[go: up one dir, main page]

JPH07126797A - Method for manufacturing thick steel plate with excellent low temperature toughness - Google Patents

Method for manufacturing thick steel plate with excellent low temperature toughness

Info

Publication number
JPH07126797A
JPH07126797A JP5272529A JP27252993A JPH07126797A JP H07126797 A JPH07126797 A JP H07126797A JP 5272529 A JP5272529 A JP 5272529A JP 27252993 A JP27252993 A JP 27252993A JP H07126797 A JPH07126797 A JP H07126797A
Authority
JP
Japan
Prior art keywords
transformation point
rolling
temperature
less
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5272529A
Other languages
Japanese (ja)
Other versions
JP3246993B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Yuji Nomiyama
裕治 野見山
Tadashi Ishikawa
忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27252993A priority Critical patent/JP3246993B2/en
Publication of JPH07126797A publication Critical patent/JPH07126797A/en
Application granted granted Critical
Publication of JP3246993B2 publication Critical patent/JP3246993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 本発明は、高価な合金元素を用いたり、複雑
な熱履歴により生産性を低下させることなく、全厚にわ
たって3μm以下の平均α粒径を達成することが可能
な、低温靭性の良好な厚鋼板を製造する方法を提供す
る。 【構成】 所定の成分範囲の鋼片の熱間圧延前のミクロ
組織を規定した上で、該鋼片をAc1 変態点以上Ac3
変態点未満に加熱した後、累積圧下率50%以上の圧延
をAc1 変態点以上Ac3 変態点未満の温度範囲で行
い、圧延終了後は必要に応じて、5℃/秒以上の冷却速
度で650℃以下の温度に加速冷却するか、圧延終了に
引き続いて5℃/秒以上の冷却速度で650℃以下の温
度に加速冷却した後、Ac1 変態点以下に焼き戻す。
(57) [Summary] [Objective] The present invention can achieve an average α grain size of 3 µm or less over the entire thickness without using expensive alloying elements or reducing productivity due to complicated thermal history. A method for producing a thick steel sheet having good low temperature toughness is provided. [Configuration] in terms of defining the hot rolling prior to the microstructure of a given component range of the steel strip, the steel strip Ac 1 transformation point or more Ac 3
After heating below the transformation point, rolling with a cumulative rolling reduction of 50% or more is performed within a temperature range from the Ac 1 transformation point to less than the Ac 3 transformation point, and after the completion of rolling, a cooling rate of 5 ° C / sec or more, if necessary. After accelerating cooling to a temperature of 650 ° C. or less, or after completion of rolling, accelerating cooling to a temperature of 650 ° C. or less at a cooling rate of 5 ° C./sec or more, and then tempering to an Ac 1 transformation point or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低温靭性に優れた厚鋼板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick steel sheet having excellent low temperature toughness.

【0002】[0002]

【従来の技術】厚鋼板は構造物として用いられるため、
構造物の安全性確保の観点から低温靭性を要求される場
合が多い。厚鋼板において、低温靭性を得る方法として
は、高価な合金元素を用いずに、他の特性劣化を生じな
い方法としてフェライト(α)結晶粒径の微細化が代表
的であり、αの微細化方法として従来から種々の方法が
提案され、実用化されている。
2. Description of the Related Art Since thick steel plates are used as structures,
In many cases, low temperature toughness is required from the viewpoint of ensuring the safety of structures. As a method for obtaining low temperature toughness in thick steel plates, refining the ferrite (α) crystal grain size is a typical method that does not cause deterioration of other properties without using expensive alloy elements. Various methods have been conventionally proposed and put into practical use.

【0003】代表的な方法として、例えば、特公昭49
−7291号公報、特公昭57−21007号公報、特
公昭59−14535号公報等にあるように、オーステ
ナイト(γ)の未再結晶温度域において制御圧延を行
い、引き続いて加速冷却を行うことによるγからαへの
変態時にαを微細化する方法が提案されている。γから
αへの変態を利用する方法では、γが粗大な場合は未再
結晶圧延の有効活用によりγ/α変換比を高めることが
可能であるが、γが微細になるとγ/α変換比は1に近
づくため、αの微細化の程度は飽和してしまい、極端な
αの微細化は望めない。また、未再結晶域での圧下を増
加すると、生産性が極端に低下する点は制御圧延を前提
とした方法の本質的な欠点として解決が非常に困難な問
題として残る。
As a typical method, for example, Japanese Patent Publication Sho 49
As disclosed in Japanese Patent Publication No. 7291, Japanese Patent Publication No. 57-21007, Japanese Patent Publication No. 59-14535, etc., by performing controlled rolling in the unrecrystallized temperature range of austenite (γ) and subsequently performing accelerated cooling. A method of refining α during the transformation from γ to α has been proposed. In the method utilizing the transformation from γ to α, it is possible to increase the γ / α conversion ratio by effectively utilizing the non-recrystallization rolling when γ is coarse, but when γ becomes fine, the γ / α conversion ratio can be increased. Is close to 1, the degree of α miniaturization is saturated, and extreme α miniaturization cannot be expected. Further, the fact that the productivity is extremely lowered when the reduction in the unrecrystallized region is increased remains as a very difficult problem to solve as an essential drawback of the method based on controlled rolling.

【0004】また、圧延等の熱間加工によらず熱処理に
よる方法も提案されている。例えば、〔鉄と鋼,第77
年,第1号,1991,第171〜178頁〕に示され
ているように、V,Nを多量に添加させることによりγ
の微細化を図るとともに、変態時のγ/α変換比を増大
させて、焼きならし処理で微細なα組織とする方法が開
発されている。しかし、焼きならしで細粒化効果を十分
発揮するためにはVを0.01%以上、Nも0.01%
以上添加する必要があるが、到達できるα粒径は5μm
程度である。
Further, a method of heat treatment has been proposed instead of hot working such as rolling. For example, [Iron and Steel, No. 77
, No. 1, 1991, pp. 171-178], by adding a large amount of V and N,
Has been developed, and a method of increasing the γ / α conversion ratio during transformation to obtain a fine α structure by normalizing treatment has been developed. However, in order to fully exert the grain-refining effect by normalizing, V is 0.01% or more and N is 0.01%.
It is necessary to add more than this, but the attainable α particle size is 5 μm
It is a degree.

【0005】さらに、〔材料とプロセス,第3年,第6
号,1990,第1796頁〕において、γ−α変態の
繰り返しを含む複雑な加工熱処理により粒径が3μm以
下の超細粒鋼を得る方法が開示されている。この方法
は、制御圧延後、加速冷却を行い、500℃程度で加速
冷却を停止した後、常温まで冷却することなく900℃
に再加熱し、所定の温度で熱間圧延を行うことにより超
細粒鋼を得るものであるが、α粒径は冷却停止温度の影
響を強く受け、冷却停止温度が500℃ごく近傍以外で
は3μm以下のα粒径は得られておらず、工業的に安定
して製造することは困難であると考えられる。
Furthermore, [Materials and Processes, 3rd year, 6th
No. 1990, p. 1796], there is disclosed a method for obtaining ultrafine grain steel having a grain size of 3 μm or less by a complicated thermomechanical treatment including repeated γ-α transformation. This method performs accelerated cooling after controlled rolling, stops accelerated cooling at about 500 ° C, and then 900 ° C without cooling to room temperature.
Ultra-fine grained steel is obtained by reheating to 0 ° C and hot rolling at a predetermined temperature. However, α grain size is strongly influenced by the cooling stop temperature, and the cooling stop temperature is in the vicinity of 500 ° C except near. An α particle size of 3 μm or less has not been obtained, and it is considered that it is difficult to manufacture it industrially stably.

【0006】従って、上記の従来の方法はいずれも生産
性の劣化や熱処理工程の増加、さらには合金元素の増加
等、コスト高を伴うとともに、安定して得られるα粒径
は一部の実験的手法を除けば、10μm程度、厳密に制
御された複雑な工程によっても5μm程度が限界であ
り、それ以上のαの微細化による大幅な靭性向上は望め
ない。
Therefore, all of the above-mentioned conventional methods are accompanied by high costs such as deterioration of productivity, increase of heat treatment steps, increase of alloying elements, etc., and stable α particle size can be obtained by some experiments. Except for the above-mentioned method, the limit is about 10 μm, and about 5 μm is a limit even with a complicated process that is strictly controlled, and it is not possible to expect a significant improvement in toughness by further refinement of α.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高価な合金
元素の多量な添加や生産性の劣る工程や、複雑な繰り返
し工程を行わずに、生産性よく、平均α粒径が3μm以
下程度の超細粒αを得ることのできる低温靭性に優れた
厚鋼板の製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has good productivity and an average α particle size of about 3 μm or less without adding a large amount of expensive alloying elements, inferior productivity, or complicated repeating steps. The present invention provides a method for producing a thick steel sheet having excellent low temperature toughness, which can obtain the ultrafine grain α.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
すべく検討した結果、従来のγからαへの変態を利用し
たαの細粒化では工業的には限界があり、むしろαを直
接加工することで超微細なα組織が得られることを見い
だしたものであり、その要旨とするところは、重量%
で、C:0.01〜0.20%、Si:0.03〜1.
0%、Mn:0.30〜2.0%、Al:0.005〜
0.1%、N:0.001〜0.01%を含有し、さら
に必要に応じて、Cr:0.01〜0.50%、Ni:
0.01〜3.0%、Mo:0.01〜0.50%、C
u:0.01〜1.5%、Ti:0.003〜0.10
%、V:0.005〜0.20%、Nb:0.003〜
0.05%、B:0.0003〜0.0020%の1種
または2種以上を含有し、残部Fe及び不可避不純物か
らなり、以下の〜に該当するミクロ組織を有する鋼
片をAc1 変態点以上をAc3 変態点未満に加熱した
後、累積圧下率50%以上の圧延をAc1 変態点以上A
3 変態点未満の温度範囲で行い、圧延終了後は必要に
応じて、5℃/秒以上の冷却速度で650℃以下の温度
に加速冷却するか、圧延終了に引き続いて5℃/秒以上
の冷却速度で650℃以下の温度に加速冷却した後、A
1 変態点以下に焼き戻すことを特徴とする低温靭性に
優れた厚鋼板の製造方法にある。 マルテンサイト単相組織、あるいはベイナイト単相組
織、あるいは両者の混合組織 フェライトの割合が20%未満の、フェライトとマル
テンサイト、あるいはフェライトとベイナイト、あるい
はフェライト、ベイナイト、マルテンサイト3者の混合
組織 フェライトの平均粒径が20μm以下の、フェライト
単相組織あるいはフェライトとマルテンサイト、ベイナ
イト、パーライトの内、1種または2種以上からなる混
合組織
As a result of studies to solve the above problems, the present invention has an industrial limit in the conventional refinement of α using the transformation from γ to α. It was discovered that ultra-fine α-structure can be obtained by direct processing, and the gist is that it is wt%.
C: 0.01 to 0.20%, Si: 0.03 to 1.
0%, Mn: 0.30 to 2.0%, Al: 0.005
0.1%, N: 0.001-0.01%, and if necessary, Cr: 0.01-0.50%, Ni:
0.01 to 3.0%, Mo: 0.01 to 0.50%, C
u: 0.01 to 1.5%, Ti: 0.003 to 0.10.
%, V: 0.005 to 0.20%, Nb: 0.003 to
0.05%, B: 0.0003 to 0.0020% of 1 type or 2 types or more, a balance of Fe and unavoidable impurities, and a steel slab having a microstructure corresponding to the following 1 to Ac 1 transformation. After heating the temperature above the Ac 3 transformation point to below the Ac 3 transformation point, rolling with a cumulative reduction of 50% or more is performed at the Ac 1 transformation point or above A
c 3 carried out in the temperature range of less than transformation point, if necessary after rolling completion, 5 ° C. / sec or more cooling rate or accelerated cooling to 650 ° C. temperature below, 5 ° C. / sec or more following the end of rolling After accelerated cooling to a temperature of 650 ° C or lower at the cooling rate of
It is a method for producing a thick steel sheet excellent in low temperature toughness, which is characterized by tempering to a temperature not higher than the c 1 transformation point. Martensite single-phase structure, bainite single-phase structure, or mixed structure of both Ferrite and martensite, or ferrite and bainite, or mixed structure of ferrite, bainite, and martensite Ferrite single-phase structure with an average grain size of 20 μm or less or a mixed structure consisting of one or more of ferrite and martensite, bainite, and pearlite.

【0009】[0009]

【作用】先ず、本発明者らは鋼片をAc1 変態点以上A
3 変態点未満に加熱した後、累積圧下率50%以上の
圧延をAc1 変態点以上Ac3 変態点未満の温度範囲で
行い、αに直接加工を加えることにより超細粒化できる
ことを見いだした。αを加工する厚鋼板の製造方法とし
て、従来から制御圧延の延長として行われてきた、γ域
加工に引き続いて冷却過程のα,γ共存域で圧延を加え
る、いわゆる二相域圧延法がある。この方法ではαに加
工組織を導入することにより強度の上昇を図ることは可
能であるが、αの効果的な細粒化は困難であり、靭性も
改善が難しく、αが加工強化された分、靭性はむしろ劣
化する場合が多い。
First of all, the inventors of the present invention put a steel piece into a steel having an Ac 1 transformation point or more A
It was found that, after heating below the c 3 transformation point, rolling with a cumulative reduction of 50% or more in the temperature range between the Ac 1 transformation point and less than the Ac 3 transformation point, and by directly processing α, ultrafine graining can be performed. It was As a method of manufacturing a thick steel sheet for processing α, there is a so-called two-phase rolling method, which has been conventionally performed as an extension of controlled rolling, and in which rolling is performed in the α and γ coexisting regions of the cooling process following γ region processing. . In this method, it is possible to increase the strength by introducing a processed structure into α, but it is difficult to effectively reduce the grain size of α, and it is difficult to improve the toughness. However, the toughness often deteriorates.

【0010】一方、本発明は冷却過程に比べて加熱過程
では同じ温度でもαの割合が多い、即ち、加工段階で同
じαの割合を高温で確保できることにより、αの回復・
再結晶が容易となって、靭性に有害な加工歪を残存させ
ずに、再結晶によりαが顕著に細粒化し、またこの時に
共存しているγも極低温で加工されるため、冷却中に変
態するαも従来のγ単相域で加工された後、変態した場
合に比べて細粒化し、全体的にαが顕著に微細化するた
め、優れた靭性を得ることが可能となる。
On the other hand, according to the present invention, the ratio of α is higher at the same temperature in the heating process than in the cooling process, that is, the same ratio of α can be secured at a high temperature in the processing stage, so that the recovery of α can be achieved.
Recrystallization is facilitated, α is significantly fine-grained by recrystallization without leaving processing strain harmful to toughness, and γ coexisting at this time is also processed at extremely low temperature, so during cooling After being processed in the single phase region of the conventional γ, α which transforms into α becomes finer than that in the case where it is transformed, and α becomes significantly finer as a whole, so that excellent toughness can be obtained.

【0011】しかしながら、単に二相域に加熱して加工
するだけではαは必ずしも均一に超細粒化しない。それ
は、加工前の組織、特にα粒径が粗大であると、圧下率
を大きくしても再結晶が生じ難くなるためである。本発
明者らはαの加工において、均一微細化するための条件
を鋭意研究した結果、加工前のミクロ組織により、再結
晶の生じやすさが変化し、その結果としてαが均一に微
細化するか否かが決定されることを見いだした。以下
に、先ず、実験結果に基づいて本発明の製造方法のう
ち、加工前組織に関する限定理由を説明する。
However, α is not necessarily uniformly made into ultrafine grains simply by heating and processing in the two-phase region. This is because if the structure before processing, especially the α particle size is coarse, recrystallization is difficult to occur even if the rolling reduction is increased. As a result of intensive studies on the conditions for uniform miniaturization in the processing of α, the inventors of the present invention changed the easiness of recrystallization depending on the microstructure before processing, and as a result, α was uniformly refined. I found that it was decided whether or not. Below, based on the experimental results, the reasons for limiting the structure before processing in the manufacturing method of the present invention will be described.

【0012】重量%で、C:0.12%、Si:0.3
3%、Mn:1.45%、Ti:0.011%、Al:
0.03%、N:0.0028%を含有する鋼片につい
て、先ず、厚さ10mmの鋼片を圧延を加えない種々の熱
処理により、マルテンサイト単相組織、ベイナイト+マ
ルテンサイト混合組織、αの割合が約18%のα+ベイ
ナイト混合組織、αの割合が約55%でその平均粒径が
約35μmのα+ベイナイト混合組織の4種類の組織
(以降、この段階での組織を前組織と呼ぶ)を有する鋼
片とした後、種々の温度に2時間保持し、温度の低下を
極力少なくなるよう、加熱炉から抽出後直ちに1パスの
圧延を加え、板厚4mmとし、そのまま室温まで放冷し
た。その時の加熱温度(約加工温度)と得られた平均α
粒径の関係を図1に示す。
% By weight, C: 0.12%, Si: 0.3
3%, Mn: 1.45%, Ti: 0.011%, Al:
Regarding a steel slab containing 0.03% and N: 0.0028%, a martensite single-phase microstructure, a bainite + martensite microstructure, α Of four types of α + bainite mixed structure having a ratio of about 18% and α + bainite mixed structure having a ratio of α of about 55% and an average grain size of about 35 μm (hereinafter, the structure at this stage is referred to as a front structure). )) And then kept at various temperatures for 2 hours, and then rolled in one pass immediately after extraction from the heating furnace to reduce the temperature drop as much as possible, to a plate thickness of 4 mm and allowed to cool to room temperature. did. Heating temperature at that time (about processing temperature) and the obtained average α
The relationship between particle sizes is shown in FIG.

【0013】前組織によらず、加工温度がAc1 変態点
未満であると、α伸長した未再結晶粒で、回復も不十分
である。一方Ac3 変態点以上であるとγ単相域で加工
して冷却する、通常の熱間圧延と同様の条件となるた
め、α粒径は5μm以上で、極端な細粒化は達成されな
い。Ac1 変態点以上、Ac3 変態点未満の温度範囲で
加工すると、αは最も細粒化するが、その細粒化の程度
は前組織により大きく異なり、前組織がマルテンサイト
単相組織、ベイナイト+マルテンサイト混合組織、αの
割合が約18%のα+ベイナイト混合組織では3μm以
下の非常に微細なα組織が得られるのに対して、αの割
合が約55%でその平均粒径が約35μmのα+ベイナ
イト混合組織では細粒化が十分でない。
Regardless of the previous structure, if the processing temperature is below the Ac 1 transformation point, α-stretched unrecrystallized grains result in insufficient recovery. On the other hand, if the temperature is at the Ac 3 transformation point or higher, the conditions are the same as in ordinary hot rolling in which the alloy is processed and cooled in the γ single phase region, so the α grain size is 5 μm or more, and extreme grain refining cannot be achieved. When processed in the temperature range from the Ac 1 transformation point to below the Ac 3 transformation point, α is the finest grain size, but the degree of grain size varies greatly depending on the anterior structure, and the anterior structure is a martensite single-phase structure or bainite. + Martensite mixed structure, α ratio of about 18% α + bainite mixed structure gives a very fine α structure of 3 μm or less, while α ratio is about 55% and the average grain size is about 55%. Grain refinement is not sufficient with a mixed structure of α + bainite of 35 μm.

【0014】これは、αを加熱した場合はもとの粒径が
加熱温度の上昇につれて粗大化する一方であるのに対し
て、マルテンサイトあるいはベイナイト組織を加熱した
場合は、マルテンサイト、ベイナイトのラスやブロック
が実質的な粒界の役割を果たすため加工前の粒径として
は微細であること、また、加熱前に存在したり、加熱中
に析出する微細なセメンタイトが粒内に存在すると、二
相域温度では微細なγとなってαへの均一加工を助け、
再結晶が容易になるため、前組織がマルテンサイトある
いはベイナイトであれば加工後のαの超細粒化は容易と
なる。前組織中にαが存在してもその割合が少なけれ
ば、全体の微細化に大きな悪影響は及ぼさない。図1の
結果及び本発明者らの他の実験結果から前組織中のαの
割合が20%未満であれば超細粒化に支障がない。
This is because when α is heated, the original grain size becomes coarser as the heating temperature rises, whereas when the martensite or bainite structure is heated, the original grain size of martensite or bainite is increased. Since the lath and block play the role of substantial grain boundaries, the grain size before processing is fine, and, if present before heating, or if fine cementite that precipitates during heating is present in the grain, At the temperature of the two-phase region, it becomes a fine γ and helps the uniform processing into α.
Since recrystallization is facilitated, if the pre-structure is martensite or bainite, it becomes easy to make α into ultrafine grains after processing. Even if α is present in the previous structure, if the ratio is small, it does not have a great adverse effect on the miniaturization of the whole. From the results of FIG. 1 and the results of other experiments by the present inventors, if the ratio of α in the pre-tissue is less than 20%, there is no problem in ultrafine graining.

【0015】α主体組織が超細粒化し難いのは、その粒
径が粗い場合である。図2には図1と同じ鋼片を用い
て、前組織がαとパーライトの混合組織の場合に熱処理
条件により前組織のα粒径を変化させて加工温度と平均
α粒径の関係を調べた図である。この場合、前組織中の
αの割合は約80%以上であるが、α粒径が約20μm
以下であればα主体組織であっても二相域で加工した場
合に超細粒化し得る。他の第二相は加熱中にαとγに分
離するため、加工前のα粒径としては元々αである場合
に比べて細粒となる。従って、αが20%を超える組織
でもα粒径を20μm以下としておけば残りの組織の種
類によらず超細粒化は可能となる。
It is difficult to make the α-based structure into ultrafine grains when the grain size is coarse. In Fig. 2, the same steel piece as in Fig. 1 was used, and when the pre-structure was a mixed structure of α and pearlite, the α-grain size of the pre-structure was changed by heat treatment conditions to investigate the relationship between the processing temperature and the average α-grain size. It is a figure. In this case, the ratio of α in the anterior tissue is about 80% or more, but the α particle size is about 20 μm.
If it is below, even if it has an α-based structure, it can be made into ultrafine grains when processed in the two-phase region. Since the other second phase separates into α and γ during heating, the α particle size before processing becomes finer particles than when originally α. Therefore, even in a structure in which α exceeds 20%, if the α particle size is set to 20 μm or less, ultrafine graining is possible regardless of the type of the remaining structure.

【0016】以上、図1,図2に示した実験結果から、
αを超細粒化して低温靭性を向上させるための製造条件
として、Ac1 変態点以上、Ac3 変態点未満の温度範
囲での加熱、加工が必要なこと、加工する前の組織を以
下のいずれかを満足する組織とする必要があることが明
らかである。 マルテンサイト組織、あるいはベイナイト組織、ある
いは両者の混合組織 フェライトの割合が20%未満の、フェライトとマル
テンサイト、あるいはフェライトとベイナイト、あるい
はフェライト、ベイナイト、マルテンサイト3者の混合
組織 フェライトの平均粒径が20μm以下の、フェライト
単相組織あるいはフェライトとマルテンサイト、ベイナ
イト、パーライトの内、1種または2種以上からなる混
合組織
As described above, from the experimental results shown in FIGS.
As manufacturing conditions for superfine α to improve low temperature toughness, heating in a temperature range of Ac 1 transformation point or more and less than Ac 3 transformation point, processing is required, and the structure before processing is as follows. It is clear that the organization needs to satisfy either of them. Martensite structure, bainite structure, or a mixed structure of both: Ferrite and martensite, ferrite and bainite, or a mixed structure of ferrite, bainite, and martensite with a ferrite content of less than 20%. Ferrite single-phase structure of 20 μm or less or mixed structure consisting of one or more of ferrite and martensite, bainite, and pearlite

【0017】次に、他の製造条件に関する限定理由を説
明する。Ac1 変態点以上、Ac3 変態点未満の温度範
囲に加熱、加工する場合、αが再結晶するためには一定
以上の加工を加える必要があり、本発明者らの実験結果
に基づけば、累積圧下率として50%以上が必要であ
る。該温度範囲ではγ域に比べて温度が低いので、加え
られた加工の歪は蓄積されるので、各パスの圧下率の大
小は問わない。ただし、各パスの圧下の効果をαの再結
晶に有効に働かせるためには、各パスの間隔は短い方が
好ましい。
Next, the reasons for limitation regarding other manufacturing conditions will be described. When heating and processing in a temperature range of Ac 1 transformation point or more and less than Ac 3 transformation point, it is necessary to add a certain amount of processing or more in order to recrystallize α, and based on the experimental results of the present inventors, A cumulative rolling reduction of 50% or more is required. Since the temperature is lower in the temperature range than in the γ range, the strain of the applied processing is accumulated, so that the reduction rate of each pass does not matter. However, in order to effectively exert the rolling reduction effect of each pass on the recrystallization of α, it is preferable that the interval between the passes is short.

【0018】本発明における圧延温度域は最高でもAc
3 変態点未満であるので、圧延後の冷却中のαの成長や
セメンタイト、析出物の粗大化の懸念は小さい。従っ
て、圧延後の冷却としては、空冷あるいは所望の鋼板強
度レベルに応じて、圧延に引き続いて5℃/秒以上の冷
却速度で650℃以下まで加速冷却したり、加速冷却後
Ac1 変態点以下で焼戻し処理を施すことが可能であ
る。以上が製造方法に関する本発明の限定理由である
が、低温靭性を確保するためには製造方法だけでなく、
化学成分も適正範囲内とする必要がある。以下に、本発
明における化学成分の限定理由を述べる。
The rolling temperature range in the present invention is at most Ac.
Since it is less than 3 transformation points, there is little concern about α growth, cementite, and coarsening of precipitates during cooling after rolling. Therefore, as cooling after rolling, air cooling or, depending on the desired steel plate strength level, subsequent to rolling, accelerated cooling to 650 ° C. or less at a cooling rate of 5 ° C./sec or more, or less than Ac 1 transformation point after accelerated cooling It is possible to apply a tempering process at. The above are the reasons for limiting the present invention regarding the manufacturing method, but not only the manufacturing method for ensuring low temperature toughness,
The chemical composition also needs to be within the proper range. The reasons for limiting the chemical components in the present invention will be described below.

【0019】先ず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であり、また0.20%を超
える過剰の添加は靭性や耐溶接割れ性等を著しく低下さ
せるので、0.01〜0.20%の範囲とした。次にS
iは脱酸元素として、また、母材の強度確保に有効な元
素である。0.03%未満の添加では脱酸が不十分とな
り、また強度確保に不利である。逆に1.0%を超える
過剰の添加は粗大な酸化物を形成して延性や靭性劣化を
招く。そこで、Siの範囲は0.03〜1.0%とし
た。
First, C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and if it exceeds 0.20%, it is excessive. Since the addition of Al significantly reduces toughness, weld crack resistance, etc., the range was made 0.01 to 0.20%. Then S
i is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.03% results in insufficient deoxidation and is disadvantageous in securing strength. On the contrary, excessive addition of more than 1.0% forms a coarse oxide and causes ductility and toughness deterioration. Therefore, the range of Si is set to 0.03 to 1.0%.

【0020】また、Mnは母材の強度、靭性の確保に必
要な元素であり、最低限0.30%以上添加する必要が
あるが、溶接部の靭性、割れ性等材質上許容できる範囲
で上限を2.0%とした。Alは脱酸、γ粒径の細粒化
等に有効な元素であり、効果を発揮するためには0.0
05%以上含有する必要があるが、0.1%を超えて過
剰に添加すると、粗大な酸化物を形成して延性を極端に
劣化させるため、0.005〜1.0%の範囲に限定す
る必要がある。NはAlやTiと結びついてγ粒微細化
に有効に働くが、その効果が明確になるためには0.0
01%以上含有させる必要がある一方、過剰に添加する
と固溶Nが増加して靭性に悪影響を及ぼす。許容できる
範囲として上限を0.01%とする。
Further, Mn is an element necessary for securing the strength and toughness of the base metal, and it is necessary to add at least 0.30% or more, but in a range that is acceptable in terms of material such as toughness and cracking of the welded portion. The upper limit was 2.0%. Al is an element effective for deoxidizing, refining the γ grain size, etc.
It is necessary to contain at least 05%, but if excessively added in excess of 0.1%, a coarse oxide is formed and ductility is extremely deteriorated. Therefore, it is limited to a range of 0.005 to 1.0%. There is a need to. N combines with Al and Ti to effectively work for γ grain refinement, but in order to clarify the effect, 0.0
On the other hand, it is necessary to contain it in an amount of 01% or more, but when it is added in excess, the amount of solute N increases and the toughness is adversely affected. The upper limit of the allowable range is 0.01%.

【0021】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて母材強度の上昇の目的で、必要に
応じてCr,Ni,Mo,Cu,Ti,V,Nb,Bの
1種または2種以上を含有することができる。先ず、C
r及びMoはいずれも母材の強度向上に有効な元素であ
るが、明瞭な効果を生じるためには0.01%以上必要
であり、一方、0.50%を超えて添加すると、靭性が
劣化する傾向を有するため、0.01〜0.50%の範
囲とする。
The above are the basic components of the steel of the present invention, but for the purpose of increasing the strength of the base material in accordance with the desired strength level, Cr, Ni, Mo, Cu, Ti, V, Nb, B are added if necessary. 1 type or 2 types or more of these can be contained. First, C
Both r and Mo are effective elements for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while if added over 0.50%, toughness is Since it has a tendency to deteriorate, the range is 0.01 to 0.50%.

【0022】またNiは母材の強度と靭性を同時に向上
でき、非常に有効な元素であるが、効果を発揮させるた
めには0.01%以上含有させる必要がある。含有量が
多くなると強度、靭性は向上するが3.0%を超えて添
加しても効果が飽和するため、経済性を考慮して、上限
を3.0%とする。次にCuもほぼNiと同様の効果を
有するが、1.5%超の添加では熱間加工性に問題を生
じるため、0.01〜1.5%の範囲に限定する。
Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. When the content is high, the strength and toughness are improved, but the effect is saturated even if added in excess of 3.0%. Therefore, considering economic efficiency, the upper limit is made 3.0%. Next, Cu has almost the same effect as Ni, but addition of more than 1.5% causes a problem in hot workability, so the range is limited to 0.01 to 1.5%.

【0023】Tiは析出強度により母材強度向上に寄与
するとともに、TiNの形成によりγ粒微細化にも有効
な元素であるが、効果を発揮できるためには0.003
%以上の添加が必要である。一方、0.10%を超える
と、Alと同様、粗大な酸化物を形成して靭性や延性を
劣化させるため、上限を0.10%とする。V及びNb
はいずれも主として析出強化により母材の強度向上に寄
与するが、過剰の添加で靭性が劣化する。従って、靭性
の劣化を招かずに、効果を発揮できる範囲として、Vは
0.005〜0.20%、Nbは0.003〜0.05
%とする。Bは0.0003%以上のごく微量添加で鋼
材の焼入性を高めて強度上昇に非常に有効であるが、過
剰に添加するとBNを形成して、逆に焼入性を落とした
り、靭性を大きく劣化させるため、上限を0.0020
%とする。
Ti contributes to the improvement of the strength of the base material by its precipitation strength, and is an element effective for the refinement of γ grains by the formation of TiN, but 0.003 is necessary to exert the effect.
% Or more must be added. On the other hand, if it exceeds 0.10%, similarly to Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.10%. V and Nb
All of these contribute to the improvement of the strength of the base material mainly by precipitation strengthening, but excessive addition deteriorates the toughness. Therefore, V is 0.005 to 0.20% and Nb is 0.003 to 0.05 as a range in which the effect can be exhibited without causing deterioration of toughness.
%. B is very effective in increasing the hardenability by increasing the hardenability of steel by adding a very small amount of 0.0003% or more, but if added in excess, it forms BN, which adversely affects the hardenability and reduces toughness. , The upper limit is 0.0020.
%.

【0024】[0024]

【実施例】実施例に用いた供試鋼の化学成分を表1に示
す。鋼種1〜7は本発明の化学成分範囲内であり、鋼種
8,9は本発明の化学成分から、C,Tiがそれぞれ逸
脱している。表1の供試鋼を用いて行った厚鋼板の、前
熱処理により得られた前組織の状態、製造条件、及び得
られた強度、靭性を表2に示す。
[Examples] Table 1 shows the chemical composition of the test steels used in the examples. Steel types 1 to 7 are within the chemical composition range of the present invention, and steel types 8 and 9 deviate from the chemical composition of the present invention by C and Ti, respectively. Table 2 shows the state of the pre-structure obtained by the pre-heat treatment, the manufacturing conditions, and the obtained strength and toughness of the thick steel plate obtained by using the test steel of Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】鋼No.A1〜A13は本発明の方法により
製造した厚鋼板で、最終的に得られたα粒径は全て3μ
m以下と、顕著に細粒化しており、従って、シャルピー
衝撃試験の破面遷移温度(vTrs)で評価した靭性値
はvTrsで−100℃と優れている。
Steel No. A1 to A13 are thick steel plates manufactured by the method of the present invention, and the finally obtained α particle size is 3 μm.
Since the grain size is significantly smaller than m, the toughness value evaluated by the fracture surface transition temperature (vTrs) in the Charpy impact test is excellent at −100 ° C. in vTrs.

【0030】鋼No.B1〜B7は比較例で、いずれも本
発明の条件を満足していないため、本発明により製造し
た厚鋼板に比べて靭性は大幅に劣化している。即ち、比
較鋼B1,B2は化学成分が本発明の範囲外であるた
め、最終的に得られるα粒径は微細だが、靭性は劣る。
また、比較鋼B3は前組織のα粒径が粗大であるため、
B4はα粒径が粗大な上に圧下率が小さすぎるため、ま
た、B5は前組織は本発明を満足しているが、累積圧下
率が不十分なため、いずれも圧延後のα粒径が粗大とな
って、良好な靭性が得られない。
Steel No. B1 to B7 are comparative examples, all of which do not satisfy the conditions of the present invention, so that the toughness is significantly deteriorated as compared with the thick steel plate manufactured by the present invention. That is, since the chemical composition of Comparative Steels B1 and B2 is outside the range of the present invention, the finally obtained α grain size is fine, but the toughness is poor.
Further, since Comparative Steel B3 has a coarse α-grain size of the front structure,
In B4, the α grain size is coarse and the rolling reduction is too small, and in B5, the preceding structure satisfies the present invention, but the cumulative rolling reduction is insufficient. Becomes coarse and good toughness cannot be obtained.

【0031】一方、比較鋼B6,B7は加熱及び圧延温
度が本発明の範囲外のため、本発明により製造した厚鋼
板に比べて靭性が劣化する。即ち、鋼B6は加熱,圧延
温度が低すぎるため、αが再結晶せず、細粒化しない上
に加工歪が残り、靭性が改善されない。比較鋼B7は逆
に加熱温度が高すぎてAc3 変態点を超えているため、
通常の熱間圧延となんら異なるところがないため、αが
細粒化せず靭性も劣る。以上の実施例によれば、本発明
の製造方法により従来の製造方法に比べて顕著な靭性改
善が可能であることが明らかである。
On the other hand, since the comparative steels B6 and B7 have heating and rolling temperatures outside the range of the present invention, the toughness is deteriorated as compared with the thick steel plate manufactured according to the present invention. That is, since the heating and rolling temperatures of steel B6 are too low, α does not recrystallize, the grains do not become finer, and the processing strain remains and the toughness is not improved. On the contrary, since the heating temperature of Comparative Steel B7 is too high and exceeds the Ac 3 transformation point,
Since there is no difference from normal hot rolling, α does not become fine grain and the toughness is inferior. According to the above examples, it is clear that the manufacturing method of the present invention can significantly improve the toughness as compared with the conventional manufacturing method.

【0032】[0032]

【発明の効果】本発明は、高価な合金元素を用いたり、
複雑な熱履歴により生産性を低下させることなく、低温
靭性の良好な厚鋼板を製造できる画期的な方法であり、
製造コストの低減、構造物としての安全性の向上等、産
業上の効果は極めて大きい。
INDUSTRIAL APPLICABILITY The present invention uses expensive alloy elements,
It is an epoch-making method that can produce thick steel plate with good low temperature toughness without reducing productivity due to complicated heat history.
Industrial effects such as reduction of manufacturing cost and improvement of safety as a structure are extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】加工温度とフェライト粒径の関係に及ぼす前組
織の種類の影響を示す図表。
FIG. 1 is a chart showing the influence of the type of pre-structure on the relationship between processing temperature and ferrite grain size.

【図2】前組織がフェライトとパーライトの混合組織の
場合の加工温度とα粒径の関係に及ぼす初期フェライト
粒径の影響を示す図表。
FIG. 2 is a chart showing the influence of the initial ferrite grain size on the relationship between the processing temperature and the α grain size when the preceding structure is a mixed structure of ferrite and pearlite.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.20%、 Si:0.03〜
1.0%、 Mn:0.30〜2.0%、 Al:0.005〜
0.1%、 N :0.001〜0.01%、 残部Fe及び不可避不純物からなり、以下の〜に該
当するミクロ組織を有する鋼片をAc1 変態点以上をA
3 変態点未満に加熱した後、累積圧下率50%以上の
圧延をAc1 変態点以上Ac3 変態点未満の温度範囲で
行うことを特徴とする低温靭性に優れた厚鋼板の製造方
法。 マルテンサイト単相組織、あるいはベイナイト単相組
織、あるいは両者の混合組織 フェライトの割合が20%未満の、フェライトとマル
テンサイト、あるいはフェライトとベイナイト、あるい
はフェライト、ベイナイト、マルテンサイト3者の混合
組織 フェライトの平均粒径が20μm以下の、フェライト
単相組織あるいはフェライトとマルテンサイト、ベイナ
イト、パーライトの内、1種または2種以上からなる混
合組織
1. By weight%, C: 0.01 to 0.20%, Si: 0.03 to
1.0%, Mn: 0.30 to 2.0%, Al: 0.005
0.1%, N: 0.001-0.01%, a balance of Fe and unavoidable impurities, and a steel slab having a microstructure corresponding to the following ( 1) to Ac 1 transformation point or higher.
A method for producing a thick steel sheet excellent in low-temperature toughness, comprising rolling at a cumulative rolling reduction of 50% or more in a temperature range of Ac 1 transformation point or more and less than Ac 3 transformation point after heating to less than c 3 transformation point. Martensite single-phase structure, bainite single-phase structure, or a mixed structure of both Ferrite and martensite or ferrite and bainite, or a mixed structure of ferrite, bainite and martensite Ferrite single-phase structure with an average grain size of 20 μm or less or a mixed structure consisting of one or more of ferrite and martensite, bainite, and pearlite.
【請求項2】 重量%で、 Cr:0.01〜0.50%、 Ni:0.01〜
3.0%、 Mo:0.01〜0.50%、 Cu:0.01〜
1.5%、 Ti:0.003〜0.10%、 V :0.005〜
0.20%、 Nb:0.003〜0.05% B :0.0003
〜0.0020%の1種または2種以上を含有すること
を特徴とする請求項1記載の低温靭性に優れた厚鋼板の
製造方法。
2. By weight%, Cr: 0.01-0.50%, Ni: 0.01-
3.0%, Mo: 0.01 to 0.50%, Cu: 0.01 to
1.5%, Ti: 0.003 to 0.10%, V: 0.005
0.20%, Nb: 0.003 to 0.05% B: 0.0003
The method for producing a thick steel sheet having excellent low temperature toughness according to claim 1, wherein the steel sheet contains at least one of 0.002% to 0.0020%.
【請求項3】 圧延終了に引き続いて5℃/秒以上の冷
却速度で650℃以下の温度に加速冷却することを特徴
とする請求項1または2記載の低温靭性に優れた厚鋼板
の製造方法。
3. The method for producing a thick steel sheet excellent in low temperature toughness according to claim 1 or 2, further comprising accelerating cooling to a temperature of 650 ° C. or lower at a cooling rate of 5 ° C./sec or more subsequent to completion of rolling. .
【請求項4】 圧延終了に引き続いて5℃/秒以上の冷
却速度で650℃以下の温度に加速冷却した後、Ac1
変態点以下に焼き戻すことを特徴とする請求項1または
2記載の低温靭性に優れた厚鋼板の製造方法。
4. After completion of rolling, after accelerated cooling to a temperature of 650 ° C. or lower at a cooling rate of 5 ° C./second or higher, Ac 1
The method for producing a thick steel sheet excellent in low temperature toughness according to claim 1 or 2, characterized by tempering to a temperature not higher than a transformation point.
JP27252993A 1993-10-29 1993-10-29 Method of manufacturing thick steel plate with excellent low temperature toughness Expired - Fee Related JP3246993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27252993A JP3246993B2 (en) 1993-10-29 1993-10-29 Method of manufacturing thick steel plate with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27252993A JP3246993B2 (en) 1993-10-29 1993-10-29 Method of manufacturing thick steel plate with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH07126797A true JPH07126797A (en) 1995-05-16
JP3246993B2 JP3246993B2 (en) 2002-01-15

Family

ID=17515168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27252993A Expired - Fee Related JP3246993B2 (en) 1993-10-29 1993-10-29 Method of manufacturing thick steel plate with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3246993B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1015651A1 (en) * 1997-07-28 2000-07-05 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
EP1025271A1 (en) * 1997-07-28 2000-08-09 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
WO2000070107A1 (en) * 1999-05-17 2000-11-23 Jinpo Plus, A.S. Steel for heat-resistant and/or high-tensile formed parts
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
CN103757544A (en) * 2013-12-05 2014-04-30 南京钢铁股份有限公司 Economical non-quenched and non-tempered micro-alloyed plastic die steel plate and making method thereof
EP3502295A4 (en) * 2016-08-19 2020-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel plate and production method therefor
WO2020238851A1 (en) * 2019-05-28 2020-12-03 宝山钢铁股份有限公司 Steel, wire rod and manufacturing method of wire rod

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1015651A1 (en) * 1997-07-28 2000-07-05 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
EP1025271A1 (en) * 1997-07-28 2000-08-09 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
EP1015651A4 (en) * 1997-07-28 2001-07-18 Exxonmobil Upstream Res Co ULTRA-HIGH-STRENGTH, WELDABLE, BORONIC STEELS WITH EXCELLENT Toughness
EP1025271A4 (en) * 1997-07-28 2001-07-18 Exxonmobil Upstream Res Co ULTRA-HIGH-STRENGTH, WELDABLE, ESSENTIAL BOR-FREE STEELS WITH EXCELLENT Toughness
WO2000070107A1 (en) * 1999-05-17 2000-11-23 Jinpo Plus, A.S. Steel for heat-resistant and/or high-tensile formed parts
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
CN103757544A (en) * 2013-12-05 2014-04-30 南京钢铁股份有限公司 Economical non-quenched and non-tempered micro-alloyed plastic die steel plate and making method thereof
EP3502295A4 (en) * 2016-08-19 2020-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thick steel plate and production method therefor
WO2020238851A1 (en) * 2019-05-28 2020-12-03 宝山钢铁股份有限公司 Steel, wire rod and manufacturing method of wire rod
AU2020285908B2 (en) * 2019-05-28 2023-02-02 Baoshan Iron & Steel Co., Ltd. Steel, wire rod and manufacturing method of wire rod

Also Published As

Publication number Publication date
JP3246993B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JPH093609A (en) Niobium-containing rolled steel sheet having high strengths and excellent drawability and its production
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JP3255790B2 (en) Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH09256037A (en) Method for manufacturing thick high-strength steel sheet for stress relief annealing
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH083635A (en) Production of steel plate excellent in toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JPS582570B2 (en) Manufacturing method of non-tempered tough high tensile strength steel
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JP2003129133A (en) Manufacturing method of high strength and high toughness thick steel plate
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
JPH07242940A (en) Manufacturing method of high yield steel with low yield ratio by rapid tempering
JPH08225834A (en) Low yield ratio high strength steel sheet manufacturing method
JPH07118741A (en) Manufacturing method of extra-thick tempered high strength steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010925

LAPS Cancellation because of no payment of annual fees