JPH07135111A - Multilayered magnetic film - Google Patents
Multilayered magnetic filmInfo
- Publication number
- JPH07135111A JPH07135111A JP27937493A JP27937493A JPH07135111A JP H07135111 A JPH07135111 A JP H07135111A JP 27937493 A JP27937493 A JP 27937493A JP 27937493 A JP27937493 A JP 27937493A JP H07135111 A JPH07135111 A JP H07135111A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- film
- thickness
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 139
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 230000005294 ferromagnetic effect Effects 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims 1
- 230000005381 magnetic domain Effects 0.000 abstract description 24
- 239000000758 substrate Substances 0.000 abstract description 12
- 239000003302 ferromagnetic material Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 79
- 239000010408 film Substances 0.000 description 53
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000002356 single layer Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000005374 Kerr effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Magnetic Heads (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気記録媒体に対し情
報の書き込みおよび読み出しを行う薄膜磁気ヘッドの磁
極に用いる磁性多層膜に関し、特に垂直磁気記録用の単
磁極型ヘッドの主磁極膜やヨーク型MRヘッドのヨーク
部への適用に有効な磁性多層膜に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic multilayer film used for a magnetic pole of a thin film magnetic head for writing and reading information on a magnetic recording medium, and particularly to a main magnetic pole film of a single magnetic pole type head for perpendicular magnetic recording. The present invention relates to a magnetic multilayer film effective for application to a yoke portion of a yoke type MR head.
【0002】[0002]
【従来の技術】近年、コンピュータ用固定磁気ディスク
装置をはじめフレキシブル磁気ディスク装置,磁気テー
プ装置など磁気記録装置の高記録密度化が進められてい
る。そのキーテクノロジーの1つとして、高感度磁気ヘ
ッドの開発が挙げられる。磁気ヘッドの感度は、ヘッド
材料の特性は勿論のこと、磁極磁性膜の磁区構造に強く
依存することが知られている。2. Description of the Related Art In recent years, magnetic recording devices such as fixed magnetic disk devices for computers, flexible magnetic disk devices, magnetic tape devices, etc. have been made to have a higher recording density. One of the key technologies is the development of a high sensitivity magnetic head. It is known that the sensitivity of the magnetic head strongly depends on not only the characteristics of the head material but also the magnetic domain structure of the magnetic pole magnetic film.
【0003】ここで、薄膜磁気ヘッドを例にとると、磁
極を形成する磁性膜が単層膜である場合、その磁区構造
は還流磁区構造となる。還流磁区構造の磁化過程は、磁
化回転と磁壁の移動によるが、磁壁の移動は高周波領域
では抑制されるために、磁極全体の高周波透磁率が低下
する。また、磁壁の移動は不連続に起こるために、出力
波形に波形歪となって現れる。これらの現象は狭トラッ
ク化に伴って磁極先端部における三角磁区の占める割合
が増加すると、さらに、大きな影響をヘッド動作に及ぼ
すことになる。このような現象を抑制すること、すなわ
ち、ヘッド磁極の磁性膜のように、微細な領域の磁区構
造を制御することが高感度磁気ヘッドの開発においては
不可避の課題である。Here, taking a thin film magnetic head as an example, when the magnetic film forming the magnetic pole is a single layer film, the magnetic domain structure thereof is a return magnetic domain structure. Although the magnetization process of the return domain structure is caused by the magnetization rotation and the movement of the domain wall, the movement of the domain wall is suppressed in the high frequency region, so that the high frequency magnetic permeability of the entire magnetic pole is lowered. Further, since the domain wall moves discontinuously, the output waveform appears as waveform distortion. These phenomena have a greater influence on the head operation when the ratio of the triangular magnetic domains in the magnetic pole tip portion increases as the track becomes narrower. Suppressing such a phenomenon, that is, controlling the magnetic domain structure of a fine region such as the magnetic film of the head magnetic pole is an unavoidable problem in the development of a high-sensitivity magnetic head.
【0004】1つの方法として、磁性膜に非磁性層を挿
入して多層化することにより、磁区構造を制御する検討
が実験・理論の両面から広く行われている(例えば、ア
イイーイーイー・トランザクションズ・オン・マグネテ
ィックス,24巻,1988年,2045頁)。この方
法によれば、非磁性層を介して隣接する磁性層間に働く
静磁結合によって単磁区構造が実現する。単磁区構造に
おける磁化過程は、磁化回転のみであって磁壁の移動を
伴わないため、前述したような不連続な磁壁の移動に伴
う波形歪を防ぐことが可能であり、また、高周波透磁率
の低下も抑制できる。As one method, a study of controlling a magnetic domain structure by inserting a non-magnetic layer into a magnetic film to form a multi-layer is widely performed from both experimental and theoretical sides (for example, IEE transaction). On Magnetics, 24, 1988, 2045). According to this method, a single domain structure is realized by magnetostatic coupling that acts between the adjacent magnetic layers via the non-magnetic layer. Since the magnetization process in the single domain structure is only magnetization rotation and is not accompanied by the movement of the domain wall, it is possible to prevent the waveform distortion due to the discontinuous movement of the domain wall as described above, and the high frequency permeability. The decrease can be suppressed.
【0005】[0005]
【発明が解決しようとする課題】ところが、従来の構造
では、例えば、4層の磁性層から構成される磁性多層膜
を考えると、図2(a)および同図(b)に示すよう
に、隣接する磁性層が非磁性層を介して結合する仕方が
一通りでないため、磁区構造の不安定性がいまだ残存し
ていた。すなわち、図2(b)に示す例では、最上層お
よび最下層の磁性層は、対をなす磁性層が存在しないた
めに、外部磁界に対する磁化過程は単層膜的な振舞いを
示し、全体として複雑な磁区構造を形成する。また、磁
化履歴によっては、図2(a)および同図(b)に示す
状態がランダムに現れ、記録再生動作の不安定性の原因
となる。この問題の解決策として、例えば、特開平3−
49008号公報には、厚さの異なる非磁性層を磁性層
を介して交互に積層する構造を有する薄膜磁気ヘッドが
開示されている。In the conventional structure, however, considering a magnetic multilayer film composed of four magnetic layers, for example, as shown in FIGS. 2 (a) and 2 (b), The instability of the magnetic domain structure still remained because the adjacent magnetic layers were not coupled in one way through the non-magnetic layer. That is, in the example shown in FIG. 2B, since the uppermost magnetic layer and the lowermost magnetic layer have no paired magnetic layers, the magnetization process with respect to the external magnetic field behaves like a single layer film, and as a whole. Form a complex magnetic domain structure. Further, depending on the magnetization history, the states shown in FIGS. 2A and 2B appear randomly, which causes instability of the recording / reproducing operation. As a solution to this problem, for example, Japanese Patent Laid-Open No.
Japanese Patent Publication No. 49008 discloses a thin film magnetic head having a structure in which non-magnetic layers having different thicknesses are alternately laminated with magnetic layers interposed therebetween.
【0006】この方法によれば、薄い方の非磁性層を介
して隣接する磁性層同士が静磁気的に結合しやすくなる
ため、前述の磁区構造の不安定性を排除することが可能
である。しかしながら、この公知例では、磁性層および
非磁性層の厚さの関係が明示されてなく、軟磁気特性の
観点からみた最適な層構成については不明であった。さ
らに、磁性層/非磁性層の積層膜に関する検討の多く
は、薄膜ヘッド等に用いられる数μm厚の磁性膜に関し
て行われているため(例えば、特開昭64−4908号
公報)、その最適層構成が、例えば、垂直磁気記録用の
単磁極型ヘッドの主磁極膜や、ヨーク型MRヘッドのヨ
ーク部に用いられるような200nm程度の厚さを有す
る磁性膜に対しては、そのまま適用することができない
という欠点がある。According to this method, the adjacent magnetic layers are easily magnetostatically coupled to each other through the thin non-magnetic layer, so that the instability of the magnetic domain structure described above can be eliminated. However, in this known example, the relationship between the thicknesses of the magnetic layer and the non-magnetic layer was not clearly shown, and the optimum layer configuration from the viewpoint of soft magnetic characteristics was unclear. Further, most of the studies on the laminated film of the magnetic layer / non-magnetic layer have been conducted on the magnetic film having a thickness of several μm used in a thin film head or the like (for example, JP-A-64-4908). The layer structure is directly applied to, for example, a main magnetic pole film of a single magnetic pole type head for perpendicular magnetic recording, or a magnetic film having a thickness of about 200 nm used for a yoke portion of a yoke type MR head. There is a drawback that you cannot do it.
【0007】本発明の目的は、磁気ヘッド磁極形状で安
定した磁区構造を有し、さらに、優れた軟磁気特性を有
する磁性多層膜を提供するとともに、その最適層構成
が、例えば、垂直磁気記録用の単磁極型ヘッドの主磁極
膜や、ヨーク型MRヘッドのヨーク部に用いられるよう
な200nm程度の厚さを有する磁性膜に対して適用可
能な磁性多層膜を提供することにある。An object of the present invention is to provide a magnetic multilayer film having a stable magnetic domain structure in a magnetic head magnetic pole shape and further having excellent soft magnetic characteristics, and its optimum layer structure is, for example, perpendicular magnetic recording. The present invention provides a magnetic multilayer film applicable to a main magnetic pole film of a single magnetic pole head for use in a magnetic head and a magnetic film having a thickness of about 200 nm used for a yoke portion of a yoke type MR head.
【0008】[0008]
【課題を解決するための手段】本発明は、1軸磁気異方
性を有する軟磁性膜である第1の層と、非磁性膜であり
厚さがそれぞれ異る第2の層および第3の層とから構成
され、前記第3の層が前記第2の層よりも厚く、前記第
1の層/第2の層/第1の層からなる積層体と第3の層
とが交互に積層された構造を有する磁性多層膜におい
て、前記第1の層の厚さが20以上100nm以下であ
り、かつ前記第2の層および第3の層の厚さが5nm以
上20nm以下であることを特徴とする。また、前記第
1の層が複数の強磁性体の繰り返しによる周期構造を有
する軟磁性膜を用いてもよい。According to the present invention, a first layer which is a soft magnetic film having uniaxial magnetic anisotropy, a second layer which is a non-magnetic film and has different thicknesses, and a third layer. And the third layer is thicker than the second layer, and the laminate including the first layer / the second layer / the first layer and the third layer are alternately formed. In the magnetic multilayer film having a laminated structure, the thickness of the first layer is 20 or more and 100 nm or less, and the thickness of the second layer and the third layer is 5 nm or more and 20 nm or less. Characterize. Further, a soft magnetic film in which the first layer has a periodic structure formed by repeating a plurality of ferromagnetic bodies may be used.
【0009】[0009]
【作用】以下に、本発明の作用を簡単に説明する。本発
明の磁性多層膜は、図1に示すように、基板4上に形成
されており、1軸磁気異方性を有する磁性層1と、厚さ
がそれぞれ異なる非磁性層2,3とから成り、非磁性層
2よりも非磁性層3が厚く、磁性層1/非磁性層2/磁
性層1からなる積層体と非磁性層3とが交互に積層され
た構成を有している。このように厚さの異なる2種類の
非磁性層を交互に配置することにより、薄い方の非磁性
層(非磁性層2)を介して隣接する磁性層同士が静磁気
的に結合しやすい状態を形成することができるため、図
2に示したように、磁区構造の不安定性は解消される。
また、このときの磁性層および非磁性層の厚さを最適な
範囲に設定することにより、同じ膜厚の単層膜に比較し
て優れた軟磁気特性を有する磁性多層膜を提供すること
が可能である。The function of the present invention will be briefly described below. As shown in FIG. 1, the magnetic multilayer film of the present invention includes a magnetic layer 1 formed on a substrate 4 and having uniaxial magnetic anisotropy, and nonmagnetic layers 2 and 3 having different thicknesses. The non-magnetic layer 3 is thicker than the non-magnetic layer 2, and the non-magnetic layer 3 and the laminated body of the magnetic layer 1 / non-magnetic layer 2 / magnetic layer 1 are alternately laminated. By alternately arranging two types of nonmagnetic layers having different thicknesses in this manner, adjacent magnetic layers are easily magnetostatically coupled to each other via the thinner nonmagnetic layer (nonmagnetic layer 2). , The instability of the magnetic domain structure is eliminated as shown in FIG.
Further, by setting the thicknesses of the magnetic layer and the non-magnetic layer in the optimum range at this time, it is possible to provide a magnetic multilayer film having excellent soft magnetic characteristics as compared with a single layer film having the same thickness. It is possible.
【0010】[0010]
【実施例】次に、本発明について図面を参照して説明す
る。 −実施例1− 2基の蒸発源を用いた電子ビーム真空蒸着法により、N
iFe膜(Ni:82%−Fe:18%, 重量%)とC
u膜とを交互に連続的に積層したNiFe/Cu多層膜
を作製した。基板にはガラス基板を用い、基板温度は1
00℃とした。各層の膜厚は、各蒸発源上のシャッター
の開閉時間を変えて制御した。蒸着中の真空度は1×1
0-9Torrであった。成膜中は、永久磁石を用いて基
板面内に200Oeの直流磁界を印加し、膜中に1軸磁
気異方性を誘起した。NiFe層の総厚を200nm一
定として、NiFe層厚およびCu層厚を変えた種々の
多層膜を作製し、カー効果顕微鏡による磁区構造観察お
よび磁化困難軸方向の比透磁率測定(10MHz)を行
った。磁区構造観察用の試料は、膜上に磁気ヘッド磁極
形状のフォトレジストパターンを形成し、Arガス雰囲
気中でイオンエッチングを行い作製した。そして、図3
に示すように、磁性層の厚さをD,非磁性層の厚さをb
とすると、NiFe層(磁性層)厚が20nm以上10
0nm以下、Cu層(非磁性層)厚が5nm以上20n
m以下の領域で単磁区構造を有し、かつ同じ膜厚の単層
膜に比較し、高い比透磁率(2000以上)を有する磁
性多層膜が得られた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. -Example 1-2 By an electron beam vacuum evaporation method using two evaporation sources, N
iFe film (Ni: 82% -Fe: 18%, weight%) and C
A NiFe / Cu multilayer film in which u films and alternate films were alternately laminated was prepared. A glass substrate is used as the substrate, and the substrate temperature is 1
It was set to 00 ° C. The film thickness of each layer was controlled by changing the opening / closing time of the shutter on each evaporation source. Degree of vacuum during vapor deposition is 1 × 1
It was 0 -9 Torr. During film formation, a DC field of 200 Oe was applied to the surface of the substrate using a permanent magnet to induce uniaxial magnetic anisotropy in the film. With the total thickness of the NiFe layer kept constant at 200 nm, various multilayer films having different NiFe layer thicknesses and Cu layer thicknesses were prepared, and the Ker effect microscope was used to observe the magnetic domain structure and measure the relative permeability in the hard axis direction (10 MHz). It was The sample for observing the magnetic domain structure was prepared by forming a magnetic head magnetic pole shape photoresist pattern on the film and performing ion etching in an Ar gas atmosphere. And FIG.
As shown in, the thickness of the magnetic layer is D and the thickness of the non-magnetic layer is b.
Then, the NiFe layer (magnetic layer) thickness is 20 nm or more 10
0 nm or less, Cu layer (non-magnetic layer) thickness is 5 nm or more and 20 n
A magnetic multilayer film having a single magnetic domain structure in a region of m or less and having a higher relative magnetic permeability (2000 or more) was obtained as compared with a single layer film having the same film thickness.
【0011】次に、上述の積層範囲において、厚さの異
なる2種類の非磁性層を交互に配置した磁性多層膜を同
様の方法で作製し、磁区構造の安定性を調べた。磁区構
造の安定性は、磁化困難磁区方向に膜が飽和するのに十
分な大きさの直流磁界を印加した後、その残留磁化状態
をカー効果顕微鏡を用いて調べることによって評価し
た。そして、図4に示すように、前記2種類の非磁性層
の厚さをそれぞれbおよびcとすると、b≧cの場合に
は、単磁区状態もしくは単層膜的な還流磁区構造が不規
則に現れる不安定な磁区構造が観察された。一方、b<
cの場合には、隣接する磁性層が非磁性層を介して2組
ずつ順に結合する状態が実現するため、磁区構造は安定
に単磁区状態を保持することが判明した。 −実施例2− 3基の蒸着源を用いた電子ビーム真空蒸着法により、基
板上にFe/NiFe膜(積層周期:10nm,Fe層
厚=NiFe層厚=5nm、NiFeの組成はNi:8
2%−Fe:18%,重量%)とCu膜とを交互に連続
的に積層した(Fe/NiFe)/Cu多層膜を作製し
た。この基板にはガラス基板を用い、基板の温度は10
0℃とした。各層の膜厚は、各蒸発源上のシャッターの
開閉時間を変えて制御した。また、蒸着中の真空度は1
×10-9Torrであった。成膜中は永久磁石により基
板面内に200Oeの直流磁界を印加し、膜中に1軸磁
気異方性を誘起した。そして、Fe/NiFe層の総厚
を200nm(一定)として、Fe/NiFe 層厚およ
びCu層厚を変えた種々の多層膜を作製し、カー効果顕
微鏡による磁区構造観察および磁化困難軸方向の比透磁
率測定(10MHz)を行った。Next, a magnetic multilayer film in which two types of non-magnetic layers having different thicknesses were alternately arranged in the above-mentioned stacking range was prepared by the same method, and the stability of the magnetic domain structure was examined. The stability of the magnetic domain structure was evaluated by applying a DC magnetic field of a sufficient magnitude to saturate the film in the direction of the hard domain and then examining the remanent magnetization state using a Kerr effect microscope. As shown in FIG. 4, assuming that the thicknesses of the two types of nonmagnetic layers are b and c, respectively, when b ≧ c, the single domain state or the single-layer film-like return domain structure is irregular. An unstable magnetic domain structure was observed. On the other hand, b <
In the case of c, it was found that the magnetic domain structure stably holds the single domain state because the adjacent magnetic layers are sequentially coupled by two sets via the non-magnetic layer. -Example 2-3 An Fe / NiFe film (stacking period: 10 nm, Fe layer thickness = NiFe layer thickness = 5 nm, NiFe composition: Ni: 8) was formed on a substrate by an electron beam vacuum evaporation method using three evaporation sources.
2% -Fe: 18%, weight%) and a Cu film were alternately and continuously laminated to form a (Fe / NiFe) / Cu multilayer film. A glass substrate is used as this substrate, and the temperature of the substrate is 10
It was set to 0 ° C. The film thickness of each layer was controlled by changing the opening / closing time of the shutter on each evaporation source. The degree of vacuum during vapor deposition is 1
It was × 10 -9 Torr. During film formation, a DC field of 200 Oe was applied to the surface of the substrate with a permanent magnet to induce uniaxial magnetic anisotropy in the film. Then, with the total thickness of the Fe / NiFe layer set to 200 nm (constant), various multilayer films with different Fe / NiFe layer thickness and Cu layer thickness were prepared, and the magnetic domain structure was observed by the Kerr effect microscope and the ratio of the hard axis direction was measured. Magnetic permeability measurement (10 MHz) was performed.
【0012】磁区構造観察用の試料は、成膜上に磁気ヘ
ッド磁極形状のフォトレジストパターンを形成し、Ar
ガス雰囲気中でイオンエッチングを行って作製した。実
施例2の磁性多層膜は、実施例1の場合と同様に、Ni
Fe層厚が20nm以上100nm以下,Cu層厚が5
nm以上20nm以下の領域で安定な単磁区構造を有
し、かつ同じ膜厚の単層膜に比較し、高い比透磁率(2
000以上)を有する磁性多層膜が得られた。A sample for observing a magnetic domain structure was formed by forming a photoresist pattern in the shape of a magnetic head magnetic pole on a film,
It was produced by performing ion etching in a gas atmosphere. The magnetic multilayer film of the second embodiment is similar to that of the first embodiment in that
Fe layer thickness is 20 nm or more and 100 nm or less, Cu layer thickness is 5
has a stable single domain structure in the region of 20 nm or more and 20 nm or less, and has a higher relative magnetic permeability (2
000 or more) was obtained.
【0013】上記実施例では、磁性層材料として、Ni
FeもしくはFe/NiFeといった材料を用いた場合
を示したが、他にFe系結晶質材料やCo系アモルファス
材料等を用いてもよく、また、非磁性層材料としてCu
を用いたが、他にTi,V,Cr,Ta,W,Pt等の
導電性材料やAl2 O3 ,SiO2 等の絶縁性材料を用
いるてもよい。さらに、上記実施例では、第2および第
3の層は同じ非磁性材料で形成したが、異なる非磁性材
料で形成してもよい。In the above embodiment, Ni was used as the magnetic layer material.
Although the case where a material such as Fe or Fe / NiFe is used is shown, an Fe-based crystalline material, a Co-based amorphous material, or the like may also be used, and Cu is used as the nonmagnetic layer material.
However, other conductive materials such as Ti, V, Cr, Ta, W and Pt, and insulating materials such as Al 2 O 3 and SiO 2 may be used. Furthermore, although the second and third layers are made of the same non-magnetic material in the above-mentioned embodiments, they may be made of different non-magnetic materials.
【0014】[0014]
【発明の効果】以上説明したように本発明によれば、磁
気ヘッド磁極形状で安定した磁区構造を有し、さらに、
単層膜に比較し優れた軟磁気特性を有する磁性多層膜を
提供することができる。また、その最適層構成が、例え
ば、垂直磁気記録用の単磁極型ヘッドの主磁極膜や、ヨ
ーク型MRヘッドのヨーク部に用いられるような200
nm程度の厚さを有する磁性膜に対して適用可能な磁性
多層膜を提供することができる。As described above, according to the present invention, the magnetic head has a magnetic pole shape and has a stable magnetic domain structure.
A magnetic multilayer film having excellent soft magnetic characteristics as compared with a single layer film can be provided. Further, the optimum layer structure is used, for example, in the main magnetic pole film of the single magnetic pole type head for perpendicular magnetic recording or the yoke portion of the yoke type MR head.
It is possible to provide a magnetic multilayer film applicable to a magnetic film having a thickness of about nm.
【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.
【図2】従来例を示す断面図である。FIG. 2 is a sectional view showing a conventional example.
【図3】磁性層および非磁性層の厚さを変えたときの磁
区構造および比透磁率の変化を示す図である。FIG. 3 is a diagram showing changes in magnetic domain structure and relative permeability when the thicknesses of a magnetic layer and a non-magnetic layer are changed.
【図4】2種類の非磁性層の厚さをそれぞれ変えたとき
の磁区構造の安定性を示す図である。FIG. 4 is a diagram showing the stability of a magnetic domain structure when the thicknesses of two types of nonmagnetic layers are changed.
1 磁性層 2,3 非磁性層 4 基板 1 magnetic layer 2 and 3 non-magnetic layer 4 substrate
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 10/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 10/26
Claims (2)
第1の層と、非磁性膜であり厚さがそれぞれ異る第2の
層および第3の層とから構成され、前記第3の層が前記
第2の層よりも厚く、前記第1の層/第2の層/第1の
層からなる積層体と第3の層とが交互に積層された構造
を有する磁性多層膜において、前記第1の層の厚さが2
0以上100nm以下であり、かつ前記第2の層および
第3の層の厚さが5nm以上20nm以下であることを
特徴とする磁性多層膜。1. A first layer, which is a soft magnetic film having uniaxial magnetic anisotropy, and a second layer and a third layer, which are nonmagnetic films and have different thicknesses, respectively. A magnetic multilayer having a structure in which a third layer is thicker than the second layer, and a laminate including the first layer / second layer / first layer and a third layer are alternately laminated. In the membrane, the thickness of the first layer is 2
A magnetic multilayer film having a thickness of 0 or more and 100 nm or less and a thickness of the second layer and the third layer of 5 nm or more and 20 nm or less.
による周期構造を有する軟磁性膜であることを特徴とす
る請求項1記載の磁性多層膜。2. The magnetic multilayer film according to claim 1, wherein the first layer is a soft magnetic film having a periodic structure formed by repeating a plurality of ferromagnetic bodies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27937493A JP2550893B2 (en) | 1993-11-09 | 1993-11-09 | Magnetic multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27937493A JP2550893B2 (en) | 1993-11-09 | 1993-11-09 | Magnetic multilayer film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07135111A true JPH07135111A (en) | 1995-05-23 |
JP2550893B2 JP2550893B2 (en) | 1996-11-06 |
Family
ID=17610262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27937493A Expired - Fee Related JP2550893B2 (en) | 1993-11-09 | 1993-11-09 | Magnetic multilayer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2550893B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6721139B2 (en) | 2001-05-31 | 2004-04-13 | International Business Machines Corporation | Tunnel valve sensor with narrow gap flux guide employing a lamination of FeN and NiFeMo |
US6721131B2 (en) * | 2001-03-15 | 2004-04-13 | Seagate Technology Llc | Composite write pole for a magnetic recording head |
US7057853B2 (en) | 2002-12-20 | 2006-06-06 | Hitachi Global Storage Technologies Japan, Ltd. | Magnetic head |
US7057837B2 (en) | 2002-10-17 | 2006-06-06 | Hitachi Global Storage Technologies Netherlands B.V. | Flux closed single pole perpendicular head for ultra narrow track |
US7221538B2 (en) | 2003-01-22 | 2007-05-22 | Hitachi Global Storage Technologies Japan, Ltd. | Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it |
US7295401B2 (en) | 2004-10-27 | 2007-11-13 | Hitachi Global Storage Technologies Netherlands B.V. | Laminated side shield for perpendicular write head for improved performance |
US7697244B2 (en) | 2006-06-12 | 2010-04-13 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic head with stabilized ferromagnetic shield |
JP2012226793A (en) * | 2011-04-15 | 2012-11-15 | Toshiba Corp | Magnetic head, head gimbal assembly equipped with the same, and disc device |
JP2013004152A (en) * | 2011-06-20 | 2013-01-07 | Tdk Corp | Magnetic recording head for microwave assist |
CN113752655A (en) * | 2020-05-27 | 2021-12-07 | 汪阳 | Flexible light magnetic membrane material easy to operate after magnetization and preparation method thereof |
-
1993
- 1993-11-09 JP JP27937493A patent/JP2550893B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6721131B2 (en) * | 2001-03-15 | 2004-04-13 | Seagate Technology Llc | Composite write pole for a magnetic recording head |
US6721139B2 (en) | 2001-05-31 | 2004-04-13 | International Business Machines Corporation | Tunnel valve sensor with narrow gap flux guide employing a lamination of FeN and NiFeMo |
US7057837B2 (en) | 2002-10-17 | 2006-06-06 | Hitachi Global Storage Technologies Netherlands B.V. | Flux closed single pole perpendicular head for ultra narrow track |
US7426091B2 (en) | 2002-12-20 | 2008-09-16 | Hitachi Global Storage Technologies Japan, Ltd | Magnetic head |
US7057853B2 (en) | 2002-12-20 | 2006-06-06 | Hitachi Global Storage Technologies Japan, Ltd. | Magnetic head |
US7221538B2 (en) | 2003-01-22 | 2007-05-22 | Hitachi Global Storage Technologies Japan, Ltd. | Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it |
US7532433B2 (en) | 2003-01-22 | 2009-05-12 | Hitachi Global Storage Technologies Japa | Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it |
US7813079B2 (en) | 2003-01-22 | 2010-10-12 | Hitachi Global Storage Technologies Japan, Ltd. | Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it |
US8085499B2 (en) | 2003-01-22 | 2011-12-27 | Hitachi Global Storage Technologies Japan, Ltd. | Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it |
US7295401B2 (en) | 2004-10-27 | 2007-11-13 | Hitachi Global Storage Technologies Netherlands B.V. | Laminated side shield for perpendicular write head for improved performance |
US7697244B2 (en) | 2006-06-12 | 2010-04-13 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic head with stabilized ferromagnetic shield |
JP2012226793A (en) * | 2011-04-15 | 2012-11-15 | Toshiba Corp | Magnetic head, head gimbal assembly equipped with the same, and disc device |
JP2013004152A (en) * | 2011-06-20 | 2013-01-07 | Tdk Corp | Magnetic recording head for microwave assist |
CN113752655A (en) * | 2020-05-27 | 2021-12-07 | 汪阳 | Flexible light magnetic membrane material easy to operate after magnetization and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2550893B2 (en) | 1996-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6713197B2 (en) | Perpendicular magnetic recording medium and magnetic recording apparatus | |
US5751528A (en) | Multilayer exchange coupled magnetic poles with approximate zero magnetostriction | |
JPH01158618A (en) | Magnetic recording medium | |
US5108837A (en) | Laminated poles for recording heads | |
JP2550893B2 (en) | Magnetic multilayer film | |
US6395413B1 (en) | Perpendicular magnetic recording medium | |
US6686071B2 (en) | Magnetic recording medium and magnetic recording apparatus using the same | |
EP0344278B1 (en) | Laminated poles for recording heads | |
JPH11328647A (en) | Magnetic recording medium and method of manufacturing magnetic recording medium | |
JP2000500292A (en) | Magnetic field sensor and method of manufacturing magnetic field sensor | |
JP2961914B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JPH0963021A (en) | Magneto-resistive effect element having spin valve structure and its production | |
US20050118460A1 (en) | Magnetic backlayer | |
JP3130407B2 (en) | Manufacturing method of magnetic film and thin film magnetic head | |
JPH10154619A (en) | Hard magnetic film structure and magneto-resistance effect element, magnetic head, magnetic recording/ reproducing head, magnetic recording medium, and magnetic recording device | |
JP3445537B2 (en) | Perpendicular magnetic recording medium and magnetic storage device | |
JPH0554320A (en) | Multilayered magnetic film | |
JPH0845035A (en) | Thin film magnetic head | |
JP3260735B2 (en) | Magnetoresistance effect element, magnetoresistance effect head, magnetic recording reproducing device and production of magnetoresistance effect head | |
JPH0778316A (en) | Magnetoresistive element | |
JP2001250223A (en) | Magnetic recording medium and magnetic recorder | |
JPH11284248A (en) | Magnetoresistance effect element | |
JP4490720B2 (en) | Soft magnetic thin film, manufacturing method thereof, and magnetic head | |
JP3132254B2 (en) | Soft magnetic film and method for manufacturing soft magnetic multilayer film | |
JP2853204B2 (en) | Method of manufacturing magnetoresistive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960625 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 17 |
|
LAPS | Cancellation because of no payment of annual fees |