[go: up one dir, main page]

JPH07131070A - Semiconductor light emitting element and semiconductor light emitting element array - Google Patents

Semiconductor light emitting element and semiconductor light emitting element array

Info

Publication number
JPH07131070A
JPH07131070A JP29271693A JP29271693A JPH07131070A JP H07131070 A JPH07131070 A JP H07131070A JP 29271693 A JP29271693 A JP 29271693A JP 29271693 A JP29271693 A JP 29271693A JP H07131070 A JPH07131070 A JP H07131070A
Authority
JP
Japan
Prior art keywords
light emitting
light
light output
film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29271693A
Other languages
Japanese (ja)
Inventor
Takehisa Koyama
剛久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP29271693A priority Critical patent/JPH07131070A/en
Publication of JPH07131070A publication Critical patent/JPH07131070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce element resistance and at the same time achieve a high light output by forming an electrode film consisting of a metal transparent conductive film with ohmic junction properties on a light output surface and a transparent conductive film with the maximum transmittance near the peak wavelength of output light and then connecting a metal wiring to the electrode film. CONSTITUTION:A light emitting diode array 1 covers a light output surface 12 and forms a metal transparent conductive film 13a indicating ohmic junction properties and an oxide semiconductor transparent conductive film 13 which protects it and has the maximum transmittance near the peak wavelength of output light. An electrode 14 for wiring is formed in contact with the peripheral part which is other than that directly above the light output surface 12 of the electrode film 13, thus preventing ohmic junction property from being lost and output light from being sheldeel by the light output surface 12. Further. the reflection of light emitted externally from the light output surface 12 on the interface is prevented. light transmission property is improved, and a low element resistance and a high light output are achieved. Also, a light emitting element 9 can be integrated with a high density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体発光素子に係
り、特に面発光型の半導体発光素子及び半導体発光素子
アレイに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a surface emitting type semiconductor light emitting device and a semiconductor light emitting device array.

【0002】[0002]

【従来の技術】従来より、半導体発光素子を高密度に集
積してアレイ化したものが、光プリンタ用光源、あるい
は光を用いた情報処理用素子などに使用されている。近
年、プリンタの小型化高画質化により、発光素子の高輝
度、高密度化が求められている。 基板上に積層させた
半導体結晶層を電気的に分離して、発光素子を列状に形
成する発光ダイオ−ドモノリシックアレイでは、発光素
子を分離する方法としてはメサ型エッチング法が多く用
いられている。
2. Description of the Related Art Conventionally, a semiconductor light emitting element integrated in high density to form an array has been used as a light source for an optical printer or an information processing element using light. 2. Description of the Related Art In recent years, with the miniaturization of printers and higher image quality, higher brightness and higher density of light emitting elements are required. In a light emitting diode monolithic array in which semiconductor crystal layers laminated on a substrate are electrically separated to form light emitting elements in rows, a mesa-type etching method is often used as a method for separating the light emitting elements. There is.

【0003】次に、メサ型エッチング法による従来の発
光ダイオ−ドアレイの一例を図3、図4を参照して説明
する。図3は、従来の発光ダイオ−ドアレイの一例の構
造を示す列方向の部分拡大平面図であり、図4は、図3
のB−B線断面図である。両図において、従来例の発光
ダイオ−ドアレイ21は、n−GaAs基板2上に、n
−GaAsバッファ層3、n−Al0.45Ga0.55Asと
n−AlAsとを1組として、25組積層された反射層
4、n−Al0.7 Ga0.3 Asクラッド層5、p−Al
0.3 Ga0.7 As発光層6、p−Al0.7 Ga0.3 As
クラッド層7が順次積層された半導体結晶層を、エッチ
ングによる分離溝10によって分離された複数の発光素
子29を有し、電極接合部を除く半導体結晶層上面、及
び分離溝10表面には、SiN反射防止膜30が形成さ
れている。基板2の下面全面には電極15が設置されて
いる。又、個々の発光素子29の上面の光出力面22に
はコンタクト層28を介して電極23が設置され、メサ
型のエッチング溝上を這うようにして配線用の電極24
が引き出されている。
Next, an example of a conventional light emitting diode array by the mesa type etching method will be described with reference to FIGS. 3 is a partially enlarged plan view in the column direction showing the structure of an example of a conventional light emitting diode array, and FIG.
FIG. 6 is a sectional view taken along line BB of In both figures, a conventional light emitting diode array 21 has an n-type GaAs substrate 2 with n
-GaAs buffer layer 3, n-Al 0.45 Ga 0.55 As and n-AlAs as one set, 25 sets of reflective layers 4, n-Al 0.7 Ga 0.3 As clad layer 5, p-Al
0.3 Ga 0.7 As light emitting layer 6, p-Al 0.7 Ga 0.3 As
The semiconductor crystal layer in which the clad layer 7 is sequentially laminated has a plurality of light emitting elements 29 separated by the separation groove 10 by etching, and the semiconductor crystal layer upper surface excluding the electrode bonding portion and the surface of the separation groove 10 have SiN. An antireflection film 30 is formed. An electrode 15 is provided on the entire lower surface of the substrate 2. Further, an electrode 23 is provided on the light output surface 22 on the upper surface of each light emitting element 29 via a contact layer 28, and an electrode 24 for wiring is laid so as to crawl on a mesa type etching groove.
Has been pulled out.

【0004】ここで、上記反射層4のそれぞれの膜は、
干渉によって反射率を最大にするよう選ぶ物で、発光層
6から基板2側に発光された光をこの反射層4によって
反射させて基板2による光吸収を無くするものである。
通常この膜厚dは、部材の屈折率をn、発光中心波長を
λpとしたとき膜厚dは次式で与えられる。 d=λp/4n この組数を増やすことにより、反射層4の性能(最大反
射率)を向上させている。
Here, each film of the reflection layer 4 is
It is a material selected to maximize the reflectance by interference, and the light emitted from the light emitting layer 6 to the substrate 2 side is reflected by the reflective layer 4 to eliminate the light absorption by the substrate 2.
Usually, this film thickness d is given by the following equation when the refractive index of the member is n and the emission center wavelength is λp. d = λp / 4n By increasing the number of sets, the performance (maximum reflectance) of the reflective layer 4 is improved.

【0005】又、SiN反射防止膜30は、出力光の光
出力面22での反射成分を干渉により除去し、透過率を
最大にするものであると共に、電極24と半導体結晶層
との間に介在させて絶縁体としても働く。
Further, the SiN antireflection film 30 removes the reflection component of the output light on the light output surface 22 by interference and maximizes the transmittance, and at the same time, between the electrode 24 and the semiconductor crystal layer. It also acts as an insulator by interposing it.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述したよ
うな構造の従来例の発光ダイオ−ドアレイ21によれ
ば、光出力面22における電極23を大きくすると、抵
抗の減少により素子から発生する熱が抑制され量子的な
効率は向上するが電極23による出力光の遮断面積が大
きくなり逆に出力の低下を招き、逆に電極23を小さく
すると、抵抗が増加し発光効率が低下すると共に、高密
度化による薄膜化で電流広がりが十分にとれないことか
ら十分な発光出力を得ることができないという問題点が
あった。又、より高密度に発光素子を集積した場合に
は、光出力面22は必然的に小さくなり、光出力面22
上の電極23による出力光の遮断と相伴って更に光出力
は弱くなるという問題点があった。
By the way, according to the conventional light emitting diode array 21 having the above-mentioned structure, when the electrode 23 on the light output surface 22 is enlarged, the heat generated from the element due to the decrease in resistance is generated. Although the quantum efficiency is suppressed and the quantum efficiency is improved, the area where the output light is blocked by the electrode 23 is increased and the output is decreased. Conversely, when the electrode 23 is decreased, the resistance is increased and the light emission efficiency is decreased. There is a problem that a sufficient light emission output cannot be obtained because the current spread cannot be sufficiently taken due to the thinning due to the reduction in thickness. Further, when the light emitting elements are integrated with higher density, the light output surface 22 is inevitably small and the light output surface 22 is
There is a problem that the light output is further weakened along with the blocking of the output light by the upper electrode 23.

【0007】そこで、本発明は上記の点に着目してなさ
れたものであって、低い素子抵抗と高い光出力とを実現
する半導体発光素子及びこの半導体発光素子が高密度に
集積された半導体発光素子アレイを提供することを目的
とする。
Therefore, the present invention has been made by paying attention to the above points, and a semiconductor light emitting element which realizes a low element resistance and a high light output, and a semiconductor light emitting element in which the semiconductor light emitting elements are integrated at a high density are provided. An object is to provide an element array.

【0008】[0008]

【課題を解決するための手段】本発明の半導体発光素子
は、基板上に、発光層を含む半導体結晶層を積層して、
前記発光層からの光を前記半導体結晶層上面の光出力面
から出力する面発光型の半導体発光素子において、オー
ミック接合特性を示す金属の透明導電膜と、出力される
光のピーク波長近傍に最大透過率を持つような透明導電
膜とからなる電極膜を前記光出力面に形成し、前記電極
膜に金属配線を接続したことにより上述の目的を達成す
るものである。
A semiconductor light emitting device according to the present invention has a structure in which a semiconductor crystal layer including a light emitting layer is laminated on a substrate,
In a surface emitting semiconductor light emitting device that outputs light from the light emitting layer from a light output surface on the upper surface of the semiconductor crystal layer, a metal transparent conductive film exhibiting ohmic junction characteristics and a maximum wavelength near the peak wavelength of the output light. The above object is achieved by forming an electrode film made of a transparent conductive film having a transmittance on the light output surface and connecting a metal wiring to the electrode film.

【0009】又、前記電極膜を前記光出力面全面とその
周辺部分とを覆って形成し、前記電極膜の前記光出力面
を遮蔽しない部分に接して前記金属配線を形成したこと
により上述の目的を達成するものである。
The electrode film is formed so as to cover the entire surface of the light output surface and its peripheral portion, and the metal wiring is formed in contact with a portion of the electrode film that does not shield the light output surface. It achieves the purpose.

【0010】又、本発明の半導体発光素子アレイは、前
記半導体発光素子を列状に複数形成したことにより上述
の目的を達成するものである。
Further, the semiconductor light emitting device array of the present invention achieves the above-mentioned object by forming a plurality of the semiconductor light emitting devices in a row.

【0011】[0011]

【実施例】以下、図1、図2を参照して本発明の一実施
例を説明する。なお、上述した従来例と同様の構成部
分、または従来例と対応する構成部分には、同様の符号
を用いてその説明を省略することがある。図1は、本発
明の半導体発光素子及び半導体発光素子アレイの一実施
例である発光ダイオ−ドアレイの構造を示す部分拡大平
面図で、図2は、図1のA−A線断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The same components as those of the above-described conventional example or components corresponding to those of the conventional example are denoted by the same reference numerals, and the description thereof may be omitted. 1 is a partially enlarged plan view showing a structure of a light emitting diode array which is an embodiment of a semiconductor light emitting device and a semiconductor light emitting device array of the present invention, and FIG. 2 is a sectional view taken along the line AA of FIG. .

【0012】両図において、本実施例の発光ダイオ−ド
アレイ1は従来例の発光ダイオ−ドアレイ21に比し
て、光出力面12全面とその周辺部分とを覆って電極膜
13を形成し、電極膜13の光出力面12を遮蔽しない
周辺部分に配線用の電極14を接続した点が主に異な
る。本実施例の発光ダイオ−ドアレイ1をその製造工程
と共に説明する。半導体発光素子アレイ1は、まずn−
GaAs基板2上に、Seを添加しキャリア濃度が2×
1018cm-3で膜厚0.5μm のn−GaAsバッファー
層3を積層し、続いてSeを添加しキャリア濃度が2×
1018cm-3で膜厚が0.05μmのn−Al0.45Ga
0.55Asと膜厚0.057μm のn−AlAsとを1組
として、25組積層した反射膜4を積層する。
In both figures, the light emitting diode array 1 of this embodiment has an electrode film 13 formed to cover the entire light output surface 12 and its peripheral portion, as compared with the light emitting diode array 21 of the conventional example. The main difference is that an electrode 14 for wiring is connected to a peripheral portion of the electrode film 13 that does not shield the light output surface 12. The light emitting diode array 1 of this embodiment will be described together with its manufacturing process. The semiconductor light emitting element array 1 is first of
Se is added on the GaAs substrate 2 so that the carrier concentration is 2 ×.
An n-GaAs buffer layer 3 having a thickness of 10 18 cm -3 and a thickness of 0.5 μm is laminated, and then Se is added to make the carrier concentration 2 ×.
N-Al 0.45 Ga with a thickness of 10 18 cm -3 and a thickness of 0.05 μm
Twenty-five sets of the reflection films 4 are laminated, with 0.55 As and n-AlAs having a thickness of 0.057 μm as one set.

【0013】さらに反射膜4上に、Seを添加しキャリ
ア濃度が1×1018cm-3で膜厚が5μm のn−Al0.7
Ga0.3 Asクラッド層5と、Znを添加しキャリア濃
度が5×1017cm-3で膜厚が0.5μm のp−Al0.3
Ga0.7 As発光層6と、Znを添加しキャリア濃度が
8×1017cm-3で膜厚が2μm のp−Al0.7 Ga0.3
Asクラッド層7と、Znを添加しキャリア濃度が1×
1019cm-3で膜厚が0.01μm のp−GaAsコンタ
クト層8とを積層する。これらはすべて有機金属気相成
長法(MOCVD法)または、分子線エピタキシー法
(MBE法)等を用いて行う。
Further, Se is added on the reflective film 4 to make n-Al 0.7 having a carrier concentration of 1 × 10 18 cm -3 and a film thickness of 5 μm.
Ga 0.3 As clad layer 5 and Zn-added p-Al 0.3 with a carrier concentration of 5 × 10 17 cm -3 and a film thickness of 0.5 μm.
Ga 0.7 As light emitting layer 6 and Zn-added p-Al 0.7 Ga 0.3 with a carrier concentration of 8 × 10 17 cm -3 and a film thickness of 2 μm.
As clad layer 7 and Zn are added so that the carrier concentration is 1 ×
A p-GaAs contact layer 8 having a thickness of 10 19 cm -3 and a thickness of 0.01 μm is laminated. All of these are performed using a metal organic chemical vapor deposition method (MOCVD method), a molecular beam epitaxy method (MBE method), or the like.

【0014】次に、複数の発光素子9に分離する分離溝
10を形成する。気相成長法(CVD法)により半導体
層上にSiO2 膜を積層し、後に通常のリソグラフィー
技術を用いSiO2 膜を所望のパターンにエッチングを
行う。残ったSiO2 膜をエッチングマスクとし、塩酸
エッチング液を用いて分離溝10を形成する。更に、気
相成長法により全面に保護膜としてSiO2 膜11を積
層した後、通常のリソグラフィー技術及びエッチング技
術により個々の発光素子9の光出力面12のSiO2
11を取り除く。
Next, a separation groove 10 for separating the plurality of light emitting elements 9 is formed. The SiO 2 film was laminated on the semiconductor layer by vapor deposition (CVD), and etching the SiO 2 film into a desired pattern using conventional lithographic techniques after. Using the remaining SiO 2 film as an etching mask, the separation groove 10 is formed using a hydrochloric acid etching solution. Further, after laminating a SiO 2 film 11 as a protective film on the entire surface by vapor deposition, by conventional lithography and etching removing the SiO 2 film 11 of the light output surface 12 of each light emitting element 9.

【0015】次に、光出力面12に電極膜13を形成す
る。ここで、電極膜は透明導電膜から形成し、この透明
導電膜とは、大きな導電性と可視域での高透光性を兼備
する膜であり、大きく分類すると金属透明導電膜と酸化
物半導体透明導電膜がある。そこで、半導体発光素子の
光出力面に、半導体とオーミック接合特性を示す金属透
明導電膜を積層する。この金属透明導電膜は0.01μ
m 以下と非常に薄くする必要があり、膜強度が劣るの
で、保護膜として酸化物半導体透明導電膜を上面に積層
する。又、この透明導電膜の屈折率と膜厚を適当に設定
すると、反射を減少して透過率を向上させることができ
る。膜厚dは、部材の屈折率をn、発光中心波長をλ
p、mを正の整数としたとき次式で与えられる。 d=(2m−1)λp/4n
Next, an electrode film 13 is formed on the light output surface 12. Here, the electrode film is formed from a transparent conductive film, and this transparent conductive film is a film that has both large conductivity and high translucency in the visible region, and is roughly classified into a metal transparent conductive film and an oxide semiconductor. There is a transparent conductive film. Therefore, a metal transparent conductive film having ohmic contact characteristics with the semiconductor is laminated on the light output surface of the semiconductor light emitting device. This metal transparent conductive film is 0.01μ
Since it needs to be made very thin as m or less and the film strength is poor, an oxide semiconductor transparent conductive film is laminated on the upper surface as a protective film. Further, if the refractive index and the film thickness of this transparent conductive film are set appropriately, reflection can be reduced and the transmittance can be improved. The film thickness d is such that the refractive index of the member is n and the emission center wavelength is λ.
When p and m are positive integers, they are given by the following equation. d = (2m−1) λp / 4n

【0016】ここでは、例えばスパッタ法により金属透
明導電膜のAg膜13aを0.005μm、酸化物半導
体透明導電膜のCd2 SnO4 膜13bを0.4μm積
層した後、通常のリソグラフィー技術及びエッチング技
術によりAg膜13a及びCd2 SnO4 膜13bの光
出力面12全面とその周辺部までを覆った部分以外を取
り除いて形成する。これらの透明導電膜によって発光層
6から出力される光のピーク波長近傍に最大透過率を持
つような電極膜13を形成する。
Here, after the Ag film 13a of the metal transparent conductive film is laminated by 0.005 μm and the Cd 2 SnO 4 film 13b of the oxide semiconductor transparent conductive film is laminated by 0.4 μm by, for example, a sputtering method, a usual lithography technique and etching are carried out. By the technique, the Ag film 13a and the Cd 2 SnO 4 film 13b are formed by removing all but the part covering the entire light output surface 12 and its peripheral portion. With these transparent conductive films, the electrode film 13 having the maximum transmittance is formed in the vicinity of the peak wavelength of the light output from the light emitting layer 6.

【0017】そして、スパッタ法と、リソグラフィー技
術及びエッチング技術により、電極膜13の光出力面1
2直上以外の周辺部分に接してAlからなる配線用の電
極14と、基板下面の電極15を形成する。配線用の電
極14は分離溝9を這うようにして形成されており、S
iO2 膜11によって半導体結晶層とは絶縁されてい
る。
Then, the light output surface 1 of the electrode film 13 is formed by the sputtering method, the lithography technique and the etching technique.
2. A wiring electrode 14 made of Al and an electrode 15 on the lower surface of the substrate are formed in contact with the peripheral portion other than directly above. The wiring electrode 14 is formed so as to crawl the separation groove 9, and S
The iO 2 film 11 is insulated from the semiconductor crystal layer.

【0018】以上のような構成よりなる本発明の一実施
例の発光ダイオ−ドアレイ1によれば、光出力面12を
覆って、オーミック接合特性を示す金属透明導電膜(A
g膜13a)と、更にこれを保護して出力される光のピ
ーク波長近傍に最大透過率を持つような酸化物半導体透
明導電膜(Cd2 SnO4 膜13b)とによって電極膜
13を形成し、電極膜13の光出力面12直上以外の周
辺部分に接して電極14を形成したので、オーミック接
合性を損なうことがなく、しかも光出力面12で出力光
が遮断されることことがなく、更に、光出力面12から
外部に出射される光の界面での反射をなくし、透光性が
向上し、低い素子抵抗と高い光出力とを実現することが
できる。従って、十分な光出力を得つつも、非常に高密
度に発光素子9を集積することが可能である。
According to the light emitting diode array 1 of the embodiment having the above-mentioned structure, the transparent metal conductive film (A) covering the light output surface 12 and exhibiting ohmic contact characteristics.
and the oxide semiconductor transparent conductive film (Cd 2 SnO 4 film 13b) which has the maximum transmittance in the vicinity of the peak wavelength of the output light by protecting it. Since the electrode 14 is formed in contact with the peripheral portion of the electrode film 13 other than immediately above the light output surface 12, the ohmic contact is not impaired, and the output light is not blocked by the light output surface 12. Further, it is possible to eliminate the reflection of the light emitted from the light output surface 12 to the outside at the interface, improve the translucency, and realize low element resistance and high light output. Therefore, it is possible to integrate the light emitting elements 9 in a very high density while obtaining a sufficient light output.

【0019】なお、本実施例で用いた具体的な数値、材
料名、製造方法等は説明のために使用したにすぎないも
のであって、本発明に係わる半導体発光素子及び半導体
発光素子アレイは、これらに限定されるものではない。
It should be noted that the specific numerical values, material names, manufacturing methods, etc. used in this embodiment are merely used for explanation, and the semiconductor light emitting device and the semiconductor light emitting device array according to the present invention are However, the present invention is not limited to these.

【0020】[0020]

【発明の効果】以上説明したように、本発明の半導体発
光素子によれば、光出力面にオ−ミック接合特性をもつ
金属の透明導電膜と、出力される光のピーク波長近傍に
最大透過率を持つような透明導電膜とからなる電極膜を
形成し、この電極膜に金属配線を接続したので、素子抵
抗を低減させることができると共に、高い光出力を実現
することができる。
As described above, according to the semiconductor light emitting device of the present invention, the metal transparent conductive film having the ohmic junction characteristic on the light output surface and the maximum transmission in the vicinity of the peak wavelength of the output light. Since an electrode film made of a transparent conductive film having a certain ratio is formed and a metal wiring is connected to this electrode film, it is possible to reduce the element resistance and realize a high light output.

【0021】又、電極膜を光出力面全面とその周辺部分
とを覆って形成し、電極膜の光出力面を遮蔽しない部分
に接して金属配線を形成したので、より低い素子抵抗と
より高い光出力とを得ることができる。
Further, since the electrode film is formed so as to cover the entire surface of the light output surface and its peripheral portion and the metal wiring is formed in contact with the portion of the electrode film which does not shield the light output surface, the device resistance is lower and the device resistance is higher. The light output can be obtained.

【0022】又、本発明の半導体発光素子アレイによれ
ば、低い素子抵抗を実現し、高い光出力を得つつも、非
常に高密度に発光素子を集積することができる。
Further, according to the semiconductor light emitting device array of the present invention, it is possible to realize a low device resistance and obtain a high light output, and to integrate the light emitting devices in a very high density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体発光素子及び半導体発光素子ア
レイの一実施例である発光ダイオ−ドアレイの構造を示
す部分拡大平面図である。
FIG. 1 is a partially enlarged plan view showing a structure of a light emitting diode array which is an embodiment of a semiconductor light emitting device and a semiconductor light emitting device array of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】従来の発光ダイオ−ドアレイの一例の構造を示
す部分拡大平面図である。
FIG. 3 is a partially enlarged plan view showing the structure of an example of a conventional light emitting diode array.

【図4】図3のB−B線断面図である。4 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1 発光ダイオ−ドアレイ 2 基板 3 バッファ層(半導体結晶層) 4 反射層(半導体結晶層) 5 クラッド層(半導体結晶層) 6 発光層(半導体結晶層) 7 クラッド層(半導体結晶層) 8 コンタクト層(半導体結晶層) 9 発光素子 10 分離溝 11 SiO2 膜 12 光出力面 13 電極膜 13a Ag膜(金属透明導電膜) 13b Cd2 SnO4 膜(酸化物透明導電膜) 14 電極 (金属配線)1 Light Emitting Diode Array 2 Substrate 3 Buffer Layer (Semiconductor Crystal Layer) 4 Reflective Layer (Semiconductor Crystal Layer) 5 Clad Layer (Semiconductor Crystal Layer) 6 Light Emitting Layer (Semiconductor Crystal Layer) 7 Clad Layer (Semiconductor Crystal Layer) 8 Contact Layer (Semiconductor crystal layer) 9 Light emitting element 10 Separation groove 11 SiO 2 film 12 Light output surface 13 Electrode film 13a Ag film (metal transparent conductive film) 13b Cd 2 SnO 4 film (oxide transparent conductive film) 14 Electrode (metal wiring)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に、発光層を含む半導体結晶層を積
層して、前記発光層からの光を前記半導体結晶層上面の
光出力面から出力する面発光型の半導体発光素子におい
て、 オーミック接合特性を示す金属の透明導電膜と、 出力される光のピーク波長近傍に最大透過率を持つよう
な透明導電膜とからなる電極膜を前記光出力面に形成
し、 前記電極膜に金属配線を接続したことを特徴とする半導
体発光素子。
1. A surface-emitting type semiconductor light emitting device in which a semiconductor crystal layer including a light emitting layer is laminated on a substrate, and light from the light emitting layer is output from a light output surface on the upper surface of the semiconductor crystal layer, wherein an ohmic contact is provided. An electrode film composed of a metal transparent conductive film exhibiting bonding characteristics and a transparent conductive film having a maximum transmittance in the vicinity of the peak wavelength of output light is formed on the light output surface, and metal wiring is formed on the electrode film. A semiconductor light emitting device characterized in that
【請求項2】前記電極膜を前記光出力面全面とその周辺
部分とを覆って形成し、前記電極膜の前記光出力面を遮
蔽しない部分に接して前記金属配線を形成したことを特
徴とする請求項1記載の半導体発光素子。
2. The electrode film is formed so as to cover the entire surface of the light output surface and a peripheral portion thereof, and the metal wiring is formed in contact with a portion of the electrode film that does not shield the light output surface. The semiconductor light emitting device according to claim 1.
【請求項3】請求項1又は請求項2記載の半導体発光素
子を列状に複数形成した半導体発光素子アレイ。
3. A semiconductor light emitting device array in which a plurality of semiconductor light emitting devices according to claim 1 or 2 are formed in a row.
JP29271693A 1993-10-28 1993-10-28 Semiconductor light emitting element and semiconductor light emitting element array Pending JPH07131070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29271693A JPH07131070A (en) 1993-10-28 1993-10-28 Semiconductor light emitting element and semiconductor light emitting element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29271693A JPH07131070A (en) 1993-10-28 1993-10-28 Semiconductor light emitting element and semiconductor light emitting element array

Publications (1)

Publication Number Publication Date
JPH07131070A true JPH07131070A (en) 1995-05-19

Family

ID=17785393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29271693A Pending JPH07131070A (en) 1993-10-28 1993-10-28 Semiconductor light emitting element and semiconductor light emitting element array

Country Status (1)

Country Link
JP (1) JPH07131070A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308383A (en) * 2000-04-19 2001-11-02 Sharp Corp Nitride based semiconductor light emitting device
JP2006261359A (en) * 2005-03-17 2006-09-28 Oki Data Corp Optical semiconductor device, LED head, and image forming apparatus using the same
US7417264B2 (en) * 2003-12-22 2008-08-26 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
JP2009200514A (en) * 2001-07-24 2009-09-03 Nichia Corp Semiconductor light-emitting device
JP2013501350A (en) * 2009-07-31 2013-01-10 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting diode chip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308383A (en) * 2000-04-19 2001-11-02 Sharp Corp Nitride based semiconductor light emitting device
JP4493153B2 (en) * 2000-04-19 2010-06-30 シャープ株式会社 Nitride-based semiconductor light emitting device
JP2009200514A (en) * 2001-07-24 2009-09-03 Nichia Corp Semiconductor light-emitting device
US7417264B2 (en) * 2003-12-22 2008-08-26 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
US7666693B2 (en) 2003-12-22 2010-02-23 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
JP2006261359A (en) * 2005-03-17 2006-09-28 Oki Data Corp Optical semiconductor device, LED head, and image forming apparatus using the same
JP4704079B2 (en) * 2005-03-17 2011-06-15 株式会社沖データ Optical semiconductor device, LED head, and image forming apparatus using the same
JP2013501350A (en) * 2009-07-31 2013-01-10 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting diode chip

Similar Documents

Publication Publication Date Title
JP6176298B2 (en) Surface emitting semiconductor laser array and method for manufacturing surface emitting semiconductor laser array
US5977566A (en) Compound semiconductor light emitter
US7763898B2 (en) Light emitting device having high optical output efficiency
JPH1075014A (en) Passivation vertical cavity surface-emitting laser
JP2000164938A (en) Light emitting device and light emitting element mounting method
JP4493153B2 (en) Nitride-based semiconductor light emitting device
JP4164689B2 (en) Semiconductor light emitting device
JP2003209280A (en) Light emitting diode array
JP3198016B2 (en) Light emitting diode array and method of manufacturing the same
JP3503439B2 (en) Nitride semiconductor device
US20030010989A1 (en) Light-emitting diode array
JP3523632B2 (en) Light emitting diode and method of manufacturing the same
JP2013540365A (en) Optoelectronic device and manufacturing method thereof
JP2005276899A (en) Light-emitting element
WO2022220088A1 (en) Surface-emitting laser device
JP3797748B2 (en) Light emitting diode array
JPH07131070A (en) Semiconductor light emitting element and semiconductor light emitting element array
JP4650631B2 (en) Semiconductor light emitting device
JPH06338634A (en) Semiconductor light-emitting element array
JPH09213996A (en) Semiconductor light emitting element and manufacture method thereof
US6165809A (en) Method of fabricating light emitting diodes
JP2000031589A (en) Semiconductor light emitting device
JP2021009999A (en) Surface emitting laser and method for manufacturing the same
JP4543732B2 (en) Light emitting diode array
JP4126454B2 (en) LED array