JPH07134246A - Hard mirror optical system - Google Patents
Hard mirror optical systemInfo
- Publication number
- JPH07134246A JPH07134246A JP5300803A JP30080393A JPH07134246A JP H07134246 A JPH07134246 A JP H07134246A JP 5300803 A JP5300803 A JP 5300803A JP 30080393 A JP30080393 A JP 30080393A JP H07134246 A JPH07134246 A JP H07134246A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- chromatic aberration
- eyepiece
- axial chromatic
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 158
- 238000003780 insertion Methods 0.000 claims abstract description 75
- 230000037431 insertion Effects 0.000 claims abstract description 75
- 230000004075 alteration Effects 0.000 claims abstract description 72
- 238000003384 imaging method Methods 0.000 claims description 8
- 238000012937 correction Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 10
- 230000001954 sterilising effect Effects 0.000 description 9
- 238000004659 sterilization and disinfection Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 210000001747 pupil Anatomy 0.000 description 7
- 239000011521 glass Substances 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 206010011409 Cross infection Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002674 endoscopic surgery Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 206010029803 Nosocomial infection Diseases 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Lenses (AREA)
- Endoscopes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、医療分野で広く用いら
れている硬性内視鏡(硬性鏡)に関するもので、特に使
い捨て可能な硬性鏡に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rigid endoscope (hard endoscope) widely used in the medical field, and more particularly to a disposable rigid endoscope.
【0002】[0002]
【従来の技術】近年、医療の外科分野において内視鏡と
専用処置具を用いた低侵襲手術が普及しつつある。従来
より開腹手術を必要とした疾病を内視鏡下で低侵襲に処
置が可能になり、入院期間の短縮等により患者の社会的
負担が軽減される。このように、内視鏡下外科手術は、
今後も発展が期待されている。2. Description of the Related Art In recent years, minimally invasive surgery using an endoscope and a dedicated treatment tool has become widespread in the field of medical surgery. Conventionally, it becomes possible to treat a disease requiring an open surgery under the endoscope with minimal invasiveness, and the social burden on the patient is reduced by shortening the hospitalization period. In this way, endoscopic surgery
Further development is expected in the future.
【0003】内視鏡は、挿入部の構造により軟性鏡と硬
性鏡の二つに分けられる。このうち、内視鏡下外科手術
には、画質の優れた硬性鏡が用いられる。更に硬性鏡
は、水蒸気滅菌(オートクレーブ)を行なうことが出来
るというメリットがある。近年院内感染が大きな問題に
なっており、医療機器の滅菌に対する意識が非常に高く
なっている。この水蒸気滅菌用の装置は、他の滅菌装置
よりも広く普及しており、内視鏡もこの水蒸気滅菌に耐
えられるものが要求される。硬性鏡は、軟性部を有しな
いことから、水蒸気滅菌に耐え得るような素材の選択や
構造にすることが容易である。An endoscope is divided into a flexible endoscope and a rigid endoscope depending on the structure of the insertion portion. Among them, a rigid endoscope with excellent image quality is used for endoscopic surgery. Further, the rigid endoscope has an advantage that it can be steam-sterilized (autoclave). Nosocomial infections have become a big problem in recent years, and awareness of sterilization of medical devices has become extremely high. This steam sterilization device is more widely used than other sterilization devices, and an endoscope is required to be one that can withstand this steam sterilization. Since the rigid endoscope does not have a soft portion, it is easy to select a material and a structure that can withstand steam sterilization.
【0004】一方、硬性鏡の院内感染防止のための方法
として、硬性鏡自身を使い捨てにする試みがなされてい
る。このような使い捨ての硬性鏡を実現するためには、
実用性能を確保しつついかにコストを下げるかが重要な
問題である。On the other hand, as a method for preventing nosocomial infection of a rigid endoscope, an attempt has been made to dispose the rigid endoscope itself. In order to realize such a disposable rigid endoscope,
An important issue is how to reduce costs while ensuring practical performance.
【0005】図7は従来の硬性鏡の観察光学系を示す図
である。この図に示すように、従来の硬性鏡は、対物光
学系O、リレー光学系R、接眼光学系Eが本体内に一体
になっている。このような従来の硬性鏡は、収差補正上
大きな役割を持つ接合レンズを複数設けている。このた
め、例えばプラスチックレンズを用いても、部品点数が
多く、接合による組立工数が大である等、使い捨てにし
得る程に低コストにはなし得ない。FIG. 7 is a view showing an observation optical system of a conventional rigid endoscope. As shown in this figure, in the conventional rigid endoscope, an objective optical system O, a relay optical system R, and an eyepiece optical system E are integrated in the main body. Such a conventional rigid endoscope is provided with a plurality of cemented lenses that play a major role in aberration correction. Therefore, even if a plastic lens is used, for example, the number of parts is large and the number of assembling steps for joining is large, so that the cost cannot be low enough to make it disposable.
【0006】又、特開平2−503361号公報には、
使い捨ての硬性鏡について開示されている。この公報に
開示されている硬性鏡は、コストの低減と量産性を考慮
して、対物レンズ系、リレーレンズ系、検視(接眼)レ
ンズ系にプラスチックレンズを用いている。また組立性
や部品点数を考慮して、軸上色収差を補正するための接
合レンズを用いていない。そのために実用的な画質を確
保することが困難である。Further, Japanese Patent Laid-Open No. 2-503361 discloses that
A disposable rigid endoscope is disclosed. The rigid endoscope disclosed in this publication uses plastic lenses for an objective lens system, a relay lens system, and an inspection (eyepiece) lens system in consideration of cost reduction and mass productivity. Further, in consideration of the assemblability and the number of parts, a cemented lens for correcting the axial chromatic aberration is not used. Therefore, it is difficult to secure a practical image quality.
【0007】次にその理由を簡単な計算例をもとに説明
する。まずリレー光学系による色収差について述べる。
図8はリレー光学系のパワー配置図を示すもので、Rは
リレー光学系、Od ,OF はd線,F線の物体位置、I
d ,IF はd線,F線の像位置である。実際にはOd ,
Id の近傍に瞳伝送用の正のパワーが配置されている
が、軸上色収差にはほとんど影響がないため無視して考
える。又この図の中央には等倍で像伝送を行なうための
正のパワーが配置されている。この図に示す光学系で
は、中央の正のパワーの波長の違いによる差がそのまま
軸上色収差となってあらわれる。まずd線(波長58
7.56nm)とF線(波長486.13nm)の間の
色収差を考えると、1リレー当りの軸上色収差ΔFは、
下記のように表わされる。Next, the reason will be described based on a simple calculation example. First, chromatic aberration due to the relay optical system will be described.
FIG. 8 is a power arrangement diagram of the relay optical system, where R is the relay optical system, O d and O F are object positions of d line and F line, and I.
d and I F are image positions of d line and F line. Actually O d ,
Positive power for pupil transmission is arranged in the vicinity of I d , but it is ignored since it has almost no effect on the axial chromatic aberration. Further, in the center of this figure, a positive power for image transmission at the same size is arranged. In the optical system shown in this figure, the difference due to the difference in the wavelength of the positive power in the center appears as axial chromatic aberration as it is. First, d line (wavelength 58
7.56 nm) and the F-line (wavelength 486.13 nm), the axial chromatic aberration ΔF per relay is
It is expressed as follows.
【0008】 ΔF=4(fF −fd ) (a) ここで、fF はF線における焦点距離、fd はd線にお
ける焦点距離である。ΔF = 4 (f F −f d ) (a) Here, f F is the focal length on the F line, and f d is the focal length on the d line.
【0009】又fF とfd との間には次の関係が成立
つ。Further, the following relationship is established between f F and f d .
【0010】 fd (nd −1)=fF (nF −1) (b) ここで、nd ,nF は夫々d線,F線における屈折率で
ある。F d (n d −1) = f F (n F −1) (b) Here, n d and n F are the refractive indices at the d line and the F line, respectively.
【0011】式(a)、式(b)からfF を消去して式
を整理すると次の式(c)を求めることが出来る。When f F is deleted from the equations (a) and (b) and the equations are arranged, the following equation (c) can be obtained.
【0012】 ΔF=4fd [(nd −nF )/(nF −1)] (c) ここで、1リレー長を100mmとすると、fd =25m
m、又アクリル製のプラスチックレンズを用いるとnd
=1.492、nF =1.498であり、式(c)より
ΔF=−1.20mmとなる。通常硬性鏡の挿入部の長さ
は300mm以上であり、3回リレーした場合のF線の
軸上色収差は3ΔF=−3.60mmになる。ΔF = 4f d [(n d −n F ) / (n F −1)] (c) Here, when one relay length is 100 mm, f d = 25 m
m, or n d if an acrylic plastic lens is used
= 1.492, n F = 1.498, and ΔF = −1.20 mm from the formula (c). Usually, the length of the insertion portion of the rigid endoscope is 300 mm or more, and the axial chromatic aberration of the F line when relayed three times is 3ΔF = −3.60 mm.
【0013】観察倍率が10倍の(焦点距離25mm)の
接眼レンズと上記の3回リレー系を組合わせる場合を考
え、軸上色収差を視度換算すると、リレー系の−3.6
0mmの軸上色収差は、−3.60/(−252 /100
0)=5.76[m-1]の視度ずれに相当する。Considering the case where the eyepiece lens having an observation magnification of 10 times (focal length 25 mm) is combined with the above-mentioned three times relay system, the axial chromatic aberration is converted into diopter by -3.6.
Axial chromatic aberration of 0mm is -3.60 / (- 25 2/100
0) = 5.76 [m -1 ], which corresponds to the diopter deviation.
【0014】以上のことは、例えばd線での観察視度が
−1m-1とすると、F線の観察視度は4.76m-1とな
り、人間の眼の網膜上でF線の像はひどくぼけてしま
う。通常、人間の観察視度調整範囲は、−4m-1〜0m
-1程度であり、±2m-1の調整幅しかもたない。前記の
軸上色収差による視度ずれ5.76m-1は、調整幅±2
m-1に比べ非常に大である。可視光は少なくとも400
nm〜700nmの波長域にわたるためF線以外の光に
よる軸上色収差も合わせ考えると上記の例のような軸上
色収差をもつ光学系では、広範な色彩をもつ物体の像を
良好に再現することは不可能である。[0014] above, for example, observation diopter in d line is to -1 m -1, observation diopter F line 4.76M -1 becomes, the image of the F-line on the retina of the human eye It gets very blurry. Normally, the human observation diopter adjustment range is -4 m -1 to 0 m
It is about -1 and has an adjustment range of ± 2 m -1 . The diopter deviation of 5.76 m −1 due to the axial chromatic aberration is within the adjustment range of ± 2
It is much larger than m -1 . At least 400 visible light
Since the wavelength range from nm to 700 nm is taken into consideration, taking into consideration the axial chromatic aberration due to light other than the F-line, an optical system having axial chromatic aberration such as the above example should be able to properly reproduce an image of an object having a wide range of colors. Is impossible.
【0015】[0015]
【発明が解決しようとする課題】本発明は、軸上色収差
が良好に補正されかつ使い捨て可能なレベルまでコスト
を低減し得る硬性鏡光学系を提供することを目的とす
る。SUMMARY OF THE INVENTION It is an object of the present invention to provide a rigid mirror optical system in which axial chromatic aberration is well corrected and the cost can be reduced to a disposable level.
【0016】[0016]
【課題を解決するための手段】本発明は、挿入部と接眼
部を分離可能とした硬性鏡において、挿入部内の観察光
学系において発生する軸上色収差を接眼部内の光学系で
補正したことを特徴とするものである。According to the present invention, in a rigid endoscope in which an insertion part and an eyepiece part are separable from each other, axial chromatic aberration generated in an observation optical system in the insertion part is corrected by an optical system in the eyepiece part. It is characterized by having done.
【0017】図5及び図6は本発明を適用可能な硬性鏡
の概要を説明するための図である。図5において、硬性
鏡は挿入部1と接眼部2とに分かれている。挿入部1は
内部に対物レンズOと、対物レンズにより形成された物
体像(矢印により示したもの)を順次結像させて接眼部
まで導くためのリレーレンズRとを含んでいる。又、接
眼部2は接眼レンズEを含んでいる。この例では、接眼
レンズEの物体側のレンズがリレーレンズの一部の機能
を負担しており、物体像は接眼レンズEの内部に形成さ
れている。尚、接眼レンズの前後に設けられた平面板は
カバーガラスである。FIGS. 5 and 6 are views for explaining the outline of a rigid endoscope to which the present invention can be applied. In FIG. 5, the rigid endoscope is divided into an insertion portion 1 and an eyepiece portion 2. The insertion portion 1 includes an objective lens O therein and a relay lens R for sequentially forming an object image (indicated by an arrow) formed by the objective lens and guiding it to the eyepiece. Further, the eyepiece section 2 includes an eyepiece lens E. In this example, the lens on the object side of the eyepiece lens E bears a part of the function of the relay lens, and the object image is formed inside the eyepiece lens E. The flat plates provided before and after the eyepiece lens are cover glasses.
【0018】この硬性鏡は、挿入部1と接眼部2とが適
宜な機構により着脱自在となっており、使用の際には挿
入部1と接眼部2とを結合して接眼レンズを介して物体
像を観察し、用済み後は両者を切り離して挿入部1を使
い捨てるものである。In this rigid endoscope, the insertion section 1 and the eyepiece section 2 can be freely attached and detached by an appropriate mechanism, and when used, the insertion section 1 and the eyepiece section 2 are combined to form an eyepiece lens. The object image is observed through the two, and after use, the two are separated and the insertion section 1 is thrown away.
【0019】一方、図6においては硬性鏡は挿入部1
と、テレビカメラ用アダプタ3と、カメラヘッド4とか
ら構成されている。テレビカメラ用アダプタ3は内部に
結像レンズTを含み、カメラヘッドは内部にCCDイメ
ージセンサを含んでいる。ここでは挿入部1、アダプタ
3、及びカメラヘッド4が各々適宜な機構により互いに
着脱自在となっている。そして、使用の際にこれらを結
合すると、挿入部1のリレーレンズにより伝達されてき
た物体像が、アダプタ3内の結像レンズTによりカメラ
ヘッド4内のCCDイメージセンサ上に再結像される。
そして、このCCDイメージセンサより得られた画像信
号を図示しないモニターTVに映出して観察し、用済み
後はこれらを切り離して挿入部1を使い捨てるものであ
る。On the other hand, in FIG. 6, the rigid endoscope is the insertion portion 1.
And a television camera adapter 3 and a camera head 4. The TV camera adapter 3 includes an imaging lens T inside, and the camera head includes a CCD image sensor inside. Here, the insertion portion 1, the adapter 3, and the camera head 4 are detachable from each other by appropriate mechanisms. When these are combined during use, the object image transmitted by the relay lens of the insertion section 1 is re-imaged on the CCD image sensor in the camera head 4 by the imaging lens T in the adapter 3. .
Then, the image signal obtained from this CCD image sensor is displayed on a monitor TV (not shown) for observation, and after use, these are separated and the insertion section 1 is disposable.
【0020】斯かる構成において、本発明では、挿入部
をできる限り簡単な構成にすることによってコストを低
減させ、一方、高コストにならざるを得ない部品や構造
の部分を接眼部やアダプタ等に集中させる、という設計
思想のもとに光学系を構成した。即ち、挿入部内に配置
される光学系をできる限り簡単な構成にし、その結果こ
れらの光学系において十分な収差補正ができないことを
カバーするために、接眼部、あるいはアダプタ等の内部
に収差補正用の光学系を設け、硬性鏡光学系全体として
は良好な収差補正レベルが確保されるようにした。この
ようにした結果、接眼部やアダプタ内の光学系の構成が
複雑化し高価になったとしても、こららの部分は使い捨
てる訳ではないので全く問題はない。In such a structure, the present invention reduces the cost by making the insertion part as simple as possible, while at the same time, the parts and structures that must be expensive are connected to the eyepiece part and the adapter. The optical system was constructed based on the design concept of focusing on etc. That is, the optical system arranged in the insertion section has a configuration as simple as possible, and as a result, in order to cover the fact that sufficient aberration correction cannot be performed in these optical systems, the aberration correction is performed inside the eyepiece section or the adapter. An optical system is provided for the purpose of ensuring a good level of aberration correction for the rigid endoscope optical system as a whole. As a result, even if the configuration of the optical system in the eyepiece section or the adapter becomes complicated and expensive, these sections are not disposable and there is no problem at all.
【0021】尚挿入部以外の部分の汚れを防ぐためには
例えば図9のようにすれば良い。この例では、硬性鏡シ
ステムは挿入部1、接眼部2、及び接眼部2に取りつけ
られたテレビカメラ4とからなっているが、先端を挿入
部1と一体化した減菌カバー10を設けておいて、接眼
部より後方の部材が減菌カバー10内に収納されるよう
にする。この構成では、使用後に挿入部1と減菌カバー
10とを一体にして接眼部から取り外し、捨ててしまえ
ば残った部分は清潔に保たれる。In order to prevent the portion other than the insertion portion from being soiled, for example, the configuration shown in FIG. 9 may be used. In this example, the rigid endoscope system includes an insertion portion 1, an eyepiece portion 2 and a television camera 4 attached to the eyepiece portion 2, but a sterilization cover 10 having a tip integrated with the insertion portion 1 is used. If provided, a member behind the eyepiece is housed in the sterilization cover 10. In this configuration, after the use, the insertion part 1 and the sterilization cover 10 are integrally removed from the eyepiece part and discarded, and the remaining part is kept clean.
【0022】[0022]
【実施例】以下の示す実施例は、いずれも挿入部に配置
される対物レンズとリレーレンズにより発生する軸上色
収差を接眼部の光学系で補正することを特に重視したも
のである。EXAMPLES In all of the examples shown below, it is particularly important to correct the axial chromatic aberration generated by the objective lens and the relay lens arranged in the insertion portion by the optical system of the eyepiece.
【0023】図1は本発明の実施例1の光学系の断面図
で、Oは対物光学系、Rはリレー光学系、Eは接眼光学
系である。この実施例1は図5に示すような硬性鏡に用
いられるものであってこの実施例のデーターは下記の通
りである。 実施例1 物体距離=-35 ,観察視度=-1m-1,入射NA=0.0076,画角=70° 像高=1.48 r1 =∞ d1 =0.7000 n1 =1.52566 ν1 =56.28 r2 =1.5912 d2 =3.1900 r3 =-11.7850 d3 =4.9000 n2 =1.52566 ν2 =56.28 r4 =-11.0852 d4 =34.8500 r5 =24.6414 d5 =8.8741 n3 =1.52566 ν3 =56.28 r6 =∞(仮想絞り) d6 =10.6659 n4 =1.52566 ν4 =56.28 r7 =-24.6414 d7 =38.7900 r8 =24.6414 d8 =19.5400 n5 =1.52566 ν5 =56.28 r9 =-24.6414 d9 =39.4600 r10=24.6414 d10=19.5400 n6 =1.52566 ν6 =56.28 r11=-24.6414 d11=39.4600 r12=24.6414 d12=19.5400 n7 =1.52566 ν7 =56.28 r13=-24.6414 d13=39.4600 r14=24.6414 d14=19.5400 n8 =1.52566 ν8 =56.28 r15=-24.6414 d15=39.4600 r16=24.6414 d16=19.5400 n9 =1.52566 ν9 =56.28 r17=-24.6414 d17=15.0000 r18=∞ d18=1.0000 n10=1.51633 ν10=64.15 r19=∞ d19=3.5400 r20=26.3700 d20=2.5000 n11=1.77250 ν11=49.60 r21=-8.6370 d21=1.0000 n12=1.84666 ν12=23.78 r22=-90.9350 d22=0.5000 r23=26.3700 d23=2.5000 n13=1.77250 ν13=49.60 r24=-8.6370 d24=1.0000 n14=1.84666 ν14=23.78 r25=-90.9350 d25=7.9500 r26=∞ d26=2.0000 n15=1.77250 ν15=49.60 r27=-5.3520 d27=1.0000 n16=1.78472 ν16=25.71 r28=∞ d28=0.0300 r29=∞ d29=2.0000 n17=1.77250 ν17=49.60 r30=-5.3520 d30=1.0000 n18=1.78472 ν18=25.71 r31=∞ d31=14.6100 r32=9.0340 d32=3.8000 n19=1.77250 ν19=49.60 r33=-6.4830 d33=1.0000 n20=1.84666 ν20=23.78 r34=24.0550 d34=6.9800 r35=∞ d35=13.3700 r36=19.7060 d36=3.5000 n21=1.69680 ν21=55.53 r37=-7.8250 d37=1.0000 n22=1.80610 ν22=40.95 r38=-17.4010 d38=4.0400 r39=∞ d39=1.0000 n23=1.51633 ν23=64.15 r40=∞ 非球面係数 (第2面)K=-0.8146 ,(第4面)K=5.9508,(第
5面)K=-2.3156 (第7面)K=-2.3156 ,(第8面)K=-2.3156 ,
(第9面)K=-2.3156 (第10面)K=-2.3156 ,(第11面)K=-2.3156 (第12面)K=-2.3156 ,(第13面)K=-2.3156 (第14面)K=-2.3156 ,(第15面)K=-2.3156 (第16面)K=-2.3156 ,(第17面)K=-2.3156 上記データーにおいて、r1 ,r2 ,・・・ はレンズ各面
の曲率半径、d1 ,d2 ,・・・ は各レンズの厚さおよび
レンズ間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν
1 ,ν2 ,・・・ は各レンズのアッベ数である。FIG. 1 is a sectional view of an optical system according to a first embodiment of the present invention, where O is an objective optical system, R is a relay optical system, and E is an eyepiece optical system. This Example 1 is used for a rigid endoscope as shown in FIG. 5, and the data of this Example are as follows. Example 1 Object distance = -35, Observed diopter = -1 m -1 , Incident NA = 0.0076, Angle of view = 70 ° Image height = 1.48 r 1 = ∞ d 1 = 0.7000 n 1 = 1.52566 ν 1 = 56.28 r 2 = 1.5912 d 2 = 3.1900 r 3 = -11.7850 d 3 = 4.9000 n 2 = 1.52566 ν 2 = 56.28 r 4 = -11.0852 d 4 = 34.8500 r 5 = 24.6414 d 5 = 8.8741 n 3 = 1.52566 ν 3 = 56.28 r 6 = ∞ (virtual stop) d 6 = 10.6659 n 4 = 1.52566 ν 4 = 56.28 r 7 = -24.6414 d 7 = 38.7900 r 8 = 24.6414 d 8 = 19.5400 n 5 = 1.52566 ν 5 = 56.28 r 9 = -24.6414 d 9 = 39.4600 r 10 = 24.6414 d 10 = 19.5400 n 6 = 1.52566 ν 6 = 56.28 r 11 = -24.6414 d 11 = 39.4600 r 12 = 24.6414 d 12 = 19.5400 n 7 = 1.52566 ν 7 = 56.28 r 13 = -24.6414 d 13 = 39.4600 r 14 = 24.6414 d 14 = 19.5400 n 8 = 1.52566 ν 8 = 56.28 r 15 = -24.6414 d 15 = 39.4600 r 16 = 24.6414 d 16 = 19.5400 n 9 = 1.52566 ν 9 = 56.28 r 17 = -24.6414 d 17 = 15.0000 r 18 = ∞ d 18 = 1.0000 n 10 = 1.51633 ν 10 = 64.15 r 19 = ∞ d 19 = 3.5400 r 20 = 26.3700 d 20 = 2.5000 n 11 = 1.77250 ν 11 = 49.60 r 21 = -8.6370 d 21 = 1.0000 n 12 = 1.84666 ν 12 = 23.78 r 22 = -90.9350 d 22 = 0.5000 r 23 = 26.3700 d 23 = 2.5000 n 13 = 1.77250 ν 13 = 49.60 r 24 = -8.6370 d 24 = 1.0000 n 14 = 1.84666 ν 14 = 23.78 r 25 = -90.9350 d 25 = 7.9500 r 26 = ∞ d 26 = 2.0000 n 15 = 1.77250 v 15 = 49.60 r 27 = -5.3520 d 27 = 1.0000 n 16 = 1.78472 v 16 = 25.71 r 28 = ∞ d 28 = 0.0300 r 29 = ∞ d 29 = 2.0000 n 17 = 1.77250 ν 17 = 49.60 r 30 = -5.3520 d 30 = 1.0000 n 18 = 1.78472 ν 18 = 25.71 r 31 = ∞ d 31 = 14.6100 r 32 = 9.0340 d 32 = 3.8000 n 19 = 1.77250 ν 19 = 49.60 r 33 = -6.4830 d 33 = 1.0000 n 20 = 1.84666 ν 20 = 23.78 r 34 = 24.0550 d 34 = 6.9800 r 35 = ∞ d 35 = 13.3700 r 36 = 19.7060 d 36 = 3.50 00 n 21 = 1.69680 ν 21 = 55.53 r 37 = -7.8250 d 37 = 1.0000 n 22 = 1.80610 ν 22 = 40.95 r 38 = -17.4010 d 38 = 4.0400 r 39 = ∞ d 39 = 1.0000 n 23 = 1.51633 ν 23 = 64.15 r 40 = ∞ Aspherical surface coefficient (2nd surface) K = -0.8146, (4th surface) K = 5.9508, (5th surface) K = -2.3156 (7th surface) K = -2.3156, (8th surface) ) K = -2.3156,
(9th surface) K = -2.3156 (10th surface) K = -2.3156, (11th surface) K = -2.3156 (12th surface) K = -2.3156, (13th surface) K = -2.3156 (14th surface) Surface) K = -2.3156, (15th surface) K = -2.3156 (16th surface) K = -2.3156, (17th surface) K = -2.3156 In the above data, r 1 , r 2 , ... Are lenses The radius of curvature of each surface, d 1 , d 2 , ... Are the thicknesses and lens intervals of each lens, n 1 , n 2 , ... Are the refractive indices of each lens, and ν
1 , ν 2 , ... are the Abbe numbers of each lens.
【0024】又上記実施例で用いられる非球面は下記の
式で表わされる。The aspherical surface used in the above embodiment is represented by the following equation.
【0025】z=(y2 /r)/[1+{1−(k+
1)(y/r)2 }1/2 ] ただし、zは面と光軸との交点を基準とする光軸方向の
距離、yは光軸からの距離、rは曲率半径、kは2次曲
面の形状を示すパラメーターである。Z = (y 2 / r) / [1+ {1- (k +
1) (y / r) 2 } 1/2 ] where z is the distance in the optical axis direction with respect to the intersection of the surface and the optical axis, y is the distance from the optical axis, r is the radius of curvature, and k is 2 This is a parameter indicating the shape of the quadric surface.
【0026】上記の実施例1において、r1 〜r17が挿
入部観察光学系である。この観察光学系のみについて、
物体側から接眼部側に向かって光線追跡し、観察光学系
の最終像位置での軸上色収差は下記の通りである。In the first embodiment, r 1 to r 17 are insertion portion observation optical systems. For this observation optical system only,
Ray tracing is performed from the object side to the eyepiece side, and the axial chromatic aberration at the final image position of the observation optical system is as follows.
【0027】C線:1.395、F線:−3.519、
g線:−6.650 尚上記の値はd線の像位置を基準とし、接眼部側を正と
している。C line: 1.395, F line: -3.519,
g line: -6.650 The above values are based on the image position of the d line, and the eyepiece side is positive.
【0028】又r18〜r40が接眼部光学系である。この
接眼部光学系のみのアイポイント側から挿入部側に向か
って光線追跡した時の最終像位置での軸上色収差は、下
記の通りである。Further, r 18 to r 40 are eyepiece optical systems. The axial chromatic aberration at the final image position when ray tracing is performed from the eyepoint side of only the eyepiece optical system toward the insertion portion side is as follows.
【0029】C線:−1.032、F線:3.299、
g線:7.205 尚上記値は、同様にd線の像位置を基準にし挿入部側を
正にしている。C line: -1.032, F line: 3.299,
g line: 7.205 Similarly, the above value is positive on the insertion portion side with reference to the image position of the d line.
【0030】この実施例1の挿入部1の観察光学系(対
物光学系Oとリレー光学系R)は、単レンズのみで構成
され、接合レンズを含んでいない。このような正の単レ
ンズは、通常負の軸上色収差(短波長光の結像位置が長
波長光の結像位置よりも物体側にずれる)が発生する。
又負の単レンズの場合、正の軸上色収差が発生する。The observation optical system (objective optical system O and relay optical system R) of the insertion portion 1 of Example 1 is composed of only a single lens and does not include a cemented lens. Such a positive single lens normally causes negative axial chromatic aberration (the image forming position of the short wavelength light is displaced toward the object side from the image forming position of the long wavelength light).
In the case of a negative single lens, positive axial chromatic aberration occurs.
【0031】この実施例1では、挿入部観察光学系中、
対物レンズOに負の単レンズ1枚を含むが、この負の単
レンズは、画角の広角化と像面湾曲の補正のために設け
られたもので、軸上色収差の補正にはあまり寄与しな
い。これ以外のレンズはすべて正の単レンズであるため
に低分散の光学素材を用いたとしても挿入部観察光学系
のみでは、負の残存色収差を発生する割合が圧倒的に高
い。そのため、挿入部観察光学系のみでは、負の軸上色
収差が残存する。In the first embodiment, in the insertion portion observation optical system,
Although the objective lens O includes one negative single lens, this negative single lens is provided for widening the angle of view and correcting the field curvature, and contributes much to the correction of axial chromatic aberration. do not do. Since all the other lenses are positive single lenses, even if low-dispersion optical materials are used, the rate of negative residual chromatic aberration is overwhelmingly high only with the insertion section observation optical system. Therefore, negative axial chromatic aberration remains only with the insertion portion observation optical system.
【0032】これに対して接眼光学系Eは、正の軸上色
収差を発生する接合レンズを多用しており、この接眼光
学系E単独で大きな正の軸上色収差が残存している。接
眼光学系Eのみの逆方向光線追跡による軸上色収差は、
挿入部観察光学系の軸上色収差とは逆符号であり、しか
も絶対値はほぼ等しい。そのため挿入観察部と接眼光学
系とを接続すると、接続部での像において双方のモジュ
ールによる各波長の像位置がマッチするため挿入部観察
光学系と接眼光学系Eとを合わせた総合の観察光学系の
軸上色収差は、実用的なレベルまで補正されている。On the other hand, the eyepiece optical system E frequently uses a cemented lens which produces positive axial chromatic aberration, and the eyepiece optical system E alone has a large positive axial chromatic aberration remaining. The axial chromatic aberration due to the backward ray tracing of only the eyepiece optical system E is
It has the opposite sign to the axial chromatic aberration of the insertion section observation optical system, and the absolute values are almost the same. Therefore, when the insertion observation section and the eyepiece optical system are connected, the image positions of the respective wavelengths of both modules match in the image at the connection section, so that the total observation optical system combining the insertion section observation optical system and the eyepiece optical system E. The axial chromatic aberration of the system is corrected to a practical level.
【0033】尚図3には、実施例1の挿入観察光学系と
接眼光学系とを合わせた全系の収差図を示してある。こ
の図のように、全系における軸上色収差による視度ずれ
は、C線、F線、g線において±2m-1以内におさまっ
ており、眼視観察上許容し得るレベルである。又他の収
差も良好に補正されている。FIG. 3 is an aberration diagram of the entire system including the insertion observation optical system and the eyepiece optical system of the first embodiment. As shown in this figure, the diopter shift due to the axial chromatic aberration in the entire system is within ± 2 m −1 at the C line, the F line, and the g line, which is an acceptable level for visual observation. Further, other aberrations are well corrected.
【0034】以上の実施例1は、眼視観察可能な硬性鏡
以外にテレビ観察専用の硬性鏡にも適用し得る実施例2
は、図6に示すようなテレビ観察用硬性鏡に用いる光学
系に関するもので図2に示す通りの構成である。又実施
例2は、下記の通りのデーターを有する。 実施例2 物体距離=-35 ,入射NA=0.0076,画角=70°,像高=2.14 r1 =∞ d1 =0.7000 n1 =1.52566 ν1 =56.28 r2 =1.5912 d2 =3.1900 r3 =-11.7850 d3 =4.9000 n2 =1.52566 ν2 =56.28 r4 =-11.0852 d4 =34.8500 r5 =24.6414 d5 =8.8741 n3 =1.52566 ν3 =56.28 r6 =∞(仮想絞り) d6 =10.6659 n4 =1.52566 ν4 =56.28 r7 =-24.6414 d7 =38.7900 r8 =24.6414 d8 =19.5400 n5 =1.52566 ν5 =56.28 r9 =-24.6414 d9 =39.4600 r10=24.6414 d10=19.5400 n6 =1.52566 ν6 =56.28 r11=-24.6414 d11=39.4600 r12=24.6414 d12=19.5400 n7 =1.52566 ν7 =56.28 r13=-24.6414 d13=39.4600 r14=24.6414 d14=19.5400 n8 =1.52566 ν8 =56.28 r15=-24.6414 d15=39.4600 r16=24.6414 d16=19.5400 n9 =1.52566 ν9 =56.28 r17=-24.6414 d17=15.0000 r18=∞ d18=1.0000 n10=1.51633 ν10=64.15 r19=∞ d19=3.5400 r20=26.3700 d20=2.5000 n11=1.77250 ν11=49.60 r21=-8.6370 d21=1.0000 n12=1.84666 ν12=23.78 r22=-90.9350 d22=0.5000 r23=26.3700 d23=2.5000 n13=1.77250 ν13=49.60 r24=-8.6370 d24=1.0000 n14=1.84666 ν14=23.78 r25=-90.9350 d25=7.9500 r26=∞ d26=2.0000 n15=1.77250 ν15=49.60 r27=-5.3520 d27=1.0000 n16=1.78472 ν16=25.71 r28=∞ d28=0.0300 r29=∞ d29=2.0000 n17=1.77250 ν17=49.60 r30=-5.3520 d30=1.0000 n18=1.78472 ν18=25.71 r31=∞ d31=9.9713 r32=6.5209 d32=3.8000 n19=1.77250 ν19=49.60 r33=-4.3080 d33=1.0000 n20=1.84666 ν20=23.78 r34=8.0115 非球面係数 (第2面)K=-0.8146 ,(第4面)K=5.9508,(第
5面)K=-2.3156 (第7面)K=-2.3156 ,(第8面)K=-2.3156 ,
(第9面)K=-2.3156 (第10面)K=-2.3156 ,(第11面)K=-2.3156 (第12面)K=-2.3156 ,(第13面)K=-2.3156 (第14面)K=-2.3156 ,(第15面)K=-2.3156 (第16面)K=-2.3156 ,(第17面)K=-2.3156 この実施例2は、r1 〜r17までの観察光学系は、実施
例1と同じである。したがって、軸上色収差も前記の通
りである。又r18〜r34がテレビカメラ用結像光学系
で、固体撮像素子から挿入部へ向け光線を逆追跡した時
の軸上色収差は下記の通りである。The above-described Example 1 can be applied to a rigid endoscope dedicated to television observation in addition to the rigid endoscope that can be visually observed.
2 relates to an optical system used for a television observation rigid endoscope as shown in FIG. 6 and has a configuration as shown in FIG. In addition, Example 2 has the following data. Example 2 Object distance = -35, incident NA = 0.0076, angle of view = 70 °, image height = 2.14 r 1 = ∞ d 1 = 0.7000 n 1 = 1.52566 ν 1 = 56.28 r 2 = 1.5912 d 2 = 3.1900 r 3 = -11.7850 d 3 = 4.9000 n 2 = 1.52566 ν 2 = 56.28 r 4 = -11.0852 d 4 = 34.8500 r 5 = 24.6414 d 5 = 8.8741 n 3 = 1.52566 ν 3 = 56.28 r 6 = ∞ ( virtual stop) d 6 = 10.6659 n 4 = 1.52566 ν 4 = 56.28 r 7 = -24.6414 d 7 = 38.7900 r 8 = 24.6414 d 8 = 19.5400 n 5 = 1.56566 ν 5 = 56.28 r 9 = -24.6414 d 9 = 39.4600 r 10 = 24.6414 d 10 = 19.5400 n 6 = 1.52566 ν 6 = 56.28 r 11 = -24.6414 d 11 = 39.4600 r 12 = 24.6414 d 12 = 19.5400 n 7 = 1.52566 ν 7 = 56.28 r 13 = -24.6414 d 13 = 39.4600 r 14 = 24.6414 d 14 = 19.5400 n 8 = 1.52566 ν 8 = 56.28 r 15 = -24.6414 d 15 = 39.4600 r 16 = 24.6414 d 16 = 19.5400 n 9 = 1.52566 ν 9 = 56.28 r 17 = -24.6414 d 17 = 15.0000 r 18 = ∞ d 18 = 1 .0000 n 10 = 1.51633 ν 10 = 64.15 r 19 = ∞ d 19 = 3.5400 r 20 = 26.3700 d 20 = 2.5000 n 11 = 1.77250 ν 11 = 49.60 r 21 = -8.6370 d 21 = 1.0000 n 12 = 1.84666 ν 12 = 23.78 r 22 = -90.9350 d 22 = 0.5000 r 23 = 26.3700 d 23 = 2.5000 n 13 = 1.77250 ν 13 = 49.60 r 24 = -8.6370 d 24 = 1.0000 n 14 = 1.84666 ν 14 = 23.78 r 25 = -90.9350 d 25 = 7.9500 r 26 = ∞ d 26 = 2.0000 n 15 = 1.77250 ν 15 = 49.60 r 27 = -5.3520 d 27 = 1.0000 n 16 = 1.78472 ν 16 = 25.71 r 28 = ∞ d 28 = 0.0300 r 29 = ∞ d 29 = 2.0000 n 17 = 1.77250 ν 17 = 49.60 r 30 = -5.3520 d 30 = 1.0000 n 18 = 1.78472 ν 18 = 25.71 r 31 = ∞ d 31 = 9.9713 r 32 = 6.5209 d 32 = 3.8000 n 19 = 1.77250 ν 19 = 49.60 r 33 = -4.3080 d 33 = 1.0000 n 20 = 1.84666 ν 20 = 23.78 r 34 = 8.0115 Aspheric surface coefficient (2nd surface) K = -0.8146, (4th surface) K = 5.9508, (5th surface) K = -2.3156 The seventh surface) K = -2.3156, (eighth surface) K = -2.3156,
(9th surface) K = -2.3156 (10th surface) K = -2.3156, (11th surface) K = -2.3156 (12th surface) K = -2.3156, (13th surface) K = -2.3156 (14th surface) surface) K = -2.3156, (fifteenth surface) K = -2.3156 (16 surface) K = -2.3156, (seventeenth surface) K = -2.3156 this second embodiment, the observation optical to r 1 ~r 17 The system is the same as in Example 1. Therefore, the axial chromatic aberration is also as described above. Further, r 18 to r 34 are image forming optical systems for television cameras, and the axial chromatic aberration when the ray is traced backward from the solid-state image pickup element to the insertion portion is as follows.
【0035】C線:−1.165、F線:3.682、
g線:8.027 尚d線の像位置を基準とし、挿入部側を正としている。C line: -1.165, F line: 3.682,
g line: 8.027 The image position of the d line is used as a reference, and the insertion portion side is positive.
【0036】この実施例2も使い捨て可能な挿入部と、
再利用可能な部分としてのテレビカメラ用アダプター3
とより構成されている。この実施例2も、実施例1と同
じように、挿入部を簡単な構成にしてコストを下げ、又
コストの高い部品等は再利用部であるテレビカメラ用ア
ダプターに集中させている。この場合、テレビカメラ用
アダプターとテレビカメラを一体化して結像光学系とし
てもよい。The second embodiment also includes a disposable insertion section,
TV camera adapter 3 as a reusable part
It is composed of In the second embodiment, as in the first embodiment, the insertion portion has a simple structure to reduce the cost, and high-cost parts and the like are concentrated in the TV camera adapter which is the reuse portion. In this case, the TV camera adapter and the TV camera may be integrated to form an imaging optical system.
【0037】実施例2はテレビカメラ用結像光学系T
に、接合レンズを多用しており、この光学系単独で大き
な正の軸上色収差が残存するようにしてある。この正の
軸上色収差は、実施例1の接合光学系と同様に挿入部観
察光学系の負の軸上色収差を補正し得るようにしてい
る。図4は実施例2の挿入部観察光学系とテレビカメラ
用結像光学系とを合わせた総合の収差図である。この実
施例2は、テレビカメラ用結像光学系の近軸倍率がほぼ
等倍であるため、挿入部観察光学系の最終像の軸上色収
差と全系の軸上色収差とを比較することが出来る。図4
から明らかなように実施例2の全系の軸上色収差は、挿
入部観察光学系の最終像における軸上色収差を大幅に改
善し良好なものになっている。又全系の他の収差も良好
に補正されている。The second embodiment is an image forming optical system T for a television camera.
In addition, a lot of cemented lenses are used, and a large positive axial chromatic aberration remains in this optical system alone. This positive axial chromatic aberration can correct the negative axial chromatic aberration of the insertion portion observing optical system as in the cemented optical system of the first embodiment. FIG. 4 is a total aberration diagram in which the insertion portion observing optical system of Example 2 and the television camera imaging optical system are combined. In Example 2, since the paraxial magnification of the image forming optical system for the television camera is approximately equal, it is possible to compare the axial chromatic aberration of the final image of the insertion section observing optical system with the axial chromatic aberration of the entire system. I can. Figure 4
As is apparent from the above, the axial chromatic aberration of the entire system of Example 2 is excellent because the axial chromatic aberration in the final image of the insertion portion observation optical system is significantly improved. Further, other aberrations of the entire system are well corrected.
【0038】以上述べた両実施例に関して、次に詳細に
説明する。The above-mentioned both embodiments will be described in detail below.
【0039】実施例1と実施例2とは、挿入部観察光学
系は、同一のものが用いられている。この挿入部観察光
学系は、各レンズの光学素材として低分散の光学プラス
チックを用いるようにしている。本発明は、挿入部を使
い捨てにすることを考えているため、大量生産が可能で
あって量産によりコストを低下させ得るようにプラスチ
ックレンズを用いることが望ましい。また挿入部観察光
学系を構成するレンズには非球面を多用しており、その
ためにガラスよりなるレンズを研磨して非球面を形成す
る方法では、量産が不可能でありコスト高になる。しか
しガラスのプレスによりレンズを加工すれば量産が可能
になる。したがってガラスプレスレンズを用いてもよ
い。In Example 1 and Example 2, the same insertion portion observation optical system is used. This insertion portion observation optical system uses low-dispersion optical plastic as an optical material of each lens. Since the present invention considers that the insertion part is disposable, it is desirable to use a plastic lens so that mass production is possible and cost can be reduced by mass production. Moreover, since aspherical surfaces are often used for the lenses forming the insertion portion observing optical system, mass production is not possible and the cost is increased by the method of polishing the lenses made of glass to form the aspherical surfaces. However, if lenses are processed by pressing glass, mass production becomes possible. Therefore, a glass press lens may be used.
【0040】前記の実施例では、挿入部観察光学系のレ
ンズは8枚であるが、最も物体側の2枚を除いたレンズ
は、前記のデーターからも明らかなようにすべて同一形
状、同一素材である。そのため成形用の金型は3種類で
済み、金型費用の削減および同一レンズの数量増しによ
るメリットを得ることが出来る。又対物レンズは、通常
リレー光学系とは別のレンズ構成になり、かつ全長が短
いため実施例においては、リレー光学系に使用している
レンズを流用して部品の共通化と1リレーに近い全長の
確保によりリレー回数の削減を行なっている。又リレー
光学系で用いている非球面は、前述のように色収差以外
の収差補正のためであって、主として球面収差と非点収
差をコントロールしている。球面のみの単レンズよりな
るリレー光学系では、通常、負の球面収差が発生するた
め前記実施例のリレー光学系では、周辺にて曲率が弱く
なる形状の非球面を用いて球面収差を補正している。In the above embodiment, the insertion part observation optical system has eight lenses, but all the lenses except the two lenses closest to the object side have the same shape and the same material, as is clear from the above data. Is. Therefore, only three types of molding dies are required, and it is possible to obtain advantages by reducing the die cost and increasing the number of the same lenses. In addition, the objective lens usually has a lens configuration different from that of the relay optical system and has a short overall length, so that in the embodiment, the lens used in the relay optical system is diverted to make the parts common and close to one relay. The number of relays is reduced by ensuring the full length. The aspherical surface used in the relay optical system is for correcting aberrations other than chromatic aberration as described above, and mainly controls spherical aberration and astigmatism. In a relay optical system consisting of a single lens having only a spherical surface, normally, negative spherical aberration occurs. Therefore, in the relay optical system of the above-mentioned embodiment, spherical aberration is corrected by using an aspherical surface having a shape with a weak curvature at the periphery. ing.
【0041】硬性鏡における観察光学系は、部品のしめ
るコスト比率が非常に大きいので、上記のような挿入部
であれば非常に安価になし得る。Since the observation optical system in the rigid endoscope has a very large cost ratio of the parts, the insertion portion as described above can be made very inexpensive.
【0042】次に実施例1は、接眼光学系が用いられて
いる。この接眼光学系は単なるルーペではなく光学系中
に実像の中間結像を行なうようにしている。このように
中間結像するようにしているのは、接眼光学系の内部に
瞳を形成する必要があるためである。Next, in Example 1, an eyepiece optical system is used. This eyepiece optical system is not a loupe but an intermediate image of a real image is formed in the optical system. The intermediate image is formed in this way because it is necessary to form a pupil inside the eyepiece optical system.
【0043】中間結像しないルーペのような接眼光学系
は、瞳がアイポイントの位置とほぼ等しくなるためそこ
にレンズを配置することが出来ない。In an eyepiece optical system such as a magnifying glass that does not form an intermediate image, the pupil cannot be arranged there because the pupil is almost at the same position as the eye point.
【0044】実施例1の接眼光学系(本発明で用いる接
眼光学系)は、大きな正の軸上色収差を発生させる必要
から、瞳から離れたレンズのみで軸上色収差を大きく発
生させようとすると、同時に倍率の色収差も大量に発生
する。そのために、大きな正の軸上色収差を発生させる
レンズは、接眼光学系中の瞳位置付近に集めなければな
らない。そのために、実施例1では、接眼光学系の内部
で実像の中間結像を行ない、この結像位置よりも物体側
に生ずる瞳位置付近に多くの接合レンズを配置してい
る。またこの実施例では、中間結像させていることから
正立像になる。Since the eyepiece optical system of Example 1 (the eyepiece optical system used in the present invention) needs to generate a large positive axial chromatic aberration, if an attempt is made to generate a large axial chromatic aberration only with the lens away from the pupil. At the same time, a large amount of chromatic aberration of magnification occurs. Therefore, a lens that produces a large positive axial chromatic aberration must be collected near the pupil position in the eyepiece optical system. Therefore, in the first embodiment, the intermediate image formation of the real image is performed inside the eyepiece optical system, and many cemented lenses are arranged near the pupil position generated on the object side of this image formation position. Further, in this embodiment, since the intermediate image is formed, it becomes an erect image.
【0045】この接眼光学系に含まれる接合レンズの数
NOCは次の条件(4)を満足することが望ましい。It is desirable that the number N OC of cemented lenses included in this eyepiece optical system satisfies the following condition (4).
【0046】(4) NOC≧NR +1 ただしNR は、挿入部内のリレー光学系のリレー回数で
ある。(4) N OC ≧ N R +1 where N R is the number of relays of the relay optical system in the insertion section.
【0047】軸上色収差を良好に補正した従来のリレー
光学系は、通常、1回のリレーにつき一つの接合レンズ
が用いられる。そのため、本発明のように、リレー光学
系に接合レンズを用いないため、その分、接眼光学系が
軸上色収差を補正するための負担を負わなければならな
い。また接眼光学系の中間結像部の1リレーが加わるた
め、接眼光学系の接合レンズは少なくともリレー系のリ
レー回数に1を加えた個数以上必要であり、それ以下だ
と軸上色収差の補正が出来ない。In a conventional relay optical system in which axial chromatic aberration is well corrected, usually one cemented lens is used for one relay. Therefore, unlike the present invention, since no cemented lens is used in the relay optical system, the eyepiece optical system must bear the load for correcting the axial chromatic aberration. Further, since one relay of the intermediate image forming part of the eyepiece optical system is added, the number of cemented lenses of the eyepiece optical system needs to be at least equal to the number of relay times of the relay system plus one. If it is less than that, axial chromatic aberration correction is required. Can not.
【0048】又、挿入部観察光学系側で発生するピント
のばらつきを調整するため、接眼光学系は、フォーカシ
ング機構を有することが望ましい。挿入部観察光学系に
プラスチックレンズを用いると温度や湿度により光学常
数が大きく変化し、大きなピントの変動が生ずる。挿入
部を安価にするためには、挿入部単独でピント調整を行
なうことが出来ないため、接眼部に挿入部のピントのば
らつきを補償するフォーカシング機構を設けなければ挿
入部を安価に保ったままピントずれによる像のぼけを防
止出来ない。そのためのフォーカシング機構としては、
挿入部の取付部を光軸方向に移動させてもよいし、接眼
部内で接眼光学系全体を光軸方向に移動させてもよい。
又接眼光学系のうちの一部のレンズを光軸に沿って移動
させるインナーフォーカスを用いてもよい。It is desirable that the eyepiece optical system has a focusing mechanism in order to adjust the variation of the focus generated on the insertion section observation optical system side. When a plastic lens is used in the insertion section observation optical system, the optical constant changes greatly depending on temperature and humidity, and a large focus fluctuation occurs. In order to reduce the cost of the insertion part, it is not possible to adjust the focus by the insertion part alone, so the insertion part was kept inexpensive unless a focusing mechanism was provided in the eyepiece to compensate for variations in the focus of the insertion part. It is impossible to prevent blurring of the image due to out of focus. As a focusing mechanism for that,
The attachment part of the insertion part may be moved in the optical axis direction, or the entire eyepiece optical system may be moved in the optical axis direction within the eyepiece part.
Alternatively, an inner focus may be used which moves some lenses of the eyepiece optical system along the optical axis.
【0049】次に、実施例2のようにテレビカメラ用結
像光学系を用いる場合の、結像光学系について述べる。
このテレビカメラ用結像光学系にて用いる接合レンズの
数NTVは下記の条件(5)を満足する必要がある。Next, the image forming optical system in the case of using the image forming optical system for the television camera as in the second embodiment will be described.
The number N TV of cemented lenses used in this image forming optical system for a television camera must satisfy the following condition (5).
【0050】(5) NTV≧NR +1 この条件(5)を満足しないと軸上色収差の補正が出来
なくなる。(5) N TV ≧ N R +1 Unless this condition (5) is satisfied, axial chromatic aberration cannot be corrected.
【0051】また、テレビカメラ用結像光学系は、フォ
ーカシング機構を備えることが好ましい。このフォーカ
シング機構として、挿入部の取付部を光軸方向に移動さ
せる方法がある。又テレビカメラ用アダプターもしくは
結像光学系を有するテレビカメラの内部で、テレビカメ
ラ用結像光学系全体を光軸方向に移動させてもよい。ま
た、テレビカメラ用結像光学系中の一部のレンズを移動
させるインナーフォーカスを用いてもよい。更に撮像光
学系を有するテレビカメラの場合、固体撮像素子を光軸
方向に動かしてもよい。Further, it is preferable that the image forming optical system for the television camera is provided with a focusing mechanism. As this focusing mechanism, there is a method of moving the attachment portion of the insertion portion in the optical axis direction. Further, the entire imaging optical system for a TV camera may be moved in the optical axis direction inside the TV camera adapter or a TV camera having an imaging optical system. Moreover, you may use the inner focus which moves a part of lens in the imaging optical system for television cameras. Further, in the case of a television camera having an image pickup optical system, the solid-state image pickup device may be moved in the optical axis direction.
【0052】以上、医療用の使い捨て硬性鏡について述
べたが、医療用、工業用を問わず再利用可能な硬性鏡の
コスト低減が可能になる。Although the medical-use disposable rigid endoscope has been described above, the cost of the reusable rigid endoscope for medical and industrial purposes can be reduced.
【0053】図7に示す従来の硬性鏡は、挿入部内に多
数の接合レンズが配置されている。特にリレー光学系
は、リレー回数分だけ接合レンズの数が増え多くの接合
レンズを含まざるを得ない。特に曲率の強い面を持つ接
合レンズは、加工コストが大径のレンズに比べ高くなら
ざるを得ない。又レンズが小径であるため接合の自動化
が困難であるため、接合作業に伴うコストが非常に大に
なる。そのため挿入部内の接合レンズ特にリレー光学系
中の接合レンズを挿入部以外の外径制約の少ない部分に
移動出来れば部品点数が変わらなくともコストの低減が
可能である。そのため図7に示す光学系の構成をそのま
ま1本の硬性鏡におさめて挿入部内に対物光学系、リレ
ー光学系、挿入部以外に接眼光学系を設けてもよい。こ
の場合、対物光学系とリレー光学系で発生する軸上色収
差を接眼光学系で補正すればよい。In the conventional rigid endoscope shown in FIG. 7, a large number of cemented lenses are arranged in the insertion portion. In particular, the relay optical system has to increase the number of cemented lenses by the number of relays and include many cemented lenses. In particular, a cemented lens having a surface with a strong curvature inevitably requires a higher processing cost than a lens having a large diameter. Further, since the lens has a small diameter, it is difficult to automate the joining, so that the cost associated with the joining operation becomes very large. Therefore, if the cemented lens in the insertion part, especially the cemented lens in the relay optical system, can be moved to a part other than the insertion part with a small outer diameter restriction, the cost can be reduced even if the number of parts does not change. Therefore, the configuration of the optical system shown in FIG. 7 may be stored in a single rigid endoscope as it is, and an objective optical system, a relay optical system, and an eyepiece optical system other than the insertion portion may be provided in the insertion portion. In this case, the axial chromatic aberration generated in the objective optical system and the relay optical system may be corrected by the eyepiece optical system.
【0054】[0054]
【発明の効果】本発明の硬性鏡は、挿入部と接眼部とを
分離した構成のもので、挿入部内の観察光学系の軸上色
収差を接眼部内の光学系にて補正するようにしたことに
より、挿入部の構成を簡単で安価とし挿入部を使い捨て
とする上で極めて有効である。The rigid endoscope of the present invention has a construction in which the insertion section and the eyepiece section are separated, and the axial chromatic aberration of the observation optical system in the insertion section is corrected by the optical system in the eyepiece section. By doing so, the structure of the insertion portion is simple and inexpensive, and it is extremely effective in making the insertion portion disposable.
【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.
【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.
【図3】本発明の実施例1の収差曲線図FIG. 3 is an aberration curve diagram of Example 1 of the present invention.
【図4】本発明の実施例2の収差曲線図FIG. 4 is an aberration curve diagram of Example 2 of the present invention.
【図5】本発明の光学系が用いられる使い捨てタイプの
硬性鏡の構成を示す図FIG. 5 is a diagram showing a configuration of a disposable type rigid endoscope in which the optical system of the present invention is used.
【図6】本発明の光学系が用いられる使い捨てタイプの
テレビ観察用硬性鏡の構成を示す図FIG. 6 is a diagram showing a configuration of a disposable type television-observing rigid endoscope in which the optical system of the present invention is used.
【図7】従来の硬性鏡の構成を示す図FIG. 7 is a diagram showing a configuration of a conventional rigid endoscope.
【図8】リレー光学系による結像関係を示す図FIG. 8 is a diagram showing a relationship of image formation by a relay optical system.
【図9】硬性鏡の滅菌カバー付挿入部の構成を示す図FIG. 9 is a diagram showing a configuration of an insertion portion with a sterilization cover of a rigid endoscope.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 23/26 D 9317−2K H04N 5/225 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G02B 23/26 D 9317-2K H04N 5/225 Z
Claims (3)
において、前記挿入部内に配置された観察光学系と前記
接眼部内に配置された光学系とよりなり、前記観察光学
系にて発生する軸上色収差を前記接眼部内の光学系で補
正するようにしたことを特徴とする硬性鏡光学系。1. A rigid endoscope in which an insertion part and an eyepiece part are separable, each of which comprises an observation optical system arranged in the insertion part and an optical system arranged in the eyepiece part. A rigid-mirror optical system, wherein axial chromatic aberration generated in the system is corrected by an optical system in the eyepiece.
は結像光学系を有するテレビカメラとを分離可能にした
テレビ観察用光学システムにおいて、挿入部内に配置さ
れた観察光学系とテレビカメラ用アダプターもしくは結
像光学系を有するテレビカメラ内に配置された他の光学
系とよりなり、前記観察光学系にて発生する軸上色収差
を前記の他の光学系にて補正するようにしたことを特徴
とするテレビ観察用硬性鏡システム光学系。2. An optical system for television observation, wherein the insertion portion and a television camera adapter or a television camera having an imaging optical system can be separated from each other, and the observation optical system arranged in the insertion portion and the television camera adapter or connection. The optical system comprises another optical system arranged in a television camera having an image optical system, and axial chromatic aberration generated in the observation optical system is corrected by the other optical system. TV observation rigid endoscope system optical system.
系とを備え、挿入部内に前記対物光学系とリレー光学
系、挿入部以外の部分に前記接眼光学系を有する硬性鏡
において、前記対物光学系とリレー光学系で発生する軸
上色収差を前記接眼光学系で補正したことを特徴とする
硬性鏡光学系。3. A rigid endoscope including an objective optical system, a relay optical system, and an eyepiece optical system, wherein the objective optical system and the relay optical system are provided inside the insertion portion, and the eyepiece optical system is provided at a portion other than the insertion portion. A rigid mirror optical system, wherein axial chromatic aberration generated in the objective optical system and the relay optical system is corrected by the eyepiece optical system.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5300803A JPH07134246A (en) | 1993-11-08 | 1993-11-08 | Hard mirror optical system |
US08/718,163 US5852511A (en) | 1993-10-20 | 1996-09-19 | Optical system for non-flexible endoscopes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5300803A JPH07134246A (en) | 1993-11-08 | 1993-11-08 | Hard mirror optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07134246A true JPH07134246A (en) | 1995-05-23 |
Family
ID=17889293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5300803A Withdrawn JPH07134246A (en) | 1993-10-20 | 1993-11-08 | Hard mirror optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07134246A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003012522A1 (en) * | 2001-07-28 | 2003-02-13 | Karl Storz Gmbh & Co. Kg | Linear lens system for rigid endoscopes |
JP2003524204A (en) * | 2000-02-23 | 2003-08-12 | ジャン ホーグランド、 | Integrated optical system for endoscopes |
JP2006141711A (en) * | 2004-11-19 | 2006-06-08 | Olympus Corp | Observation optical system of endoscope |
JP2010175673A (en) * | 2009-01-28 | 2010-08-12 | Nikon Vision Co Ltd | Eyepiece and optical device |
WO2016114081A1 (en) * | 2015-01-16 | 2016-07-21 | 株式会社タムロン | Optical system for observation and imaging device provided with same |
JP2020034658A (en) * | 2018-08-28 | 2020-03-05 | 株式会社住田光学ガラス | Relay optics for rigid endoscopes |
-
1993
- 1993-11-08 JP JP5300803A patent/JPH07134246A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003524204A (en) * | 2000-02-23 | 2003-08-12 | ジャン ホーグランド、 | Integrated optical system for endoscopes |
JP4958362B2 (en) * | 2000-02-23 | 2012-06-20 | ジャン ホーグランド、 | Integrated optical system for endoscopes |
WO2003012522A1 (en) * | 2001-07-28 | 2003-02-13 | Karl Storz Gmbh & Co. Kg | Linear lens system for rigid endoscopes |
JP2006141711A (en) * | 2004-11-19 | 2006-06-08 | Olympus Corp | Observation optical system of endoscope |
JP2010175673A (en) * | 2009-01-28 | 2010-08-12 | Nikon Vision Co Ltd | Eyepiece and optical device |
WO2016114081A1 (en) * | 2015-01-16 | 2016-07-21 | 株式会社タムロン | Optical system for observation and imaging device provided with same |
JP2016133571A (en) * | 2015-01-16 | 2016-07-25 | 株式会社タムロン | Observation optical system and image pickup apparatus including the same |
JP2020034658A (en) * | 2018-08-28 | 2020-03-05 | 株式会社住田光学ガラス | Relay optics for rigid endoscopes |
WO2020044807A1 (en) * | 2018-08-28 | 2020-03-05 | 株式会社住田光学ガラス | Relay optical system for hard mirrors |
US11598947B2 (en) | 2018-08-28 | 2023-03-07 | Sumita Optical Glass, Inc. | Relay optical system for rigid endoscope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5852511A (en) | Optical system for non-flexible endoscopes | |
US5296971A (en) | Objective lens system for endoscopes | |
US8243129B2 (en) | Objective lens and endoscope apparatus | |
US5892630A (en) | Disposable endoscope | |
JP2697822B2 (en) | Endoscope objective lens | |
JP6401103B2 (en) | Endoscope objective lens and endoscope | |
US5519532A (en) | Disposable endoscope | |
JP2876252B2 (en) | Endoscope objective lens | |
US7085064B2 (en) | Object lens and endoscope using it | |
JP4248771B2 (en) | Endoscope device | |
JP5118937B2 (en) | Imaging optical system | |
JP5478421B2 (en) | Imaging optical system for endoscope and endoscope having the same | |
JPH0754373B2 (en) | Objective lens for endoscope | |
US5980453A (en) | Endoscope with low distortion | |
JPH05323186A (en) | Endoscope | |
JPH07101254B2 (en) | Endoscope objective lens | |
WO2021084835A1 (en) | Optical system and optical device | |
US20040125445A1 (en) | Integrated optical system for endoscopes and the like | |
JPH07294807A (en) | Endoscope with observation part and with endoscope tube withbuilt-in imageforming optical system | |
JP2001356262A (en) | Retrofocus wide-angle lens and lens device using the same | |
JP3140841B2 (en) | Objective optical system for endoscope | |
JP4373749B2 (en) | Imaging optical system, imaging apparatus for endoscope, and endoscope system | |
JPH07134246A (en) | Hard mirror optical system | |
JPH10115788A (en) | Hard mirror optical system | |
JP3530571B2 (en) | Rigid endoscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010130 |