JPH07131044A - Transparent conductive substrate - Google Patents
Transparent conductive substrateInfo
- Publication number
- JPH07131044A JPH07131044A JP5296059A JP29605993A JPH07131044A JP H07131044 A JPH07131044 A JP H07131044A JP 5296059 A JP5296059 A JP 5296059A JP 29605993 A JP29605993 A JP 29605993A JP H07131044 A JPH07131044 A JP H07131044A
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- thin film
- substrate
- zinc oxide
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Non-Insulated Conductors (AREA)
Abstract
(57)【要約】
【構成】透明絶縁性基板1上に第1の透明導電性薄膜2
を形成し、さらにその上に相異なる第2の透明導電性薄
膜3を形成した透明導電性基板において、第2の透明導
電性薄膜3が結晶性薄膜からなることを特徴とする透明
導電性基板。
【効果】高基板温度、高パワー密度といった還元性の高
いプラズマ条件下においても耐プラズマ性に優れた太陽
電池用透明導電性基板を提供することが可能となる。
(57) [Summary] [Structure] The first transparent conductive thin film 2 is formed on the transparent insulating substrate 1.
And a second transparent conductive thin film 3 different from the transparent conductive thin film 3 formed on the transparent conductive substrate, wherein the second transparent conductive thin film 3 is a crystalline thin film. . [Effect] It is possible to provide a transparent conductive substrate for a solar cell, which has excellent plasma resistance even under highly reducing plasma conditions such as high substrate temperature and high power density.
Description
【0001】[0001]
【産業上の利用分野】本発明は、アモルファスシリコン
太陽電池、表示素子等の透明電極として最適な透明導電
性基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive substrate most suitable as a transparent electrode for amorphous silicon solar cells, display elements and the like.
【0002】[0002]
【従来の技術】太陽電池用透明導電性基板は、光閉じ込
め効果の高い凹凸構造を有し、高い透明性と導電性が必
要とされる。以上のような特性を満足する太陽電池用透
明導電性薄膜として、酸化錫膜が用いられてきた。とこ
ろが、酸化錫膜には還元性プラズマに晒されると透過率
が低下するという欠点があった。現在、太陽電池の光電
変換層であるアモルファスシリコン膜を透明導電性基板
上に形成する方法としては、主にプラズマCVD法が用
いられている。2. Description of the Related Art A transparent conductive substrate for a solar cell has a concavo-convex structure having a high light confining effect and is required to have high transparency and conductivity. A tin oxide film has been used as a transparent conductive thin film for solar cells that satisfies the above characteristics. However, the tin oxide film has a drawback that its transmittance decreases when it is exposed to reducing plasma. Currently, a plasma CVD method is mainly used as a method for forming an amorphous silicon film, which is a photoelectric conversion layer of a solar cell, on a transparent conductive substrate.
【0003】そのため透明導電性基板はアモルファスシ
リコン製膜中に還元性の水素プラズマに晒される。この
際、水素プラズマからのイオン衝撃により、弱い酸素と
錫の結合が切れ、酸素が遊離して金属錫が析出するた
め、透過率が低下する。このような基板透過率の低下は
電池の変換効率の低下を引き起こすため問題である。ま
た、成膜中に遊離した酸化錫や酸素がアモルファスシリ
コン層中へ拡散する結果、光電変換層であるアモルファ
スシリコンの膜質が低下し、太陽電池の変換効率が低下
することも問題であった。このように、酸化錫膜は還元
性プラズマに対する耐性が低いので、アモルファスシリ
コン層の成膜条件は基板透過率の減少を引き起こさない
範囲に制限されていた。Therefore, the transparent conductive substrate is exposed to reducing hydrogen plasma in the amorphous silicon film. At this time, due to ion bombardment from hydrogen plasma, weak oxygen and tin are broken, oxygen is released and metal tin is deposited, and thus the transmittance is reduced. Such a decrease in the substrate transmittance is a problem because it causes a decrease in the conversion efficiency of the battery. Another problem is that tin oxide or oxygen liberated during film formation diffuses into the amorphous silicon layer, resulting in a decrease in the film quality of the amorphous silicon that is the photoelectric conversion layer and a decrease in conversion efficiency of the solar cell. Thus, since the tin oxide film has low resistance to reducing plasma, the conditions for forming the amorphous silicon layer have been limited to a range that does not cause a decrease in the substrate transmittance.
【0004】そこで本発明者等のグループでは、かかる
問題点を改善する方法として、酸化錫を主成分とする透
明導電性薄膜の表面に導電性酸化亜鉛からなる保護膜を
形成することにより透過率の低下を抑制する(耐プラズ
マ性を向上させる)方法を提案した(特開昭63−89
657号公報)が、この方法では保護膜を形成しないも
のと比べて耐プラズマ性が大幅に向上するが、高い還元
性を持つ水素プラズマ曝露条件下においては、その耐プ
ラズマ性は必ずしも充分ではなかったため、極めて高性
能の電池を作成するための基板としては不充分であると
いう欠点が存在した。Therefore, in order to improve such a problem, the group of the present inventors formed a protective film made of conductive zinc oxide on the surface of a transparent conductive thin film containing tin oxide as a main component, and thus the transmittance was improved. Has been proposed (Japanese Patent Laid-Open No. 63-89).
No. 657), the plasma resistance is significantly improved by this method as compared with the case where the protective film is not formed, but the plasma resistance is not always sufficient under the hydrogen plasma exposure condition having a high reducing property. Therefore, there is a drawback that it is not sufficient as a substrate for producing an extremely high-performance battery.
【0005】[0005]
【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の課題を解消し、例えば高基板温度、高
パワー密度といった、より還元性の高いプラズマ曝露条
件下においても高い耐プラズマ性を示す太陽電池用透明
導電性基板を提供することを目的とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides high resistance to high reducing plasma exposure conditions such as high substrate temperature and high power density. An object of the present invention is to provide a transparent conductive substrate for a solar cell that exhibits plasma properties.
【0006】[0006]
【課題を解決するための手段】本発明は、透明絶縁性基
板上に第1の透明導電性薄膜を形成し、さらにその上に
相異なる第2の透明導電性薄膜を形成した透明導電性基
板において、第2の透明導電性薄膜が結晶性薄膜からな
ることを特徴とする透明導電性基板を提供するものであ
る。SUMMARY OF THE INVENTION The present invention is a transparent conductive substrate in which a first transparent conductive thin film is formed on a transparent insulating substrate, and a different second transparent conductive thin film is formed on the first transparent conductive thin film. In the second aspect, there is provided a transparent conductive substrate, wherein the second transparent conductive thin film is a crystalline thin film.
【0007】以下、本発明を更に詳細に説明する。本発
明における透明導電性薄膜のうち、第1の透明導電性薄
膜としては、酸化錫、フッ素が酸化錫に対し0.1〜5
重量%ドープされた酸化錫、アンチモンが酸化錫に対し
0.1〜30重量%ドープされた酸化錫、錫が酸化イン
ジウムに対し0.5〜30重量%ドープされた酸化イン
ジウムなどの電気的特性の良好な透明性金属酸化物から
なるものが適当である。なかでもフッ素がドープされた
酸化錫からなる透明導電性薄膜は、シート抵抗30Ω/
□以下の低抵抗が容易に得られ、かつ、高い光閉じ込め
効果を示す所定の表面凹凸形状が容易に得られやすいの
で太陽電池用基板として最適である。The present invention will be described in more detail below. Among the transparent conductive thin films in the present invention, tin oxide and fluorine are 0.1 to 5 relative to tin oxide as the first transparent conductive thin film.
Electrical characteristics such as tin oxide doped by weight%, tin oxide doped with antimony by 0.1 to 30 weight% with respect to tin oxide, and indium oxide doped with tin by 0.5 to 30 weight% with respect to indium oxide. Of a transparent metal oxide having a good transparency is suitable. Above all, the transparent conductive thin film made of fluorine-doped tin oxide has a sheet resistance of 30 Ω /
□ The following low resistance is easily obtained, and a predetermined surface irregularity shape exhibiting a high light confining effect is easily obtained, which is the most suitable as a solar cell substrate.
【0008】本発明において第1の透明導電性薄膜上に
形成される第2の透明導電性薄膜としては、結晶性の薄
膜であることが好ましく、特に酸化亜鉛を主成分とする
透明導電性薄膜であることが好ましい。例えば、前述の
酸化錫を主成分とする透明導電性薄膜の耐プラズマ性を
向上させるために、酸化亜鉛からなる保護膜が最上層に
20〜2000Å形成される。In the present invention, the second transparent conductive thin film formed on the first transparent conductive thin film is preferably a crystalline thin film, particularly a transparent conductive thin film containing zinc oxide as a main component. Is preferred. For example, in order to improve the plasma resistance of the transparent conductive thin film containing tin oxide as a main component, a protective film made of zinc oxide is formed in the uppermost layer in an amount of 20 to 2000 Å.
【0009】本発明になる透明導電性基板においては、
保護膜である酸化亜鉛の膜厚が20〜2000Åと非常
に薄い場合において反射高速電子線回折(RHEED)
法により酸化亜鉛結晶の回折パターンが観察され、かか
る酸化亜鉛保護膜においては酸化亜鉛の(002)面
が、主に第1の透明導電性薄膜の表面に対して平行であ
ることが好ましい。例えば、前述のように第1の透明導
電性薄膜として表面凹凸形状を有する酸化錫膜を用いる
場合には、酸化錫表面のファセット面(主に酸化錫の低
指数面で構成される)に対して、主に、酸化亜鉛透明導
電性薄膜結晶の(002)面が平行となるように形成さ
れる。これにより、上述の課題を解消した透明導電性基
板を提供することが可能となる。In the transparent conductive substrate according to the present invention,
Reflection high-energy electron diffraction (RHEED) when the thickness of zinc oxide, which is a protective film, is as thin as 20 to 2000Å
A diffraction pattern of a zinc oxide crystal is observed by the method, and in such a zinc oxide protective film, it is preferable that the (002) plane of zinc oxide is mainly parallel to the surface of the first transparent conductive thin film. For example, as described above, when a tin oxide film having a surface irregularity is used as the first transparent conductive thin film, the tin oxide film has a facet surface (mainly composed of a low index surface of tin oxide) on the tin oxide surface. Then, the zinc oxide transparent conductive thin film crystal is mainly formed so that the (002) planes are parallel to each other. This makes it possible to provide a transparent conductive substrate that solves the above problems.
【0010】このように、本発明においては、第1の透
明導電性薄膜の表面は凹凸を有し、第2の透明導電性薄
膜が前記の各凹凸面に対し結晶の配向性が制御された結
晶性薄膜であることを特徴とする透明導電性基板を提供
するものである。As described above, in the present invention, the surface of the first transparent conductive thin film has unevenness, and the crystal orientation of the second transparent conductive thin film is controlled with respect to each uneven surface. It is intended to provide a transparent conductive substrate which is a crystalline thin film.
【0011】[0011]
【作用】本発明は配向性を制御した結晶質酸化亜鉛膜の
高い耐プラズマ性と高い透過率を利用し、酸化錫透明導
電性基板の耐プラズマ性を改善したものである。酸化亜
鉛膜は水素プラズマの還元力に対して強い耐性を有して
いる。このうち、特に結晶質の酸化亜鉛膜、望ましくは
酸化亜鉛結晶の(002)面が第1の透明導電性薄膜の
表面に対して平行となるように配向性を制御した場合に
は、非晶質の酸化亜鉛膜に比べ高い耐プラズマ性を示
す。特に300℃以上の基板温度において水素プラズマ
に曝露した場合、酸化錫透明導電性基板の表面を非晶質
の酸化亜鉛膜で被覆した場合には還元劣化が生じ、基板
の透過率が減少するのに対して、かかる結晶質の酸化亜
鉛膜で被覆した場合には還元劣化が大幅に抑制され、透
過率が保持される。The present invention utilizes the high plasma resistance and high transmittance of a crystalline zinc oxide film with controlled orientation to improve the plasma resistance of a tin oxide transparent conductive substrate. The zinc oxide film has a strong resistance to the reducing power of hydrogen plasma. Among them, in particular, when the orientation is controlled so that the crystalline zinc oxide film, preferably the (002) plane of the zinc oxide crystal is parallel to the surface of the first transparent conductive thin film, Higher plasma resistance than high quality zinc oxide film. In particular, when exposed to hydrogen plasma at a substrate temperature of 300 ° C. or higher, when the surface of the tin oxide transparent conductive substrate is coated with an amorphous zinc oxide film, reductive deterioration occurs and the transmittance of the substrate decreases. On the other hand, when the crystalline zinc oxide film is coated, reduction deterioration is significantly suppressed and the transmittance is maintained.
【0012】配向性の悪い酸化亜鉛膜には結晶粒界が多
数存在すると考えられる。結晶粒界では水素が移動しや
すいため、水素プラズマに曝露すると酸化亜鉛膜の結晶
粒界を通して水素が侵入し、下地である酸化錫を還元さ
せる。よって配向性の揃った結晶粒界の少ない酸化亜鉛
膜で酸化錫表面が一様に被覆されている場合に耐プラズ
マ性は向上すると考えられる。この効果は特に本実施例
のように酸化亜鉛層の膜厚が100Å程度と薄い場合に
顕著になると考えられる。It is considered that a large number of crystal grain boundaries exist in the zinc oxide film having poor orientation. Since hydrogen easily moves at the crystal grain boundaries, when exposed to hydrogen plasma, hydrogen penetrates through the crystal grain boundaries of the zinc oxide film to reduce tin oxide which is the base. Therefore, it is considered that the plasma resistance is improved when the surface of tin oxide is uniformly covered with a zinc oxide film having a uniform orientation and a small number of crystal grain boundaries. It is considered that this effect becomes remarkable especially when the film thickness of the zinc oxide layer is as thin as about 100Å as in the present embodiment.
【0013】[0013]
【実施例】以下本発明の実施例について図表を参照しな
がら詳細に説明する。図1は本発明になる太陽電池用透
明導電性基板の要部の断面構造を示す。図1において、
1はアルカリバリヤー(シリカ)膜付ソーダライム・シ
リケートガラス基板、2は酸化錫膜、3は結晶性酸化亜
鉛膜である。この透明導電性基板は以下のようにして作
製された。Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a sectional structure of a main part of a transparent conductive substrate for a solar cell according to the present invention. In FIG.
Reference numeral 1 is a soda lime silicate glass substrate with an alkali barrier (silica) film, 2 is a tin oxide film, and 3 is a crystalline zinc oxide film. This transparent conductive substrate was produced as follows.
【0014】CVD法によりSiO2 膜(膜厚800
Å)を表面に形成したアルカリバリヤー(シリカ)膜付
ソーダライム・シリケートガラス基板1(板厚1.2m
m)をCVD炉の一端よりベルト搬送速度0.20m/
分で炉内に導入し、基板温度600℃まで加熱した後、
ガス導入ノズルより反応ガスを基板上に吹き付けて基板
のSiO2 膜上にフッ素のドープされた酸化錫膜2(膜
厚8000Å)を形成した。かかる酸化錫膜2は表面に
凹凸形状を有している。A SiO 2 film (thickness 800
Å) Alkaline barrier (silica) film-formed soda lime silicate glass substrate 1 (1.2 m thick)
m) from one end of the CVD furnace to a belt conveying speed of 0.20 m /
Introduced into the furnace in minutes, after heating the substrate temperature to 600 ℃,
A reaction gas was blown onto the substrate from a gas introduction nozzle to form a fluorine-doped tin oxide film 2 (thickness 8000Å) on the SiO 2 film on the substrate. The tin oxide film 2 has an uneven surface.
【0015】表面に凹凸形状を有する酸化錫の作製方法
については特開昭63−313874号公報に詳しい。
N2 ガスに同伴させたSnCl4 、H2 O、CH3 O
H、HF及び希釈用N2 ガスを反応ガスとし、加熱部及
び冷却部を有し、加熱部には反応ガスを導入するための
ノズルと反応後のガスを排気するための排気孔を有する
ベルト搬送式のCVD炉を用いて酸化錫膜を作製した。A method for producing tin oxide having an uneven surface is described in detail in JP-A-63-313874.
SnCl 4 , H 2 O, CH 3 O entrained in N 2 gas
A belt having H, HF and N 2 gas for dilution as a reaction gas, a heating part and a cooling part, and a heating part having a nozzle for introducing the reaction gas and an exhaust hole for exhausting the gas after the reaction. A tin oxide film was formed using a transfer type CVD furnace.
【0016】結晶性を調べるために酸化錫膜2を反射高
速電子線回折(RHEED)法を用いて観察した結果を
図2に示す。回折図形が広がりを持った点状であること
から本酸化錫膜は結晶性を有し、基板に対し配向性を有
していることがわかる。図3にルチル型構造を有する酸
化錫結晶が基板に対し(200)配向し、酸化錫結晶の
[200]方向と基板垂線方向とのなす角度が20度以
内に分布していると仮定した場合に予想される理論的回
折パターンを示す。図2と図3を比較すると回折点の位
置がよく一致していることから酸化錫結晶が基板に対し
主に(200)配向しており、酸化錫結晶の[200]
方向と基板垂線方向とのなす角度の分布は20度以内で
あることがわかる。FIG. 2 shows the result of observing the tin oxide film 2 using the reflection high-energy electron diffraction (RHEED) method to examine the crystallinity. It can be seen that the tin oxide film has crystallinity and orientation with respect to the substrate because the diffraction pattern is a point shape with a spread. Assuming that the tin oxide crystal having a rutile structure has a (200) orientation with respect to the substrate and the angle between the [200] direction of the tin oxide crystal and the substrate normal direction is distributed within 20 degrees in FIG. Shows the expected theoretical diffraction pattern. When FIG. 2 and FIG. 3 are compared, since the positions of the diffraction points are in good agreement, the tin oxide crystals are mainly (200) oriented with respect to the substrate, and the [200]
It can be seen that the distribution of the angle formed by the direction and the normal to the substrate is within 20 degrees.
【0017】次に、上述の酸化錫透明導電性基板表面を
膜厚100Åの結晶質酸化亜鉛膜3で被覆した。かかる
結晶質酸化亜鉛膜はArガスを用いたRFスパッタリン
グ法により、基板温度250℃、圧力1.0×10-3T
orr、RFパワー1.5kWの条件で成膜した。かか
る酸化亜鉛膜3を被覆した透明導電性薄膜のRHEED
観察結果を図4に示す。図2の酸化錫の回折パターンと
比較して、パターンが明らかに変化していることから、
図4は基板表面を被覆した酸化亜鉛結晶による回折パタ
ーンであると考えられる。Next, the surface of the tin oxide transparent conductive substrate described above was coated with a crystalline zinc oxide film 3 having a film thickness of 100 liters. The crystalline zinc oxide film was formed by RF sputtering using Ar gas at a substrate temperature of 250 ° C. and a pressure of 1.0 × 10 −3 T.
The film was formed under the conditions of orr and RF power of 1.5 kW. RHEED of transparent conductive thin film coated with such zinc oxide film 3
The observation result is shown in FIG. Compared with the diffraction pattern of tin oxide in FIG. 2, since the pattern clearly changes,
FIG. 4 is considered to be a diffraction pattern by the zinc oxide crystal with which the surface of the substrate is coated.
【0018】かかる回折パターンが広がりを持った点状
であることから酸化亜鉛膜は結晶性を有し、基板に対し
配向性を有していることがわかる。かかる回折パターン
を解析した結果、酸化錫表面を被覆した酸化亜鉛[10
1]方向がガラス基板に対してほぼ垂直であることが明
らかとなった。一方、別途実施したSEMによる表面の
形状の観察より、ガラス基板に対して(200)面が平
行に配向した酸化錫膜の凹凸表面は酸化錫の(111)
面で構成されていることが判明した。図6に酸化錫膜と
酸化亜鉛膜との配向関係を模式図で示す。Since the diffraction pattern is in the form of dots having a spread, it can be seen that the zinc oxide film has crystallinity and orientation with respect to the substrate. As a result of analyzing the diffraction pattern, zinc oxide [10
It became clear that the [1] direction was almost perpendicular to the glass substrate. On the other hand, from the observation of the surface shape by SEM which was separately performed, the uneven surface of the tin oxide film in which the (200) plane was oriented parallel to the glass substrate was (111) tin oxide.
It turned out to be composed of faces. FIG. 6 is a schematic diagram showing the orientation relationship between the tin oxide film and the zinc oxide film.
【0019】酸化錫の(200)面はガラス基板に対し
平行である。すなわち、酸化錫の[200]方向はガラ
ス基板に対して垂直である。酸化錫の[200]方向と
酸化錫の[111]方向とのなす角度(酸化錫の(20
0)面と酸化錫の(111)面とのなす角度)は約61
度であり、酸化亜鉛の[002]方向と酸化亜鉛の[1
01]方向とのなす角度(酸化亜鉛の(002)面と酸
化亜鉛の(101)面とのなす角度)は約62度であ
る。以上のことより、酸化錫の(111)表面上に酸化
亜鉛の(002)面が平行に成長している(C軸配向し
ている)と考えられる。かかる場合に得られる理論的パ
ターンを図5に示す。The (200) plane of tin oxide is parallel to the glass substrate. That is, the [200] direction of tin oxide is perpendicular to the glass substrate. The angle between the [200] direction of tin oxide and the [111] direction of tin oxide ((20
The angle between the (0) plane and the (111) plane of tin oxide is about 61.
[002] direction of zinc oxide and [1] of zinc oxide.
The angle formed by the [01] direction (the angle formed by the (002) plane of zinc oxide and the (101) plane of zinc oxide) is about 62 degrees. From the above, it is considered that the (002) plane of zinc oxide grows in parallel on the (111) surface of tin oxide (C-axis oriented). The theoretical pattern obtained in such a case is shown in FIG.
【0020】図5においては、酸化錫の(111)面に
酸化亜鉛の(002)面が平行、すなわち酸化錫に対す
る酸化亜鉛の配向分布は0度と仮定したが、下地である
酸化錫のガラス基板に対する配向分布が20度であるの
で、酸化亜鉛のガラス基板に対する配向分布は20度と
なる。図5が実際に得られたパターン(図4)とよく一
致していることから、酸化亜鉛結晶の(002)面が下
地である酸化錫膜の(111)ファセット面に対してほ
ぼ平行であることがわかる(実施例)。この場合、ほぼ
平行であれば実用上問題なく、具体的には、酸化亜鉛の
[002]方向と酸化錫の[111]方向とのなす角度
が約10度以内であることが望ましい。In FIG. 5, it was assumed that the (002) plane of zinc oxide was parallel to the (111) plane of tin oxide, that is, the orientation distribution of zinc oxide with respect to tin oxide was 0 degree. Since the orientation distribution with respect to the substrate is 20 degrees, the orientation distribution of zinc oxide with respect to the glass substrate is 20 degrees. Since the pattern in FIG. 5 is in good agreement with the pattern actually obtained (FIG. 4), the (002) plane of the zinc oxide crystal is substantially parallel to the (111) facet plane of the underlying tin oxide film. It is understood (Example). In this case, if they are substantially parallel, there is no practical problem, and specifically, it is desirable that the angle formed by the [002] direction of zinc oxide and the [111] direction of tin oxide be within about 10 degrees.
【0021】かかる酸化亜鉛膜3を100Å被覆した透
明導電性薄膜の比抵抗は5.0×10-4Ω・cm、透過
率は85%であり、被覆前(後述の比較例1)に比べ
て、比抵抗、透過率ともに変化はなかった。ここでいう
透過率とは400nm〜800nmでの分光透過率の平
均値であり、以下、単に透過率と呼ぶこととする。The transparent conductive thin film coated with 100 Å of the zinc oxide film 3 has a specific resistance of 5.0 × 10 −4 Ω · cm and a transmittance of 85%, which is higher than that before coating (Comparative Example 1 described later). As a result, there was no change in resistivity or transmittance. The transmittance here is an average value of the spectral transmittances at 400 nm to 800 nm, and will be simply referred to as transmittance hereinafter.
【0022】かかる結晶質酸化亜鉛膜の製膜条件につい
ては、表面を被覆した酸化亜鉛膜が上述した結晶性及び
配向性を有する限り特に限定しないが、基板温度が20
0℃〜600℃が好ましい。また、酸化亜鉛膜の形成方
法としては、RFスパッタリング法に限る必要はなく、
DCスパッタリング法、イオンプレーティング法、プラ
ズマCVD法、常圧CVD法等によっても作成が可能で
ある。The conditions for forming such a crystalline zinc oxide film are not particularly limited as long as the zinc oxide film covering the surface has the above-mentioned crystallinity and orientation, but the substrate temperature is 20.
0 degreeC-600 degreeC is preferable. Further, the method for forming the zinc oxide film is not limited to the RF sputtering method,
It can also be prepared by a DC sputtering method, an ion plating method, a plasma CVD method, an atmospheric pressure CVD method, or the like.
【0023】太陽電池への応用に際しては、かかる酸化
亜鉛膜を光が透過し、電気が流れるため、変換効率向上
のためには電池の直列抵抗成分を減らし、光の吸収を少
なくすることが必要である。そのため、かかる酸化亜鉛
膜の膜厚は、結晶質膜が凹凸形状を有する下地透明導電
性基板の表面を完全に被覆できる範囲で薄いことが望ま
しい。ところが膜厚が薄くなるにしたがいその分布に不
均一が生じやすく、水素プラズマ耐性の面で特性が劣る
傾向が生じる。分布が生じないためには膜厚20Å以
上、好ましくは50〜2000Åであることが望まし
い。In application to a solar cell, since light passes through such a zinc oxide film and electricity flows, it is necessary to reduce the series resistance component of the cell and reduce light absorption in order to improve conversion efficiency. Is. Therefore, it is desirable that the film thickness of the zinc oxide film is thin as long as the crystalline film can completely cover the surface of the underlying transparent conductive substrate having the uneven shape. However, as the film thickness becomes thinner, the distribution tends to become nonuniform, and the characteristics tend to deteriorate in terms of hydrogen plasma resistance. In order to prevent distribution, it is desirable that the film thickness is 20 Å or more, preferably 50 to 2000 Å.
【0024】かかる結晶質酸化亜鉛を主成分とする第2
の透明導電性薄膜としてはアルミニウム、インジウム、
ボロン、シリコン及びガリウムからなる群から選ばれる
少なくとも1種のドーパントを0.1〜12%含有して
いることが、透過率を低下させることなく比抵抗を低下
させるうえで最適である。ドーパントを含まない導電性
酸化亜鉛膜であっても使用可能であるが、太陽電池等へ
の応用に際しては、この膜を通して電流が流れるので導
電性が高いことが望ましい。A second component containing such crystalline zinc oxide as a main component
The transparent conductive thin film of aluminum, indium,
Containing 0.1 to 12% of at least one dopant selected from the group consisting of boron, silicon and gallium is optimal for reducing the specific resistance without reducing the transmittance. Even a conductive zinc oxide film containing no dopant can be used, but when applied to a solar cell or the like, it is desirable that the film has high conductivity because a current flows through this film.
【0025】[0025]
【比較例】一方、比較例として図1に示した構成におい
て表面に第2の透明導電性薄膜である酸化亜鉛膜を作成
しない基板(比較例1)及び図1と同じ構成の透明導電
性基板において第2の透明導電性薄膜である酸化亜鉛膜
が非晶質である透明導電性基板(比較例2)を作成し
た。比較例2における酸化亜鉛膜の製法は基板温度を室
温とした他は実施例と同じである。比較例2における酸
化亜鉛膜3をRHEED観察した結果、ハローパターン
(不規則に電子線が散乱されるために規則的なパターン
が得られず全体的にバックグラウンドが明るくなる状
態)以外のいかなる反射も観察されなかったことから、
該酸化亜鉛膜3は非晶質であることを確認した。Comparative Example On the other hand, as a comparative example, a substrate in which a zinc oxide film which is a second transparent conductive thin film is not formed on the surface in the structure shown in FIG. 1 (Comparative Example 1) and a transparent conductive substrate having the same structure as FIG. A transparent conductive substrate (Comparative Example 2) in which the zinc oxide film, which is the second transparent conductive thin film, was amorphous was prepared. The manufacturing method of the zinc oxide film in Comparative Example 2 is the same as that of the Example except that the substrate temperature is set to room temperature. As a result of RHEED observation of the zinc oxide film 3 in Comparative Example 2, any reflection other than a halo pattern (a state in which a regular pattern is not obtained because the electron beam is scattered irregularly and the background becomes bright as a whole) Was also not observed,
It was confirmed that the zinc oxide film 3 was amorphous.
【0026】次に、それぞれの基板について以下の方法
で耐プラズマ性の評価を行なった。まず、基板をプラズ
マCVD装置に入れ、基板温度200℃、300℃で水
素プラズマ曝露を行なった。水素プラズマ曝露条件を表
1に示す。また、水素プラズマ曝露前後での基板透過率
の変化を表2に示す。Next, the plasma resistance of each substrate was evaluated by the following method. First, the substrate was placed in a plasma CVD apparatus and exposed to hydrogen plasma at a substrate temperature of 200 ° C and 300 ° C. The hydrogen plasma exposure conditions are shown in Table 1. Table 2 shows changes in the substrate transmittance before and after exposure to hydrogen plasma.
【0027】実施例と比較例1によれば、結晶質酸化亜
鉛膜で表面に凹凸形状を有する酸化錫表面を被覆した場
合(実施例)には、被覆しない場合(比較例1)に比べ
て、水素プラズマ曝露による透過率の低下が生じない。
また、曝露前後で、基板の比抵抗の増大も生じなかっ
た。According to the example and the comparative example 1, when the surface of the tin oxide having the uneven shape is coated with the crystalline zinc oxide film (the example), compared with the case where it is not coated (the comparative example 1). , No decrease in transmittance due to hydrogen plasma exposure.
In addition, no increase in the specific resistance of the substrate occurred before and after the exposure.
【0028】比較例1と比較例2によれば、非晶質酸化
亜鉛膜で酸化錫表面を被覆した場合(比較例2)には基
板温度300℃で水素プラズマ曝露すると透過率が曝露
前の85%から70%に低下する。この結果は、非晶質
酸化亜鉛膜により表面を被覆された基板は、被覆しない
場合(比較例1)に比べると透過率の低下が抑制される
ものの、基板温度300℃においては耐プラズマ性が不
充分であることを示している。According to Comparative Examples 1 and 2, when the tin oxide surface was coated with the amorphous zinc oxide film (Comparative Example 2), the hydrogen plasma exposure at the substrate temperature of 300 ° C. gave the transmittance before exposure. It drops from 85% to 70%. This result shows that the substrate whose surface is coated with the amorphous zinc oxide film suppresses the decrease in transmittance as compared with the case where the substrate is not coated (Comparative Example 1), but the substrate has a plasma resistance at 300 ° C. It shows that it is insufficient.
【0029】実施例と比較例2によれば、非晶質酸化亜
鉛膜で酸化錫表面を被覆した場合(比較例2)には基板
温度300℃で水素プラズマ曝露すると透過率が曝露前
の85%から70%に低下する。これに対して結晶質酸
化亜鉛膜で被覆した場合(実施例)には85%であり、
透過率の低下が見られなかった。この結果より、表1に
示したような還元性の強いプラズマ条件下で、充分な耐
プラズマ性を示すためには酸化錫表面を被覆する酸化亜
鉛は実施例で述べたような結晶性、配向性を有していな
ければならないことは明らかである。According to the example and the comparative example 2, when the amorphous zinc oxide film is coated on the tin oxide surface (comparative example 2), when the hydrogen plasma is exposed at the substrate temperature of 300 ° C., the transmittance is 85 before the exposure. % To 70%. On the other hand, when coated with a crystalline zinc oxide film (Example), it is 85%,
No decrease in transmittance was observed. From these results, under the strongly reducing plasma conditions as shown in Table 1, the zinc oxide coating the tin oxide surface should have the same crystallinity and orientation as described in Examples in order to exhibit sufficient plasma resistance. It is clear that they must have sex.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】本発明は単に実施例に示した太陽電池用透
明導電性基板に限定されるものではなく、液晶ディスプ
レイ、ELディスプレイ、プラズマディスプレイ等の透
明電極としても有効であることはいうまでもない。Needless to say, the present invention is not limited to the transparent conductive substrates for solar cells shown in the examples, but is also effective as transparent electrodes for liquid crystal displays, EL displays, plasma displays and the like. .
【0033】[0033]
【発明の効果】本発明によれば、透明絶縁性基板上に第
1の透明導電性薄膜を形成し、さらにその上に相異なる
第2の透明導電性薄膜を形成した透明導電性基板におい
て、少なくとも第2の透明導電性薄膜を配向性を制御し
た結晶質酸化亜鉛薄膜とすることにより、高基板温度、
高パワー密度といった還元性の高いプラズマ条件下にお
いても耐プラズマ性に優れた太陽電池用透明導電性基板
を提供することが可能となる。According to the present invention, in a transparent conductive substrate, a first transparent conductive thin film is formed on a transparent insulating substrate, and a different second transparent conductive thin film is further formed thereon. By using at least the second transparent conductive thin film as a crystalline zinc oxide thin film with controlled orientation, high substrate temperature,
It is possible to provide a transparent conductive substrate for a solar cell that has excellent plasma resistance even under highly reducing plasma conditions such as high power density.
【0034】また、結晶性を制御した結晶質酸化亜鉛膜
は結晶構造的に非常に安定であるため、太陽電池用透明
導電性基板として使用することで、光電変換層中への元
素拡散が抑制される結果、光電変換層の膜質が向上し、
太陽電池の変換効率が向上することが予想される。Further, since the crystalline zinc oxide film whose crystallinity is controlled is very stable in terms of crystal structure, by using it as a transparent conductive substrate for solar cells, element diffusion into the photoelectric conversion layer is suppressed. As a result, the film quality of the photoelectric conversion layer is improved,
It is expected that the conversion efficiency of solar cells will be improved.
【図1】本発明の一実施例の太陽電池用透明導電性基板
の断面図FIG. 1 is a sectional view of a transparent conductive substrate for a solar cell according to an embodiment of the present invention.
【図2】酸化錫膜のRHEEDパターンを示す電子線回
折写真FIG. 2 is an electron diffraction photograph showing a RHEED pattern of a tin oxide film.
【図3】酸化錫結晶が基板に対し[200]配向し、酸
化錫結晶の[200]方向と基板垂線方向とのなす角度
が20度以内に分布していると仮定した場合に予想され
る理論的回折パターンを示す図FIG. 3 is expected when it is assumed that the tin oxide crystal is [200] oriented with respect to the substrate and the angle formed by the [200] direction of the tin oxide crystal and the substrate normal is distributed within 20 degrees. Diagram showing theoretical diffraction pattern
【図4】酸化錫膜表面に結晶性酸化亜鉛膜を被覆した場
合のRHEEDパターンを示す電子線回折写真FIG. 4 is an electron diffraction photograph showing a RHEED pattern when a tin oxide film surface is coated with a crystalline zinc oxide film.
【図5】酸化亜鉛の[101]方向が基板垂線方向に対
して20度以内の分布を持つと仮定した場合に得られる
理論的回折パターンを示す図FIG. 5 is a view showing a theoretical diffraction pattern obtained when it is assumed that the [101] direction of zinc oxide has a distribution within 20 degrees with respect to the substrate normal direction.
【図6】酸化錫及び酸化亜鉛結晶の配向関係を示す説明
図FIG. 6 is an explanatory diagram showing the orientation relationship between tin oxide and zinc oxide crystals.
1:アルカリバリヤー(シリカ)膜付ソーダライム・シ
リケートガラス基板 2:第1の透明導電性薄膜 3:第2の透明導電性薄膜1: Soda lime / silicate glass substrate with alkali barrier (silica) film 2: First transparent conductive thin film 3: Second transparent conductive thin film
Claims (5)
を形成し、さらにその上に相異なる第2の透明導電性薄
膜を形成した透明導電性基板において、第2の透明導電
性薄膜が結晶性薄膜からなることを特徴とする透明導電
性基板。1. A transparent conductive substrate in which a first transparent conductive thin film is formed on a transparent insulating substrate, and a different second transparent conductive thin film is further formed on the first transparent conductive thin film. A transparent conductive substrate, wherein the thin film is a crystalline thin film.
〜2000Åの酸化亜鉛を主成分とする透明導電性薄膜
であることを特徴とする請求項1の透明導電性基板。2. The second transparent conductive thin film has a thickness of 20.
The transparent conductive substrate according to claim 1, which is a transparent conductive thin film whose main component is zinc oxide of about 2000 Å.
御された結晶性薄膜であることを特徴とする請求項1ま
たは2の透明導電性基板。3. The transparent conductive substrate according to claim 1, wherein the second transparent conductive thin film is a crystalline thin film whose orientation is controlled.
の(002)面が第1の透明導電性薄膜の表面に対して
ほぼ平行であることを特徴とする請求項2または3の透
明導電性基板。4. The (002) plane of the zinc oxide crystal of the second transparent conductive thin film is substantially parallel to the surface of the first transparent conductive thin film. Transparent conductive substrate.
有し、前記第2の透明導電性薄膜が前記の各凹凸面に対
し結晶の配向性が制御された結晶性薄膜であることを特
徴とする請求項1〜4いずれか1項の透明導電性基板。5. The surface of the first transparent conductive thin film has unevenness, and the second transparent conductive thin film is a crystalline thin film in which crystal orientation is controlled with respect to each of the uneven surfaces. The transparent conductive substrate according to any one of claims 1 to 4, which is characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5296059A JPH07131044A (en) | 1993-11-01 | 1993-11-01 | Transparent conductive substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5296059A JPH07131044A (en) | 1993-11-01 | 1993-11-01 | Transparent conductive substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07131044A true JPH07131044A (en) | 1995-05-19 |
Family
ID=17828575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5296059A Pending JPH07131044A (en) | 1993-11-01 | 1993-11-01 | Transparent conductive substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07131044A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058118A1 (en) * | 2005-11-17 | 2007-05-24 | Asahi Glass Company, Limited | Transparent conductive substrate for solar cell and process for producing the same |
WO2008062685A1 (en) * | 2006-11-20 | 2008-05-29 | Kaneka Corporation | Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate |
JP2008277387A (en) * | 2007-04-26 | 2008-11-13 | Kaneka Corp | Method of manufacturing photoelectric conversion device |
WO2009157447A1 (en) * | 2008-06-27 | 2009-12-30 | 株式会社カネカ | Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate |
JP2010034027A (en) * | 2008-06-23 | 2010-02-12 | Hitachi Ltd | Substrate with transparent conductive film, manufacturing method thereof, display element using substrate with transparent conductive film, and solar cell using substrate with transparent conductive film |
JP2010034232A (en) * | 2008-07-28 | 2010-02-12 | Sumitomo Metal Mining Co Ltd | Thin-film solar cell and surface electrode for thin-film solar cell |
JP2012009755A (en) * | 2010-06-28 | 2012-01-12 | Sumitomo Metal Mining Co Ltd | Transparent conductive substrate with surface electrode and method for manufacturing the same, and thin film solar cell and method for manufacturing the same |
WO2012053569A1 (en) * | 2010-10-20 | 2012-04-26 | 住友金属鉱山株式会社 | Method for producing transparent conductive substrates with surface electrodes, and method for producing thin-film solar cells |
JPWO2010090142A1 (en) * | 2009-02-03 | 2012-08-09 | 株式会社カネカ | Substrate with transparent conductive film and thin film photoelectric conversion device |
CN102725856A (en) * | 2010-01-27 | 2012-10-10 | 三洋电机株式会社 | Photoelectric conversion device |
JP2016181634A (en) * | 2015-03-25 | 2016-10-13 | 株式会社東芝 | Photoelectric conversion element and manufacturing method thereof |
-
1993
- 1993-11-01 JP JP5296059A patent/JPH07131044A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058118A1 (en) * | 2005-11-17 | 2007-05-24 | Asahi Glass Company, Limited | Transparent conductive substrate for solar cell and process for producing the same |
WO2008062685A1 (en) * | 2006-11-20 | 2008-05-29 | Kaneka Corporation | Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate |
US8658887B2 (en) | 2006-11-20 | 2014-02-25 | Kaneka Corporation | Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate |
JP5156641B2 (en) * | 2006-11-20 | 2013-03-06 | 株式会社カネカ | Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device |
JP2008277387A (en) * | 2007-04-26 | 2008-11-13 | Kaneka Corp | Method of manufacturing photoelectric conversion device |
JP2010034027A (en) * | 2008-06-23 | 2010-02-12 | Hitachi Ltd | Substrate with transparent conductive film, manufacturing method thereof, display element using substrate with transparent conductive film, and solar cell using substrate with transparent conductive film |
WO2009157447A1 (en) * | 2008-06-27 | 2009-12-30 | 株式会社カネカ | Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate |
JP2010034232A (en) * | 2008-07-28 | 2010-02-12 | Sumitomo Metal Mining Co Ltd | Thin-film solar cell and surface electrode for thin-film solar cell |
JPWO2010090142A1 (en) * | 2009-02-03 | 2012-08-09 | 株式会社カネカ | Substrate with transparent conductive film and thin film photoelectric conversion device |
CN102725856A (en) * | 2010-01-27 | 2012-10-10 | 三洋电机株式会社 | Photoelectric conversion device |
JP2012009755A (en) * | 2010-06-28 | 2012-01-12 | Sumitomo Metal Mining Co Ltd | Transparent conductive substrate with surface electrode and method for manufacturing the same, and thin film solar cell and method for manufacturing the same |
JP2012089682A (en) * | 2010-10-20 | 2012-05-10 | Sumitomo Metal Mining Co Ltd | Method of manufacturing transparent conductive substrate with surface electrode and method of manufacturing thin film solar cell |
WO2012053569A1 (en) * | 2010-10-20 | 2012-04-26 | 住友金属鉱山株式会社 | Method for producing transparent conductive substrates with surface electrodes, and method for producing thin-film solar cells |
JP2016181634A (en) * | 2015-03-25 | 2016-10-13 | 株式会社東芝 | Photoelectric conversion element and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1036774B1 (en) | Glass substrate having transparent conductive film | |
US7883789B2 (en) | Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element | |
US6380480B1 (en) | Photoelectric conversion device and substrate for photoelectric conversion device | |
US7846562B2 (en) | Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate | |
JP3227449B2 (en) | Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same | |
JPH02503615A (en) | Substrate for solar cells | |
WO2002043079A1 (en) | Conductive film, production method therefor, substrate provided with it and photoelectric conversion device | |
US7320827B2 (en) | Glass substrate and method of manufacturing the same | |
JPH06187833A (en) | Transparent conductive film | |
JPH07131044A (en) | Transparent conductive substrate | |
JP2001085722A (en) | Method for manufacturing transparent electrode film and solar battery | |
JPH07105166B2 (en) | Fluorine-doped tin oxide film and method for reducing resistance thereof | |
JPWO2005027229A1 (en) | Substrate with transparent conductive film and method for producing the same | |
JPH0742572B2 (en) | Transparent conductive film | |
JPS63195149A (en) | transparent conductive film | |
JPH01227307A (en) | transparent conductor | |
JP2001015787A (en) | Substrate with transparent conductive film, method for producing the same, and solar cell | |
US20110020621A1 (en) | Glass-type substrate coated with thin layers and production method | |
JP2003231968A (en) | Substrate, its manufacturing process and photoelectric converter using this substrate | |
JP3558519B2 (en) | Method for manufacturing transparent conductive film and method for manufacturing photovoltaic element | |
JPS63102109A (en) | Transparent conducting film | |
JP2001177127A (en) | Board for photoelectric conversion device | |
JP2001036107A (en) | Photoelectric transducer and substrate there for | |
JP2001035275A (en) | Manufacture of transparent substrate with transparent conductive film, and photoelectric converting device using the film | |
JP2941086B2 (en) | Transparent electrode |