with a diameter of 1.5 mmφ,
After drying, it was baked in an electric furnace at 700 ° C. for 2 hours to obtain a silica-alumina carrier G containing 6% by weight as SiO 2 .

【0026】得られた担体Gについて水銀圧入法で細孔
構造を測定した結果、平均細孔径は71オングストロー
ムであり、平均細孔径±10オングストロームの範囲の
細孔の占める容積は全細孔の占める容積の63%であっ
た。 比較例3 反応槽にグルコン酸を添加しなかった以外は実施例1に
示す方法と同様の手順でBとして5重量%、Si
として5.7重量%を含むボリア−シリカ−アルミ
ナ担体Hを得た。
As a result of measuring the pore structure of the obtained carrier G by mercury porosimetry, the average pore diameter is 71 Å, and the volume occupied by the pores in the range of average pore diameter ± 10 Å is occupied by all the pores. It was 63% of the volume. Comparative Example 3 5% by weight of B 2 O 3 and Si were prepared by the same procedure as in Example 1 except that gluconic acid was not added to the reaction tank.
A boria-silica-alumina carrier H containing 5.7% by weight of O 2 was obtained.

【0027】得られた担体Hについて水銀圧入法で細孔
構造を測定した結果、平均細孔径は69オングストロー
ムであり、平均細孔径±10オングストロームの範囲の
細孔の占める容積は全細孔の占める容積の48%であっ
た。
As a result of measuring the pore structure of the obtained carrier H by mercury porosimetry, the average pore diameter is 69 Å, and the volume occupied by the pores in the range of average pore diameter ± 10 Å is occupied by all the pores. It was 48% of the volume.

【0028】実施例1〜3および比較例1〜3で調製し
た担体について、水銀圧入法により測定された細孔構造
に関する値について表1および表2に示す。(2)触媒の調製 実施例4 三酸化モリブデン23.4g、炭酸ニッケル11.8g
を水50gに懸濁し、酒石酸2.0gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節を
行った含浸液を実施例1、実施例2および実施例3で得
られた本発明の範囲の平均細孔径、平均細孔径±10オ
ングストロームの範囲の細孔の占める容積が全細孔容積
の60%以上であるような細孔構造を有するボリア−シ
リカ−アルミナ担体A、B、C、DおよびEの各100
gに含浸させ、2時間放置後110℃で16時間乾燥
し、次いで500℃で2時間焼成して触媒I、J、K、
LおよびMを得た。 比較例4 比較例1、比較例2および比較例3で得られた担体F
(アルミナ担体)、単体G(シリカ−アルミナ担体)お
よび担体H(本発明の範囲からはずれた細孔構造を有す
るボリア−シリカ−アルミナ担体)を用いた以外は実施
例4と略同様の手順で触媒N、OおよびPを得た。 実施例5 三酸化モリブデン39.7g、炭酸ニッケル13.4g
を水50gに懸濁し、酒石酸2.0gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節を
行った含浸液を実施例1で得たボリア−シリカ−アルミ
ナ担体A100gに含浸させ、2時間放置後110℃で
16時間乾燥して触媒Qを得た。
Prepared in Examples 1-3 and Comparative Examples 1-3
Structure measured by mercury porosimetry for different carriers
The values for are shown in Tables 1 and 2.(2) Preparation of catalyst  Example 4 23.4 g of molybdenum trioxide, 11.8 g of nickel carbonate
Is suspended in 50 g of water, 2.0 g of tartaric acid is added, and the mixture is heated.
Dissolve with water and adjust the liquid volume with water to match the water absorption of the carrier.
The impregnating liquids obtained were obtained in Example 1, Example 2 and Example 3.
The average pore diameter within the range of the present invention
The volume occupied by pores in the ngstrom range is the total pore volume.
Boria-Si having a pore structure of 60% or more of
Rica-alumina carrier A, B, C, D and E 100 each
g and impregnate it for 2 hours, then dry at 110 ° C for 16 hours
And then calcined at 500 ° C. for 2 hours to obtain catalysts I, J, K,
L and M were obtained. Comparative Example 4 Carrier F obtained in Comparative Example 1, Comparative Example 2 and Comparative Example 3
(Alumina carrier), simple substance G (silica-alumina carrier) or
And a carrier H (having a pore structure outside the scope of the present invention)
(Boria-silica-alumina carrier)
Catalysts N, O and P were obtained in a procedure similar to that in Example 4. Example 5 Molybdenum trioxide 39.7 g, nickel carbonate 13.4 g
Is suspended in 50 g of water, 2.0 g of tartaric acid is added, and the mixture is heated.
Dissolve with water and adjust the liquid volume with water to match the water absorption of the carrier.
The impregnating solution used was the boria-silica-aluminum obtained in Example 1.
Impregnate 100 g of carrier A and leave for 2 hours at 110 ° C
After drying for 16 hours, catalyst Q was obtained.

【0029】また三酸化モリブデン23.4g、炭酸ニ
ッケル16.5gを水50gに懸濁し、酒石酸2.0g
を添加して加熱下で溶解し、担体の吸水量に見合う液量
に水で液量調節を行った含浸液を、実施例1で得たボリ
ア−シリカ−アルミナ担体A100gに含浸させ、2時
間放置後110℃で16時間乾燥し、次いで500℃で
2時間焼成して触媒Rを得た。 実施例6 三酸化モリブデン39.7g、炭酸コバルト12.2g
を水50gに懸濁し、酒石酸2.0gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節を
行った含浸液を実施例1で得たボリア−シリカ−アルミ
ナ単体A100gに含浸させ、2時間放置後110℃で
16時間乾燥し、次いで500℃で2時間焼成して触媒
Sを得た。
Further, 23.4 g of molybdenum trioxide and 16.5 g of nickel carbonate were suspended in 50 g of water to obtain 2.0 g of tartaric acid.
Was added and dissolved under heating, and the impregnating liquid in which the liquid amount was adjusted to a liquid amount corresponding to the water absorption amount of the carrier was impregnated with 100 g of the boria-silica-alumina carrier A obtained in Example 1 and the resulting solution was used for 2 hours. After standing, it was dried at 110 ° C. for 16 hours and then calcined at 500 ° C. for 2 hours to obtain a catalyst R. Example 6 39.7 g of molybdenum trioxide, 12.2 g of cobalt carbonate
Was suspended in 50 g of water, 2.0 g of tartaric acid was added and dissolved under heating, and the impregnating liquid obtained by adjusting the liquid amount with water to a liquid amount corresponding to the water absorption amount of the carrier was obtained in Example 1. -Alumina simple substance A (100 g) was impregnated, left for 2 hours, dried at 110 ° C for 16 hours, and then calcined at 500 ° C for 2 hours to obtain a catalyst S.

【0030】また三酸化モリブデン23.4g、炭酸コ
バルト15.1gを水50gに懸濁し、酒石酸2.0g
を添加して加熱下で溶解し、担体の吸水量に見合う液量
に水で液量調節を行った含浸液を、実施例1で得たボリ
ア−シリカ−アルミナ担体A100gに含浸させ、2時
間放置後110℃で16時間乾燥し、次いで500℃で
2時間焼成して触媒Tを得た。 比較例5 三酸化モリブデン14.0g、炭酸ニッケル4.2gを
水50gに懸濁し、加熱下で溶解し、担体の吸水量に見
合う液量に水で液量調節を行った含浸液を実施例1で得
たボリア−シリカ−アルミナ担体A100gに含浸さ
せ、2時間放置後110℃で16時間乾燥し、次いで5
00℃で2時間焼成して触媒Uを得た。
Further, 23.4 g of molybdenum trioxide and 15.1 g of cobalt carbonate were suspended in 50 g of water to obtain 2.0 g of tartaric acid.
Was added and dissolved under heating, and the impregnating liquid in which the liquid amount was adjusted to a liquid amount corresponding to the water absorption amount of the carrier was impregnated with 100 g of the boria-silica-alumina carrier A obtained in Example 1 and the resulting solution was used for 2 hours After standing, it was dried at 110 ° C. for 16 hours and then calcined at 500 ° C. for 2 hours to obtain a catalyst T. Comparative Example 5 An impregnation liquid was prepared by suspending 14.0 g of molybdenum trioxide and 4.2 g of nickel carbonate in 50 g of water, dissolving them under heating, and adjusting the liquid volume with water to a liquid volume corresponding to the water absorption of the carrier. 100 g of the boria-silica-alumina carrier A obtained in 1 was impregnated, left to stand for 2 hours, dried at 110 ° C. for 16 hours, and then 5
A catalyst U was obtained by calcining at 00 ° C. for 2 hours.

【0031】この触媒Uは、MoO、NiOに換算し
た担持量が共に本発明の範囲よりも少なかった。 比較例6 三酸化モリブデン24.7g、炭酸ニッケル12.2g
を水50gに懸濁し、正リン酸8.9gを添加して加熱
下で溶解し、担体の吸水量に見合う液量に水で液量調節
を行った含浸液を実施例1で得たボリア−シリカ−アル
ミナ担体A、比較例1で得たアルミナ担体Fおよび比較
例2で得たシリカ−アルミナ担体Gの各100gにそれ
ぞれ含浸させ、2時間放置後110℃で16時間乾燥
し、次いで500℃で2時間焼成して触媒V、触媒Wお
よび触媒Xを得た。これらの触媒はすべてリンを含有し
ており本発明の範囲外のものである。 (3)触媒の性能評価試験 表1および表2に示した各種の触媒について触媒充填量
15mlの固定床流通反応装置を用い、炭化水素油の水
素化脱硫、脱窒素反応の活性を調べた。
In this catalyst U, the supported amounts converted to MoO 3 and NiO were both less than the range of the present invention. Comparative Example 6 Molybdenum trioxide 24.7 g, nickel carbonate 12.2 g
Was suspended in 50 g of water, 8.9 g of orthophosphoric acid was added and dissolved under heating, and the impregnating liquid obtained by adjusting the liquid amount with water to a liquid amount corresponding to the water absorption amount of the carrier was obtained in Example 1. -Silica-alumina carrier A, alumina carrier F obtained in Comparative Example 1 and silica-alumina carrier G obtained in Comparative Example 2 were each impregnated with 100 g of each, allowed to stand for 2 hours, dried at 110 ° C for 16 hours, and then 500 The catalyst was calcined at 2 ° C. for 2 hours to obtain catalyst V, catalyst W and catalyst X. All of these catalysts contain phosphorus and are outside the scope of this invention. (3) Catalyst Performance Evaluation Test For each of the catalysts shown in Tables 1 and 2, the activity of hydrodesulfurization and denitrification of hydrocarbon oil was investigated using a fixed bed flow reactor with a catalyst loading of 15 ml.

【0032】尚、触媒の硫化条件としてはジメチルジサ
ルファイドを2.5重量%添加したライトガスオイルで
水素/油供給比200Nl/l、LHSV=2.0hr
−1、圧力30kg/cmGの条件下で100℃から
315℃まで7時間かけて昇温し、同温度に16時間保
持して予備硫化を行った。
The catalyst sulfurization conditions were light gas oil containing 2.5% by weight of dimethyldisulfide, hydrogen / oil supply ratio of 200 Nl / l, LHSV = 2.0 hr.
The temperature was raised from 100 ° C. to 315 ° C. over 7 hours under the conditions of −1 and a pressure of 30 kg / cm 2 G, and the temperature was maintained for 16 hours for pre-sulfurization.

【0033】次いで、硫黄分1.15重量%、窒素分6
8ppmを含むクエート常圧軽油を用い、圧力30kg
/cmG、LHSV=2.0hr−1、水素/油供給
比300Nl/l、温度300℃で反応を行わせ、反応
開始から100時間後の処理油中の硫黄分および窒素含
有量を分析して脱硫率、脱窒素率を求めその結果を表1
に示した。
Next, the sulfur content is 1.15% by weight and the nitrogen content is 6
Using Kuwait atmospheric gas oil containing 8ppm, pressure 30kg
/ Cm 2 G, LHSV = 2.0 hr −1 , hydrogen / oil supply ratio 300 Nl / l, temperature 300 ° C., the reaction was carried out, and the sulfur content and nitrogen content in the treated oil 100 hours after the reaction start were analyzed. Then, the desulfurization rate and the denitrification rate were calculated and the results are shown in Table 1.
It was shown to.

【0034】硫黄分の分析は(株)堀場製作所製SLF
A−920型のものを、また窒素分の分析は三菱化成
(株)製TN−05型のものを用いて行った。尚、表1
に示す脱硫率および脱窒素率は表2に示す触媒Wを10
0としたときの相対値である。
Sulfur content was analyzed by SLF manufactured by Horiba Ltd.
The A-920 model was used, and the nitrogen content was analyzed using a TN-05 model manufactured by Mitsubishi Kasei. Table 1
The desulfurization rate and denitrification rate shown in Table 2 are 10
It is a relative value when 0 is set.

【0035】表2に示す触媒Wの脱硫率および脱窒素率
を100としたのは、該触媒Wは従来の水素化処理用触
媒の製造方法によって調製したもので、一般に水素化脱
硫、脱窒素活性を示す触媒としてアルミナを基体とする
担体に、MoO、NiOおよびPを担持させた
触媒として市販されているものとほぼ同等の特性を有す
るものであるからである。
The desulfurization rate and denitrification rate of the catalyst W shown in Table 2 are set to 100 because the catalyst W is prepared by a conventional method for producing a hydrotreating catalyst, and is generally hydrodesulfurization and denitrification. This is because it has almost the same properties as a commercially available catalyst in which MoO 3 , NiO and P 2 O 6 are supported on a carrier based on alumina as a catalyst showing activity.

【0036】[0036]

【表1】 [Table 1]

【表2】 [Table 2]

【0037】各表の結果において、表1の触媒I、触媒
J、触媒K、触媒Lおよび触媒Mは酸化物換算でのモリ
ブデン、ニッケルの含有率が同一であり、担体のボリア
−シリカ−アルミナ組成物の組成比および平均細孔径お
よび細孔分布、活性金属の担持量について、いずれも本
発明で定めた範囲を満足する触媒であって、高い脱硫率
および脱窒素率を示すものであることが明らかである。
一方、触媒Pは活性金属の担持量やボリア−シリカ−ア
ルミナ担体の組成比は本発明において定めた範囲に属す
るが、担体の平均細孔径±10オングストロームの細孔
容積/全細孔容積(%)値が48%に留まり、細孔の分
布が広いので、この触媒Pの脱硫率および脱窒素率は、
これより細孔分布の狭い触媒Iよりも低い値を示す。
In the results of each table, the catalyst I, the catalyst J, the catalyst K, the catalyst L and the catalyst M in Table 1 have the same molybdenum and nickel contents in terms of oxide, and the carrier boria-silica-alumina. The composition ratio, the average pore size and the pore distribution of the composition, and the amount of the active metal supported are all catalysts that satisfy the ranges defined in the present invention, and exhibit high desulfurization rate and denitrification rate. Is clear.
On the other hand, in the catalyst P, the amount of active metal supported and the composition ratio of the boria-silica-alumina carrier belong to the ranges defined in the present invention, but the average pore diameter of the carrier is ± 10 angstrom pore volume / total pore volume (% ) Value remains at 48% and the distribution of pores is wide, the desulfurization rate and denitrification rate of this catalyst P are
The value is lower than that of catalyst I having a narrow pore distribution.

【0038】触媒Nおよび触媒Oは、活性金属の担持
量、平均細孔径および細孔分布に関しては本発明で定め
た範囲内に属するが、担体成分中にボリアおよび/また
はシリカが含まれていないために、脱硫率においては満
足し得る値を示すものの脱窒素率は低い値を示してい
る。
The catalyst N and the catalyst O are within the ranges defined in the present invention with respect to the amount of the active metal supported, the average pore size and the pore distribution, but the carrier component does not contain boria and / or silica. Therefore, although the desulfurization rate shows a satisfactory value, the denitrification rate shows a low value.

【0039】また表2の触媒Q、触媒Rおよび触媒U
は、ボリア−シリカ−アルミナ担体の組成比、平均細孔
径および細孔分布に関しては本発明の範囲を満足するも
のであるが、酸化物換算でのモリブデンおよびニッケル
の担持量については触媒Iとは変えたものである。即
ち、触媒Qは触媒Iに比してモリブデンを増量し、触媒
Rは触媒Iに比してニッケルを増量したものであるが、
いずれも本発明の範囲内のものであって十分に高い脱硫
率および脱窒素率を示している。しかし、触媒Uは触媒
Iに比しモリブデンおよびニッケルを減量したものであ
り、しかもその含有量は本発明の範囲外であるために脱
硫率および脱窒素率共に低い値を示す。
Further, catalyst Q, catalyst R and catalyst U in Table 2
Satisfies the range of the present invention with respect to the composition ratio of the boria-silica-alumina carrier, the average pore diameter and the pore distribution, but regarding the supported amounts of molybdenum and nickel in terms of oxide, the catalyst I is It has been changed. That is, the catalyst Q has molybdenum added more than the catalyst I, and the catalyst R has nickel added more than the catalyst I.
All of them are within the scope of the present invention and exhibit sufficiently high desulfurization rate and denitrification rate. However, the catalyst U has a reduced amount of molybdenum and nickel as compared with the catalyst I, and since the content thereof is outside the range of the present invention, both the desulfurization rate and the denitrification rate show low values.

【0040】触媒Sおよび触媒Tは、ボリア−シリカ−
アルミナ担体の組成比、平均細孔径および細孔分布に関
しては本発明の範囲に属し、また活性金属としてニッケ
ルの代わりにコバルトを本発明の範囲内の量で担持させ
たものであって、十分に高い脱硫率および脱窒素率を示
している。
The catalyst S and the catalyst T are boria-silica-
The composition ratio of the alumina carrier, the average pore diameter and the pore distribution belong to the scope of the present invention, and cobalt instead of nickel as the active metal is supported in an amount within the scope of the present invention, It shows high desulfurization and denitrification rates.

【0041】触媒Vは、ボリア−シリカ−アルミナ担体
の組成比、平均細孔径および細孔分布については、本発
明の範囲内に属しているが、活性金属としてモリブデ
ン、ニッケルの他にリンを担持させたので、触媒Wに比
して脱硫率および脱窒素率が低い。これは、通常担体の
酸点が低い場合にはリンを助触媒として添加することに
より脱硫および脱窒素活性を改善することが行われる
が、本発明のボリア−シリカ−アルミナを基体とする担
体は、通常用いられるアルミナを基体とする担体よりも
基本的に酸点が高いために、リンを担持させると酸点が
高くなり過ぎて却って脱硫率や脱窒素率が低下してしま
うのである。
The catalyst V is within the scope of the present invention in terms of the composition ratio of boria-silica-alumina carrier, average pore diameter and pore distribution, but it supports phosphorus in addition to molybdenum and nickel as active metals. Therefore, the desulfurization rate and the denitrification rate are lower than those of the catalyst W. This is usually carried out by adding phosphorus as a co-catalyst to improve desulfurization and denitrification activities when the acid point of the carrier is low, but the carrier based on boria-silica-alumina of the present invention is Basically, the acid point is higher than that of a commonly used alumina-based carrier, and therefore, when phosphorus is supported, the acid point becomes too high and the desulfurization rate and denitrification rate are rather lowered.

【0042】触媒Xはシリカ−アルミナ単体にそれぞれ
活性金属としてモリブデンおよびニッケルを担持させた
ものであり、平均細孔径および細孔分布に関しては本発
明で定めた範囲に属するが、従来のこの種の触媒に比べ
る時は多少脱硫、脱窒素活性は向上しているものの、本
発明の触媒Iに比べるとその値はいずれも低い。
The catalyst X is a simple substance of silica-alumina on which molybdenum and nickel are supported as active metals, respectively, and the average pore diameter and the pore distribution are within the range defined by the present invention. When compared with the catalyst, the desulfurization and denitrification activities are slightly improved, but the values are lower than those of the catalyst I of the present invention.

【0043】[0043]

【発明の効果】本発明の製造方法により得られた炭化水
素油の水素化脱硫脱窒素用触媒は、従来から提案されて
いるこの種の触媒に比べて遥かに効率よく脱硫、脱窒素
を行うことができる。従って、本発明の触媒を従来の触
媒に代えて使用すれば硫黄含有量、窒素含有量の少ない
燃料油を得ることが可能となる。
The catalyst for hydrodesulfurization and denitrification of hydrocarbon oil obtained by the production method of the present invention desulfurizes and denitrifies much more efficiently than conventionally proposed catalysts of this type. be able to. Therefore, by using the catalyst of the present invention in place of the conventional catalyst, it becomes possible to obtain a fuel oil having a low sulfur content and a low nitrogen content.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ボリア−シリカ−アルミナを基体とする
酸化物担体に対し活性金属成分として周期律表第6a族
金属から選ばれた少なくとも1種の金属を酸化物換算で
17〜28重量%と、周期律表第8族金属から選ばれた
少なくとも1種の金属を酸化物換算で3〜8重量%とを
含む金属塩水溶液を含浸し、乾燥することを特徴とする
炭化水素油の水素化脱硫脱窒素用触媒の製造方法。
1. An oxide carrier based on boria-silica-alumina containing at least one metal selected from metals of Group 6a of the periodic table as an active metal component in an amount of 17 to 28% by weight in terms of oxide. Hydrogenating a hydrocarbon oil comprising impregnating an aqueous metal salt solution containing at least one metal selected from Group 8 metals of the Periodic Table with 3 to 8% by weight in terms of oxide and drying. A method for producing a catalyst for desulfurization and denitrification.
【請求項2】 ボリア−シリカ−アルミナを基体とする
酸化物担体の組成が、Bとして3〜10重量%の
範囲であり、SiOとして3〜8重量%の範囲であ
り、該酸化物担体の細孔特性が水銀圧入法で測定した細
孔分布で60〜90オングストロームの平均細孔直径を
有し、且つ平均細孔直径±10オングストロームの範囲
の細孔容積が全細孔容積の60%以上であることを特徴
とする請求項1記載の炭化水素油の水素化脱硫脱窒素用
触媒の製造方法。
2. The composition of the oxide carrier based on boria-silica-alumina is in the range of 3 to 10 wt% as B 2 O 3 and in the range of 3 to 8 wt% as SiO 2. The pore characteristics of the oxide carrier have an average pore diameter of 60 to 90 angstrom in the pore distribution measured by the mercury porosimetry method, and the pore volume in the range of the average pore diameter ± 10 angstrom is the total pore volume. The method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to claim 1, wherein the catalyst is 60% or more.
【請求項3】 活性金属成分としては、周期律表第6a
族金属がモリブデンであり、周期律表第8族金属がニッ
ケルおよびコバルトのうちの少なくとも1種であること
を特徴とする請求項1記載の炭化水素油の水素化脱硫脱
窒素用触媒の製造方法。
3. The active metal component is represented by Periodic Table 6a.
The method for producing a catalyst for hydrodesulfurization and denitrification of hydrocarbon oil according to claim 1, wherein the group metal is molybdenum, and the group 8 metal of the periodic table is at least one of nickel and cobalt. .
JP6171762A 1993-09-17 1994-06-30 Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil Expired - Lifetime JP2920186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6171762A JP2920186B2 (en) 1993-09-17 1994-06-30 Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-254777 1993-09-17
JP25477793 1993-09-17
JP6171762A JP2920186B2 (en) 1993-09-17 1994-06-30 Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPH07136516A true JPH07136516A (en) 1995-05-30
JP2920186B2 JP2920186B2 (en) 1999-07-19

Family

ID=26494377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6171762A Expired - Lifetime JP2920186B2 (en) 1993-09-17 1994-06-30 Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2920186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536166A (en) * 1999-02-15 2002-10-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Manufacture of hydrotreating catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536166A (en) * 1999-02-15 2002-10-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Manufacture of hydrotreating catalyst

Also Published As

Publication number Publication date
JP2920186B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP3786007B2 (en) Catalyst for hydrotreating aromatic compounds in hydrocarbon oils
US6174432B1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
JPH0239305B2 (en)
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP2920186B2 (en) Method for producing catalyst for hydrodesulfurization and denitrification of hydrocarbon oil
JP3263940B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oils
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JP2817558B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JP3303533B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
JPH08224471A (en) Refractory inorganic oxide catalyst carrier and hydrotreating catalyst using the carrier
JPH07196308A (en) Silica-alumina, method for producing the same, and catalyst for hydrotreatment of light hydrocarbon oil
JP2002085975A (en) Hydrotreating catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil
JPH04166233A (en) Production of catalyst for hydrogenation treatment
JPH06226102A (en) Catalyst for hydrodesulfurization/denitrification and its preparation
JP2817626B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JPH07299364A (en) Catalyst for hydrodesulfurization and denitrification and its production
JPH0576758A (en) Catalyst for hydrogenation treatment
JPH07155615A (en) Hydrodesulfurizing/hydrodenitrifying catalyst and production thereof
JP2001300325A (en) Catalyst for hydrogenative desulfurization denitration of hydrocarbon oil and manufacturing method