[go: up one dir, main page]

JPH07132592A - Piezoelectric droplet ejector - Google Patents

Piezoelectric droplet ejector

Info

Publication number
JPH07132592A
JPH07132592A JP14453193A JP14453193A JPH07132592A JP H07132592 A JPH07132592 A JP H07132592A JP 14453193 A JP14453193 A JP 14453193A JP 14453193 A JP14453193 A JP 14453193A JP H07132592 A JPH07132592 A JP H07132592A
Authority
JP
Japan
Prior art keywords
pressure
drive
pressure chamber
waveform
voltage waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14453193A
Other languages
Japanese (ja)
Other versions
JP3285253B2 (en
Inventor
Kimei Chiyou
棄名 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP14453193A priority Critical patent/JP3285253B2/en
Publication of JPH07132592A publication Critical patent/JPH07132592A/en
Priority to US08/599,263 priority patent/US5757392A/en
Application granted granted Critical
Publication of JP3285253B2 publication Critical patent/JP3285253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

(57)【要約】 【目的】 圧力室内の圧力変動の特性が温度やインクの
物性等の変化によって変わっても、その圧力変動に合っ
た駆動電圧波形を圧電素子に印加することが可能な圧電
式液滴噴射装置を提供すること。 【構成】 印字動作に先立って測定用駆動パルスPcを
ピエゾ素子106に印加し、圧力室100内の圧力変動
をピエゾ素子106および検出回路32によって検出す
るとともに、その圧力変動の特性に基づき、駆動波形W
Fを算出する。印字するときは前記算出された駆動波形
WFに基づいて駆動電圧波形Paをピエゾ素子106に
印加する。
(57) [Abstract] [Purpose] Even if the characteristics of pressure fluctuations in the pressure chamber change due to changes in temperature, physical properties of ink, etc., it is possible to apply a drive voltage waveform matching the pressure fluctuations to the piezoelectric element. Provided is a liquid droplet ejection device. [Structure] A measurement drive pulse Pc is applied to a piezo element 106 prior to a printing operation to detect a pressure fluctuation in the pressure chamber 100 by the piezo element 106 and a detection circuit 32, and drive based on the characteristic of the pressure fluctuation. Waveform W
Calculate F. When printing, the drive voltage waveform Pa is applied to the piezo element 106 based on the calculated drive waveform WF.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧電式液滴噴射装置に係
わり、特に、効率よくかつ安定して液滴を噴射するため
の駆動電圧波形を正確に定める技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric droplet ejecting device, and more particularly to a technique for accurately determining a driving voltage waveform for ejecting droplets efficiently and stably.

【0002】[0002]

【従来の技術】従来、圧電素子を用いて圧力室の容積を
変化させることより、その圧力室内の噴射液をノズルか
ら噴射する圧電式液滴噴射装置が、例えばインクジェッ
トプリンタ等に利用されている。
2. Description of the Related Art Conventionally, a piezoelectric liquid droplet ejecting apparatus which ejects an ejected liquid in a pressure chamber from a nozzle by changing the volume of the pressure chamber using a piezoelectric element has been used in, for example, an inkjet printer. .

【0003】図9は、かかる圧電式液滴噴射装置の一例
で、圧力室100を形成しているハウジング102の側
壁104には圧電素子としてPZT等のピエゾ素子10
6が設けられ、そのピエゾ素子106には駆動回路10
8により駆動電圧が印加されるようになっている。
FIG. 9 shows an example of such a piezoelectric liquid droplet ejecting apparatus. A piezoelectric element 10 such as PZT is used as a piezoelectric element on a side wall 104 of a housing 102 forming a pressure chamber 100.
6 is provided, and the piezo element 106 has a drive circuit 10
A drive voltage is applied by means of 8.

【0004】この圧電式液滴噴射装置においてインクの
噴射を行うときには、ピエゾ素子106に駆動電圧が印
加される。このとき印加される最も単純な駆動電圧波形
は、例えば矩形のパルス110である。ピエゾ素子10
6にパルス110が印加されると、まず、パルス110
の立ち上がりで側壁104はピエゾ素子106と共に一
点鎖線で示されるように変形する。この変形により圧力
室100の容積が増大し、その増大に伴って圧力室10
0内の圧力が下がり、インク供給通路112から圧力室
100内にインクが吸入される。
When ejecting ink in this piezoelectric type droplet ejecting apparatus, a drive voltage is applied to the piezo element 106. The simplest drive voltage waveform applied at this time is, for example, a rectangular pulse 110. Piezo element 10
When pulse 110 is applied to 6, pulse 110
At the rising of the side wall 104, the side wall 104 is deformed together with the piezo element 106 as shown by a chain line. Due to this deformation, the volume of the pressure chamber 100 increases, and the pressure chamber 10 increases as the volume increases.
The pressure in 0 decreases and ink is sucked into the pressure chamber 100 from the ink supply passage 112.

【0005】パルス110のパルス幅に対応した一定の
時間が経過した後、ピエゾ素子106に印加される電圧
が0Vになると、ピエゾ素子106が実線で示す変形前
の形状に戻る。このとき圧力室100の容積が減少する
が、この減少に伴って圧力室100内の圧力が上昇し、
その圧力室100内に充填されているインクがインク滴
120となってノズル114から噴出する。なお、イン
クジェットプリンタにおいては、上記圧電式液滴噴射装
置が多数備えられている。
When the voltage applied to the piezo element 106 becomes 0 V after a certain time corresponding to the pulse width of the pulse 110 has passed, the piezo element 106 returns to the shape before deformation indicated by the solid line. At this time, the volume of the pressure chamber 100 decreases, but the pressure in the pressure chamber 100 rises with this decrease,
The ink filled in the pressure chamber 100 becomes an ink droplet 120 and is ejected from the nozzle 114. It should be noted that the inkjet printer is provided with a large number of the above-mentioned piezoelectric type droplet ejection devices.

【0006】ところで、上記圧電式液滴噴射装置におい
てインク噴射時には、圧力室100の容積変化に伴って
圧力波が生じ、この圧力波はインクを媒体として圧力室
100内を上下左右に伝播するとともに、壁面104、
インク供給通路112、ノズル114で各々の反射率を
もって反射され、圧力室100内を何度も往復しながら
減衰していく。
By the way, when the ink is ejected in the piezoelectric type droplet ejecting apparatus, a pressure wave is generated along with a change in the volume of the pressure chamber 100, and the pressure wave propagates vertically and horizontally in the pressure chamber 100 using ink as a medium. , Wall surface 104,
The ink is reflected by the ink supply passage 112 and the nozzle 114 with their respective reflectances, and attenuates while repeatedly reciprocating in the pressure chamber 100.

【0007】前記矩形パルス110によるインク噴射の
例でも、インク吸入時に生じた圧力波がインク噴出時も
まだ圧力室100内に存在する。このため、安定かつ効
率よくインクの噴射を行うには、駆動電圧パルスの立ち
下がりのタイミング、すなわちパルス幅を圧力室100
内の圧力波の状態を考慮に入れて設定しなければならな
くなる。
Even in the example of ink ejection by the rectangular pulse 110, the pressure wave generated when the ink is sucked still exists in the pressure chamber 100 when the ink is jetted. Therefore, in order to eject the ink stably and efficiently, the falling timing of the drive voltage pulse, that is, the pulse width is set to the pressure chamber 100.
It will have to be set taking into account the state of the pressure wave inside.

【0008】図10は矩形のパルス110をピエゾ素子
106に印加したときの圧力室100内の圧力変化を詳
しく示したタイミングチャートである。図中の実線は駆
動電圧の立ち上がりのみを印加したとき、すなわちイン
クの吸入のみを実施したときのピエゾ素子106の変位
状態、およびノズル114付近の圧力変化を簡略化して
示したものである。
FIG. 10 is a timing chart showing in detail the pressure change in the pressure chamber 100 when a rectangular pulse 110 is applied to the piezo element 106. The solid line in the figure is a simplified illustration of the displacement state of the piezo element 106 and the pressure change in the vicinity of the nozzle 114 when only the rising of the drive voltage is applied, that is, when only the suction of ink is performed.

【0009】ノズル114付近の圧力は、駆動電圧が立
ち上がったまま一定になってピエゾ素子106と壁面1
04が図9の一点鎖線の位置で安定した後も、圧力波の
伝播速度や圧力室100の形状等によって定められた一
定の周期で変動している。
The pressure in the vicinity of the nozzle 114 becomes constant while the drive voltage rises, and the piezoelectric element 106 and the wall surface 1
Even after 04 is stabilized at the position indicated by the alternate long and short dash line in FIG. 9, it is fluctuated at a constant cycle determined by the propagation velocity of the pressure wave, the shape of the pressure chamber 100, and the like.

【0010】一方、インクを噴射するためには、駆動電
圧を0Vに戻し、ピエゾ素子106の変位を変形前の位
置に戻して、圧力室100内の圧力を高める必要がある
が、この場合、例えば図10の破線で示すようなノズル
付近の圧力が高くなるタイミングで駆動電圧を0Vに戻
してピエゾ素子106を変形前の形状に戻し、圧力室1
00内の圧力を高めると、ノズル付近の圧力にピエゾ素
子106による圧力が足し合わされて、高い噴射圧が得
られる。
On the other hand, in order to eject the ink, it is necessary to return the drive voltage to 0 V and return the displacement of the piezo element 106 to the position before the deformation so as to increase the pressure in the pressure chamber 100. In this case, For example, the drive voltage is returned to 0 V at the timing when the pressure in the vicinity of the nozzle increases as shown by the broken line in FIG.
When the pressure in 00 is increased, the pressure by the piezo element 106 is added to the pressure in the vicinity of the nozzle, and a high injection pressure is obtained.

【0011】逆に、一点鎖線で示すようなノズル付近の
圧力が負になるタイミングで駆動電圧を0Vに戻してピ
エゾ素子106を変形前の形状に戻し、圧力室100内
の圧力を高めようとしても、ピエゾ素子106による圧
力がノズル付近の圧力に打ち消されて、十分な噴射圧が
得られず、インク滴120が噴射されなかったり、噴射
されても所定の飛翔速度や噴射量が得られないため、高
い印字品質が得られなくなる。
On the contrary, when the pressure in the vicinity of the nozzle becomes negative as shown by the alternate long and short dash line, the driving voltage is returned to 0 V to return the piezo element 106 to the shape before the deformation so as to increase the pressure in the pressure chamber 100. Also, the pressure generated by the piezo element 106 is canceled by the pressure in the vicinity of the nozzle, and a sufficient ejection pressure cannot be obtained, and the ink droplet 120 is not ejected, or even if ejected, a predetermined flight speed or ejection amount cannot be obtained. Therefore, high print quality cannot be obtained.

【0012】上記の説明で明らかなように、駆動波形を
決めるときは常に圧力室内の圧力波の特性を把握した
上、その特性にあった駆動波形を設計しなければならな
い。上記説明のように最も単純な矩形パルスの場合は、
図10に示す圧力の振動周期が最も重要とされるが、も
っと複雑な波形形状の駆動パルスを用いる場合は、それ
に加えて例えば圧力振動の位相や減衰率なども考慮する
ことが必要になってくる。
As is apparent from the above description, when determining the drive waveform, the characteristics of the pressure wave in the pressure chamber must be grasped and the drive waveform that matches the characteristics must be designed. For the simplest rectangular pulse as described above,
The vibration cycle of pressure shown in FIG. 10 is most important, but when a drive pulse having a more complicated waveform shape is used, in addition to that, for example, it is necessary to consider, for example, the phase of pressure vibration and the damping rate. come.

【0013】圧力波の周期は、圧力室10の形状、具体
的にはインク供給通路24からノズル22までの寸法
や、圧力室10内における圧力波の伝播速度などに依存
し、圧力波の減衰率はノズルの形状などに依存する。従
来ではこれらの圧力波特性を予めて実験または計算によ
って求めている。
The cycle of the pressure wave depends on the shape of the pressure chamber 10, specifically, the dimension from the ink supply passage 24 to the nozzle 22, the propagation velocity of the pressure wave in the pressure chamber 10, and the like. The rate depends on the shape of the nozzle and the like. Conventionally, these pressure wave characteristics are obtained in advance by experiments or calculations.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記圧
力波の周期、位相、減衰率などの特性はインクの物性や
使用環境などによって変化する。例えば、前記圧力波の
伝播速度は温度によって変化するし、その圧力波の減衰
率はインクの物性や気泡の混入等によって変化する。そ
のため、上記変化に起因して圧力波の特性が変化してし
まうのである。このため、予め定められた駆動パルス
は、常に圧力室100内の圧力波に合致しているとは限
らない。
However, the characteristics of the pressure wave, such as the period, phase, and attenuation rate, change depending on the physical properties of the ink and the environment in which it is used. For example, the propagation speed of the pressure wave changes depending on the temperature, and the attenuation rate of the pressure wave changes depending on the physical properties of the ink and the inclusion of bubbles. Therefore, the characteristics of the pressure wave change due to the above change. Therefore, the predetermined drive pulse does not always match the pressure wave in the pressure chamber 100.

【0015】本発明は、上述した問題点を解決するため
になされたもので、その目的とするところは、インクの
物性や使用環境の変化等に左右されず、常に圧力室内の
圧力波の特性にあった駆動波形をピエゾ素子に印加する
ことが可能な圧電式液滴噴射装置を提供することにあ
る。
The present invention has been made in order to solve the above-mentioned problems, and its purpose is not to be influenced by the physical properties of the ink or changes in the usage environment, etc., but the characteristics of the pressure wave in the pressure chamber are always maintained. It is an object of the present invention to provide a piezoelectric liquid droplet ejecting apparatus capable of applying a suitable drive waveform to a piezo element.

【0016】[0016]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の圧電式液滴噴射装置は、圧電素子に特定
の電圧波形パルスを印加する測定用電圧波形印加手段
と、その測定用電圧波形印加手段によって引き起こした
噴射液を含んだ圧力室内の圧力波を検出する圧力変動検
出手段と、その圧力変動検出手段により検出された圧力
波に基づいて圧力室の固有特性およびその固有特性に合
った液滴噴射用の駆動電圧波形を算出する駆動波形演算
手段と、その駆動電圧波形を記憶する波形記憶手段と、
駆動電圧波形を用いて噴射液を噴射する液滴噴射手段と
を備えている。
In order to achieve the above object, a piezoelectric liquid droplet ejecting apparatus according to the present invention comprises a measuring voltage waveform applying means for applying a specific voltage waveform pulse to a piezoelectric element, and a measuring voltage waveform applying means. A pressure fluctuation detecting means for detecting a pressure wave in the pressure chamber containing the injection liquid caused by the voltage waveform applying means, and a characteristic characteristic of the pressure chamber and its characteristic characteristic based on the pressure wave detected by the pressure fluctuation detecting means. Drive waveform calculation means for calculating a matched drive voltage waveform for droplet ejection, and waveform storage means for storing the drive voltage waveform,
A droplet ejecting unit that ejects the ejecting liquid by using the drive voltage waveform.

【0017】[0017]

【作用】上記の構成を有する本発明の圧電式液滴噴射装
置においては、圧力検出手段によって圧力室内の実際の
圧力波を検出し、その圧力波の特性にあった駆動電圧波
形を算出して圧電素子に印加して噴射液を噴射させるた
め、温度などの使用環境や噴射液の物性等により、圧力
波の周期や減衰率が変化しても、圧電素子の動きと圧力
変動のタイミングがずれることなく、常に所定の飛翔速
度と液滴量をもつ液滴が噴射できる。
In the piezoelectric liquid droplet ejecting apparatus of the present invention having the above-mentioned structure, the pressure detecting means detects the actual pressure wave in the pressure chamber, and calculates the drive voltage waveform that matches the characteristic of the pressure wave. Since the jetting liquid is jetted by being applied to the piezoelectric element, the timing of the movement of the piezoelectric element and the timing of the pressure fluctuation are deviated even if the period of the pressure wave or the attenuation rate changes due to the usage environment such as temperature or the physical properties of the jetting liquid. Therefore, it is possible to always eject a droplet having a predetermined flight speed and a predetermined droplet amount.

【0018】[0018]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。なお、以下の実施例において前記図9の
従来例と共通する部分には同一の符号を付して詳しい説
明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In the following embodiments, the same parts as those in the conventional example of FIG. 9 are designated by the same reference numerals and detailed description thereof will be omitted.

【0019】図1は、インクジェットプリンタの一つの
液滴噴射装置を示す図で、駆動回路30、検出回路3
2、演算回路34および記憶回路35を備えている。駆
動回路30の出力側はピエゾ素子106に接続され、そ
のピエゾ素子106と検出回路32の入力側とが接続さ
れている。検出回路32の出力側は演算回路34の入力
側に接続され、演算回路34の出力側は記憶回路35の
入力側に接続されている。そして、記憶回路35の出力
側は駆動回路30の入力側に接続されている。
FIG. 1 is a diagram showing one droplet ejecting device of an ink jet printer, which is a drive circuit 30 and a detection circuit 3.
2, an arithmetic circuit 34 and a memory circuit 35. The output side of the drive circuit 30 is connected to the piezo element 106, and the piezo element 106 and the input side of the detection circuit 32 are connected. The output side of the detection circuit 32 is connected to the input side of the arithmetic circuit 34, and the output side of the arithmetic circuit 34 is connected to the input side of the storage circuit 35. The output side of the storage circuit 35 is connected to the input side of the drive circuit 30.

【0020】駆動回路30は、例えば、図2のようにパ
ルス発生器36、アンプ38、およびアナログスイッチ
40を備えて構成され、パルス発生器36とアナログス
イッチ40とはアンプ38を介して接続されている。ま
た、アナログスイッチ40はパルス発生器36により断
続が制御される。
The drive circuit 30, for example, comprises a pulse generator 36, an amplifier 38, and an analog switch 40 as shown in FIG. 2, and the pulse generator 36 and the analog switch 40 are connected via the amplifier 38. ing. Further, the pulse generation of the analog switch 40 is controlled by the pulse generator 36.

【0021】駆動回路30は、圧力波の特性を測定する
ときに用いる測定信号SCおよび通常印字するときに用
いる印字信号SPに従って、測定用の駆動電圧波形Pc
または印字用の駆動電圧波形Ppをピエゾ素子106に
印加する。また、圧力波を検出するときは、スイッチ信
号SSに従ってアナログスイッチ40が遮断され、ピエ
ゾ素子106は駆動回路30から電気的に切り離され
る。
The drive circuit 30 drives the measurement drive voltage waveform Pc according to the measurement signal SC used for measuring the characteristics of the pressure wave and the print signal SP used for normal printing.
Alternatively, the drive voltage waveform Pp for printing is applied to the piezo element 106. When detecting a pressure wave, the analog switch 40 is cut off according to the switch signal SS, and the piezo element 106 is electrically disconnected from the drive circuit 30.

【0022】検出回路32は、前記測定用駆動波形Pc
の印加が終了した後に圧力室100内の圧力変動に応じ
てピエゾ素子106に生じる電気信号Vsを検出するた
めのもので、例えば、図3のようにオペアンプ42を備
えて構成され、電気信号Vsをローインピーダンスに変
換した検出信号SVを演算回路34に出力する。上記電
圧信号Vsおよび検出信号SVは、圧力波測定時のタイ
ミングチャートである図6の最下段に示されている圧力
室100内の平均圧力に対応する。
The detection circuit 32 uses the measurement drive waveform Pc.
Is for detecting the electric signal Vs generated in the piezo element 106 in accordance with the pressure fluctuation in the pressure chamber 100 after the application of the electric field Vs is completed. For example, the electric signal Vs is configured by including the operational amplifier 42 as shown in FIG. Is output to the arithmetic circuit 34 as the detection signal SV. The voltage signal Vs and the detection signal SV correspond to the average pressure in the pressure chamber 100 shown at the bottom of FIG. 6, which is a timing chart during pressure wave measurement.

【0023】演算回路34は、上記検出信号SVに基づ
いて圧力室100内の圧力波の周期、減衰率など特性を
演算するもので、例えば、マイクロコンピュータ等を含
んで図4に示す各機能部を備えて構成される。かかる図
4において、整形部44は検出信号SVに含まれている
ノイズをフィルタなどによって除去する部分であり、ピ
ーク検出部46は検出信号SVから圧力変動のピークP
1、P2を検出する部分であり、ピークレベル検出部4
8は各ピークにおける検出信号SVの電圧値をピークレ
ベルQ1、Q2として検出部分であり、周期演算部50
は上記検出されたピークとピークの間の時間から圧力変
動の周期Tを算出部分であり、減衰率演算部は上記検出
されたピークレベルの時間的変化から圧力変動の減衰率
Q1/Q2を算出する部分である。そして、駆動波形演
算部54は上記算出した圧力変動の周期、減衰率など駆
動波形を決定するのに必要なパラメータを用いて、駆動
波形を算出する部分である。尚、算出された駆動波形は
WFとして、記憶回路35に保存する。
The arithmetic circuit 34 calculates characteristics such as the period and the attenuation rate of the pressure wave in the pressure chamber 100 based on the detection signal SV. For example, each functional unit shown in FIG. 4 includes a microcomputer and the like. It is configured with. In FIG. 4, the shaping section 44 is a section for removing noise included in the detection signal SV by a filter or the like, and the peak detection section 46 is a peak P of pressure fluctuation from the detection signal SV.
1, which is a part for detecting P2, and the peak level detecting part 4
Reference numeral 8 is a detection portion for detecting the voltage value of the detection signal SV at each peak as peak levels Q1 and Q2, and the cycle calculation portion 50
Is a portion for calculating the period T of pressure fluctuation from the time between the detected peaks, and the damping rate calculation unit calculates the damping rate Q1 / Q2 of pressure fluctuation from the temporal change of the detected peak level. It is the part to do. Then, the drive waveform calculation unit 54 is a unit that calculates the drive waveform using the parameters required for determining the drive waveform, such as the calculated pressure fluctuation period and the damping rate. The calculated drive waveform is stored in the storage circuit 35 as WF.

【0024】記憶回路35は、図5に示すようにRAM
などの記憶素子を用いて上記駆動波形WFを保存し、印
字動作が行っているとき、常に駆動回路へ駆動波形WF
を提供できるようにする部分である。
The memory circuit 35 is a RAM as shown in FIG.
The above-mentioned drive waveform WF is stored by using a memory element such as, and the drive waveform WF is always sent to the drive circuit during the printing operation.
Is the part that allows us to provide.

【0025】駆動波形WFの校正を行うときは校正信号
SCを駆動回路30に入力し、圧力波を測定するための
駆動波形(以下、測定用駆動波形とする)をピエゾ素子
106に印加する。時間的に追っていくと、電圧が0V
から急に立ち上げると、圧力室100内の平均圧力が急
に減少し、その後駆動電圧を一定の値に保つ様にして、
圧力も変動しながら減衰していく。圧力変動が十分減衰
したのち駆動電圧を0Vに戻すと、圧力室100内に再
度圧力変動が生じる。この時点で図2のアナログスイッ
チ40をオフにし、同時に検出回路32、演算回路34
を作動させて、駆動波形WFを求める。
When calibrating the drive waveform WF, the calibration signal SC is input to the drive circuit 30, and a drive waveform for measuring the pressure wave (hereinafter referred to as a measurement drive waveform) is applied to the piezo element 106. As time goes by, the voltage is 0V
When it is suddenly started from, the average pressure in the pressure chamber 100 suddenly decreases, and then the drive voltage is kept at a constant value.
The pressure also fluctuates and decays. When the driving voltage is returned to 0V after the pressure fluctuation is sufficiently attenuated, the pressure fluctuation occurs again in the pressure chamber 100. At this point, the analog switch 40 of FIG. 2 is turned off, and at the same time, the detection circuit 32 and the arithmetic circuit 34
Is operated to obtain the drive waveform WF.

【0026】このように本実施例の液滴噴射装置におい
ては、圧力室100内の実際の圧力変動をピエゾ素子1
6および検出回路32によって検出し、その検出された
圧力波に基づいて実際印字用の駆動電圧波形を算出する
から、温度などの使用環境やインクの物性などにより圧
力室10内の圧力変動の周期や減衰率が変化しても、常
に圧力変動に合うようなタイミングで駆動パルスが印加
でき、安定したインク滴20が噴射される。
As described above, in the droplet ejecting apparatus of this embodiment, the actual pressure fluctuation in the pressure chamber 100 is measured by the piezo element 1.
6 and the detection circuit 32, and the drive voltage waveform for actual printing is calculated based on the detected pressure wave, the cycle of pressure fluctuations in the pressure chamber 10 depending on the use environment such as temperature and the physical properties of ink. Even if the attenuation rate changes, the drive pulse can be applied at a timing that always matches the pressure fluctuation, and the stable ink droplet 20 is ejected.

【0027】特に、この実施例ではインクジェットプリ
ンタを構成している全ての液滴噴射装置が、それぞれ独
立に圧力変動を検出して駆動波形を計算しているため、
それ等の液滴噴射装置の個体差に拘らず全ての装置がそ
れぞれに適した駆動波形で印字できる。
In particular, in this embodiment, all the liquid droplet ejecting apparatuses constituting the ink jet printer independently detect the pressure fluctuation and calculate the driving waveform.
Regardless of individual differences of such droplet ejecting devices, all devices can print with a drive waveform suitable for each device.

【0028】次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0029】図7の実施例は、前記実施例に比較して駆
動用ピエゾ素子106とは別に圧力検出用ピエゾ素子6
0を設けたもので、検出用ピエゾ素子60と検出回路3
2の入力側が接続されている。この実施例では、駆動回
路30と検出回路32とが電気的に絶縁されるため、よ
り正確に圧力変動を検出できるようになるとともに、前
記アナログスイッチ40は必ずしも必要でなくなる。
The embodiment shown in FIG. 7 is different from the above-mentioned embodiment in that the pressure detecting piezoelectric element 6 is provided separately from the driving piezoelectric element 106.
0 is provided, and the detection piezo element 60 and the detection circuit 3
2 inputs are connected. In this embodiment, since the drive circuit 30 and the detection circuit 32 are electrically insulated, the pressure fluctuation can be detected more accurately, and the analog switch 40 is not always necessary.

【0030】また、図8の実施例は、PZT等の圧電材
料に溝加工を行って多数の圧力室100を形成するとと
もに、その圧力室100を隔てている複数の隔壁62の
両面にそれぞれ電極を形成させ、それ等の隔壁62がそ
のまま圧電素子として機能するようにしたものである。
この場合には、一つの圧力室100の両側の隔壁62か
ら圧力変動が検出できるため、より高精度で、駆動波形
が算出できる。
In the embodiment shown in FIG. 8, a piezoelectric material such as PZT is grooved to form a large number of pressure chambers 100, and electrodes are formed on both surfaces of a plurality of partition walls 62 separating the pressure chambers 100. Are formed so that the partition walls 62 function as piezoelectric elements as they are.
In this case, since the pressure fluctuation can be detected from the partition walls 62 on both sides of one pressure chamber 100, the drive waveform can be calculated with higher accuracy.

【0031】前記の各実施例ではインクジェットプリン
タを構成している全ての液滴噴射装置が、それぞれ検出
回路32、演算回路34および記憶回路35を含んで構
成されていたが、どれか一つ、或は一部の液滴噴射装置
のみを前記実施例のように構成し、それらの液滴噴射装
置によって求められた駆動波形を他の液滴噴射装置に適
用することも可能である。
In each of the above-mentioned embodiments, all of the liquid droplet ejecting apparatuses constituting the ink jet printer are configured to include the detecting circuit 32, the arithmetic circuit 34 and the memory circuit 35, respectively. Alternatively, it is also possible to configure only some of the droplet ejecting devices as in the above-described embodiment and apply the drive waveforms obtained by those droplet ejecting devices to other droplet ejecting devices.

【0032】また、一つあるいは複数の、印字には使用
しない測定専用のダミー液滴噴射装置を備え付け、それ
らダミー噴射装置によって求められた駆動波形を他の印
字用液滴噴射装置に適用することも可能である。
In addition, one or a plurality of dummy droplet ejecting devices dedicated to measurement, which are not used for printing, are provided, and the drive waveforms obtained by these dummy ejecting devices are applied to another droplet ejecting device for printing. Is also possible.

【0033】なお、前記の各実施例で述べた圧力変動の
検出から駆動波形の算出までの一連の動作は、一定の時
間間隔ごとにまたは一定の印字数ごとに行ってもよい
し、プリンタ電源の入力時、或いは任意のスイッチ操作
時に行ってもよい。また、圧電素子に印加する測定用電
圧波形は必ずしもインク滴120を噴射できる程度の電
圧値に達していなくてもよい。すなわち、圧力変動の周
期Tは駆動電圧の大きさに拘らず一定である一方、変動
のピーク値は駆動電圧に対応するため、圧力波の減衰率
も計算できるのである。
The series of operations from the detection of the pressure fluctuation to the calculation of the drive waveform described in each of the above-described embodiments may be carried out at a fixed time interval or a fixed number of prints, or the printer power supply. May be performed at the time of inputting or when any switch is operated. Further, the voltage waveform for measurement applied to the piezoelectric element does not necessarily have to reach a voltage value at which the ink droplet 120 can be ejected. That is, the cycle T of the pressure fluctuation is constant regardless of the magnitude of the driving voltage, while the peak value of the fluctuation corresponds to the driving voltage, so that the attenuation rate of the pressure wave can be calculated.

【0034】その他一々例示しないが、本発明は当業者
の知識に基づいて種々の変更、改良を加えた態様で実施
することができる。
Although not illustrated one by one, the present invention can be implemented in various modified and improved modes based on the knowledge of those skilled in the art.

【0035】[0035]

【発明の効果】以上説明したことから明らかなように、
本発明の液滴噴射装置は、温度などの使用環境や噴射液
の物性等により、圧力波の周期や減衰率が変化しても、
圧電素子の動きと圧力変動のタイミングがずれることな
く、常に所定の飛翔速度と液滴量をもつ液滴が噴射で
き、効率よくかつ安定した印字ができる。
As is apparent from the above description,
The droplet ejecting apparatus of the present invention, even if the cycle of the pressure wave or the attenuation rate changes due to the use environment such as temperature or the physical properties of the ejected liquid,
A droplet having a predetermined flight velocity and a predetermined droplet amount can be ejected at all times without shifting the timing of the movement of the piezoelectric element and the pressure fluctuation, and efficient and stable printing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧電式液滴噴射装置の一実施例の基本
構成を説明する図である。
FIG. 1 is a diagram illustrating a basic configuration of an embodiment of a piezoelectric droplet ejecting device of the invention.

【図2】本発明の圧電式液滴噴射装置に用いられる駆動
回路の具体例を示す図である。
FIG. 2 is a diagram showing a specific example of a drive circuit used in the piezoelectric liquid droplet ejecting apparatus of the invention.

【図3】本発明の圧電式液滴噴射装置に用いられる検出
回路の具体例を示す図である。
FIG. 3 is a diagram showing a specific example of a detection circuit used in the piezoelectric liquid droplet ejecting apparatus of the invention.

【図4】本発明の圧電式液滴噴射装置に用いられる演算
回路の機能を説明するブロック線図である。
FIG. 4 is a block diagram illustrating a function of an arithmetic circuit used in the piezoelectric liquid droplet ejecting apparatus of the invention.

【図5】本発明の圧電式液滴噴射装置に用いられる記憶
回路の機能を説明するブロック線図である。
FIG. 5 is a block diagram illustrating a function of a memory circuit used in the piezoelectric liquid droplet ejecting apparatus of the invention.

【図6】図1に示す圧電式液滴噴射装置の駆動電圧、ピ
エゾ素子の変位、圧力室内の圧力変動に関するタイミン
グチャートである。
FIG. 6 is a timing chart regarding the drive voltage, the displacement of the piezo element, and the pressure fluctuation in the pressure chamber of the piezoelectric liquid droplet ejection apparatus shown in FIG.

【図7】本発明の圧電式液滴噴射装置の他の実施例の基
本構成を説明する図である。
FIG. 7 is a diagram illustrating the basic configuration of another embodiment of the piezoelectric type droplet ejection device of the present invention.

【図8】本発明の圧電式液滴噴射装置の更に別の実施例
の基本構成を説明する図である。
FIG. 8 is a diagram illustrating the basic configuration of yet another embodiment of the piezoelectric liquid droplet ejection apparatus of the present invention.

【図9】従来の液滴噴射装置の一例を示す図である。FIG. 9 is a diagram showing an example of a conventional droplet ejection device.

【図10】図8の従来例の駆動電圧、ピエゾ素子の変
位、ノズル付近の圧力変動に関するタイミングチャート
である。
10 is a timing chart regarding the drive voltage, the displacement of the piezo element, and the pressure fluctuation near the nozzle in the conventional example of FIG.

【符号の説明】[Explanation of symbols]

10 圧力室 16 ピエゾ素子 22 ノズル 30 駆動回路 32 検出回路 34 演算回路 35 記憶回路 60 圧力変動検出用ピエゾ素子 62 隔壁(圧電素子) WF 駆動電圧波形 10 Pressure Chamber 16 Piezo Element 22 Nozzle 30 Drive Circuit 32 Detection Circuit 34 Arithmetic Circuit 35 Memory Circuit 60 Pressure Variation Detection Piezo Element 62 Partition Wall (Piezoelectric Element) WF Drive Voltage Waveform

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電素子を用いて圧力室の容積を変化
させることにより、該圧力室内の噴射液をノズルから噴
射する圧電式液滴噴射装置において、 前記圧電素子に特定の電圧波形パルスを印加する測定用
電圧波形印加手段と、 その測定用電圧波形印加手段によって引き起こした前記
噴射液を含んだ圧力室内の圧力波を検出する圧力変動検
出手段と、 その圧力変動検出手段検出された圧力波に基づいて前記
圧力室の固有特性およびその固有特性に合った液滴噴射
用の駆動電圧波形を算出する駆動波形演算手段と、 その駆動電圧波形を記憶する波形記憶手段と、 前記駆動電圧波形を用いて前記噴射液を噴射する液滴噴
射手段とを有することを特徴とする圧電式液滴噴射装
置。
1. A piezoelectric liquid droplet ejecting apparatus for ejecting an ejecting liquid in a pressure chamber from a nozzle by changing the volume of the pressure chamber using the piezoelectric element, wherein a specific voltage waveform pulse is applied to the piezoelectric element. Measuring voltage waveform applying means, pressure fluctuation detecting means for detecting a pressure wave in the pressure chamber containing the injection liquid caused by the measuring voltage waveform applying means, and the pressure fluctuation detecting means Drive waveform calculation means for calculating a characteristic characteristic of the pressure chamber and a drive voltage waveform for droplet ejection based on the characteristic characteristic, a waveform storage means for storing the drive voltage waveform, and the drive voltage waveform And a liquid droplet ejecting means for ejecting the ejection liquid.
JP14453193A 1992-09-11 1993-06-16 Piezoelectric droplet ejector Expired - Lifetime JP3285253B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14453193A JP3285253B2 (en) 1993-06-16 1993-06-16 Piezoelectric droplet ejector
US08/599,263 US5757392A (en) 1992-09-11 1996-02-09 Piezoelectric type liquid droplet ejecting device which compensates for residual pressure fluctuations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14453193A JP3285253B2 (en) 1993-06-16 1993-06-16 Piezoelectric droplet ejector

Publications (2)

Publication Number Publication Date
JPH07132592A true JPH07132592A (en) 1995-05-23
JP3285253B2 JP3285253B2 (en) 2002-05-27

Family

ID=15364489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14453193A Expired - Lifetime JP3285253B2 (en) 1992-09-11 1993-06-16 Piezoelectric droplet ejector

Country Status (1)

Country Link
JP (1) JP3285253B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931652A3 (en) * 1998-01-24 2000-01-19 Eastman Kodak Company An imaging apparatus capable of inhibiting inadvertent ejection of a satellite ink droplet therefrom and method of assembling same
US6858860B2 (en) 2001-07-24 2005-02-22 Seiko Epson Corporation Apparatus and method for measuring natural period of liquid
WO2006067704A1 (en) * 2004-12-21 2006-06-29 Koninklijke Philips Electronics N.V. Method for determining a constitution of a fluid that is present inside a dosing device
JP2006272882A (en) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Liquid delivery head
JP2006281540A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Liquid delivering apparatus
JP2006347070A (en) * 2005-06-17 2006-12-28 Fujifilm Holdings Corp Liquid discharge head and image forming apparatus
WO2007060634A1 (en) * 2005-11-28 2007-05-31 Koninklijke Philips Electronics N. V. Ink jet device for releasing controllably a plurality of substances onto a substrate, method of discriminating between a plurality of substances and use of an ink jet device
JP2007216581A (en) * 2006-02-17 2007-08-30 Fujifilm Corp Liquid ejection device and pressure detection method
US7475959B2 (en) 2004-09-22 2009-01-13 Fujifilm Corporation Liquid ejection apparatus and liquid ejection head restoring method
US7520585B2 (en) 2005-03-30 2009-04-21 Fujifilm Coroporation Liquid ejection head and liquid ejection apparatus having multiple pressure sensor member layers
US7524040B2 (en) 2005-06-15 2009-04-28 Fujifilm Corp. Liquid ejection head and liquid ejection apparatus
US7641323B2 (en) 2004-09-30 2010-01-05 Fujifilm Corporation Liquid ejection head
JP2014081269A (en) * 2012-10-16 2014-05-08 Seiko Epson Corp Pressure measuring device
CN104441991A (en) * 2013-09-17 2015-03-25 精工爱普生株式会社 Printing apparatus and method of controlling printing apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931652A3 (en) * 1998-01-24 2000-01-19 Eastman Kodak Company An imaging apparatus capable of inhibiting inadvertent ejection of a satellite ink droplet therefrom and method of assembling same
US6858860B2 (en) 2001-07-24 2005-02-22 Seiko Epson Corporation Apparatus and method for measuring natural period of liquid
US7475959B2 (en) 2004-09-22 2009-01-13 Fujifilm Corporation Liquid ejection apparatus and liquid ejection head restoring method
US7641323B2 (en) 2004-09-30 2010-01-05 Fujifilm Corporation Liquid ejection head
WO2006067704A1 (en) * 2004-12-21 2006-06-29 Koninklijke Philips Electronics N.V. Method for determining a constitution of a fluid that is present inside a dosing device
US7520585B2 (en) 2005-03-30 2009-04-21 Fujifilm Coroporation Liquid ejection head and liquid ejection apparatus having multiple pressure sensor member layers
JP2006272882A (en) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Liquid delivery head
JP2006281540A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Liquid delivering apparatus
US7524040B2 (en) 2005-06-15 2009-04-28 Fujifilm Corp. Liquid ejection head and liquid ejection apparatus
JP2006347070A (en) * 2005-06-17 2006-12-28 Fujifilm Holdings Corp Liquid discharge head and image forming apparatus
WO2007060634A1 (en) * 2005-11-28 2007-05-31 Koninklijke Philips Electronics N. V. Ink jet device for releasing controllably a plurality of substances onto a substrate, method of discriminating between a plurality of substances and use of an ink jet device
JP2007216581A (en) * 2006-02-17 2007-08-30 Fujifilm Corp Liquid ejection device and pressure detection method
JP2014081269A (en) * 2012-10-16 2014-05-08 Seiko Epson Corp Pressure measuring device
CN104441991A (en) * 2013-09-17 2015-03-25 精工爱普生株式会社 Printing apparatus and method of controlling printing apparatus

Also Published As

Publication number Publication date
JP3285253B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
US5757392A (en) Piezoelectric type liquid droplet ejecting device which compensates for residual pressure fluctuations
JP3285253B2 (en) Piezoelectric droplet ejector
JP4247043B2 (en) Inkjet head drive device
JP5287165B2 (en) Droplet discharge device and maintenance program
EP1900528B1 (en) Liquid ejection head and driving method thereof
JP6648251B2 (en) Method for operating an inkjet printhead
US6412925B1 (en) Ink jet apparatus with ejection parameters based on print conditions
JPH11170521A (en) Method and apparatus for ejecting ink droplets
JP3319733B2 (en) INK JET RECORDING APPARATUS AND CONTROL METHOD THEREOF
JP2000318183A (en) Method and apparatus for detecting filling of recording head in printer
JP2007216576A (en) Head correction method, droplet ejection method, and droplet ejector
US20200094554A1 (en) Liquid ejecting apparatus
JP4069123B2 (en) Inkjet recording device
JPH06155733A (en) Ink jet device
JPH0691204A (en) Piezoelectric liquid droplet ejection device
JP5411830B2 (en) Method and apparatus for driving ink jet head of ink jet recording apparatus
JP2002225250A (en) Ink jet recording device
KR20080032461A (en) Resonant cycle selection method of inkjet head
JP2005074651A (en) Inkjet recording device
JP7596734B2 (en) Liquid injection device
EP3851283B1 (en) Determining the operational status of a printhead
EP4400319A1 (en) Head unit, liquid ejection device, and control method
JP3546880B2 (en) Inkjet printer
JP4672423B2 (en) Inkjet recording device
KR20070084841A (en) Printing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080308

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120308

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

EXPY Cancellation because of completion of term