[go: up one dir, main page]

JPH07125210A - Thermal ink jet head - Google Patents

Thermal ink jet head

Info

Publication number
JPH07125210A
JPH07125210A JP14526393A JP14526393A JPH07125210A JP H07125210 A JPH07125210 A JP H07125210A JP 14526393 A JP14526393 A JP 14526393A JP 14526393 A JP14526393 A JP 14526393A JP H07125210 A JPH07125210 A JP H07125210A
Authority
JP
Japan
Prior art keywords
substrate
ink
liquid chamber
flow path
common liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14526393A
Other languages
Japanese (ja)
Inventor
Takuro Sekiya
卓朗 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14526393A priority Critical patent/JPH07125210A/en
Publication of JPH07125210A publication Critical patent/JPH07125210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To improve a method for forming the passage grooves, common liquid chamber region and ink inflow orifices of a passage substrate in a head structure wherein a heating element substrate having a heat generating layer and the passage substrate having passage grooves are laminated. CONSTITUTION:In relation to the passage substrate 3 laminated on a heating element substrate 2 having a heat generating layer, a plurality of parallel passage grooves 6 having a trapezoidal cross-sectional shape and a common liquid chamber region 7 are simultaneously formed by one anisotropic etching process utilizing a single crystal silicon wafer cut out as the crystal azimuth surface of a (100) surface to enhance the accuracy.

Description

【発明の詳现な説明】Detailed Description of the Invention

【】[0001]

【産業䞊の利甚分野】本発明は、ノンむンパクト蚘録甚
ヘッドの䞀぀である発熱䜓基板ず流路基板ずを積局させ
たヘッド構造のサヌマルむンクゞェットヘッドに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal ink jet head having a head structure in which a heating element substrate and a flow path substrate which are one of non-impact recording heads are laminated.

【】[0002]

【埓来の技術】ノンむンパクト蚘録法は、蚘録時におけ
る隒音の発生が無芖し埗る皋床に極めお小さいずいう点
においお、関心の高い蚘録法ずされおいる。䞭でも、高
速蚘録が可胜で、特別な定着凊理を必芁ずせず所謂普通
玙に蚘録を行うこずが可胜な、所謂むンクゞェット蚘録
法は極めお有力な蚘録法である。そこで、埓来においお
もむンクゞェット蚘録法に関しお様々な方匏が提案さ
れ、皮々の改良も加えられ、珟に商品化されおいるもの
や、実甚化に向けお開発段階のものもある。
2. Description of the Related Art The non-impact recording method is a recording method of great interest in that noise generation during recording is so small that it can be ignored. Among them, the so-called inkjet recording method, which enables high-speed recording and can perform recording on so-called plain paper without requiring a special fixing process, is an extremely powerful recording method. Therefore, conventionally, various methods have been proposed for the inkjet recording method, various improvements have been added, and some have been commercialized, and some have been in the development stage for practical use.

【】このようなむンクゞェット蚘録法は、所謂
むンクず称される蚘録液䜓の小滎droplet を飛翔さ
せお普通玙などの蚘録媒䜓に付着させお蚘録を行うもの
である。その䞀䟋ずしお、䟋えば本出願人提案による特
公昭−号公報に瀺されるようなものがあ
る。これは、芁玄すれば、液宀内のむンクを加熱しお気
泡を発生させるこずでむンクに圧力䞊昇を生じさせ、埮
现な毛现管ノズルからむンクを飛び出させお蚘録するよ
うにしたものである。
In such an ink jet recording method, recording is carried out by ejecting droplets of a recording liquid, so-called ink, and adhering the droplets onto a recording medium such as plain paper. An example thereof is that disclosed in Japanese Patent Publication No. 56-9429, which is proposed by the present applicant. In summary, the ink in the liquid chamber is heated to generate bubbles, thereby causing a pressure increase in the ink, and ejecting the ink from a fine capillary nozzle to perform recording.

【】その埌、このようなむンク飛翔原理を利甚
しお倚くの提案がなされおいる。これらの提案の䞀぀ず
しお、䟋えば、特公昭−号公報に瀺され
るヘッド構造のものがある。同公報は、熱䜜甚郚の液䜓
ず接する郚分の重量枛少量を芏定するこずを特城ずした
ものであるが、同公報䞭の第図のように、発熱䜓基板
ず流路板ずを積局組合せたヘッド構造が瀺されおいる。
ここに、流路板においお、耇数本の溝ず共通むンク宀を
圢成する溝ずはマむクロカッタを甚いお切削圢成しおい
る。
After that, many proposals have been made utilizing such an ink flying principle. One of these proposals is, for example, a head structure disclosed in Japanese Patent Publication No. 59-43315. The publication is characterized in that it defines the amount of weight reduction of the portion of the heat acting portion which comes into contact with the liquid. However, as shown in FIG. 3 of the publication, the heating element substrate and the flow path plate are laminated. A combined head structure is shown.
Here, in the flow path plate, the plurality of grooves and the groove forming the common ink chamber are formed by cutting using a micro cutter.

【】しかし、同公報に瀺されるようなヘッド構
造の堎合、流路を圢成する耇数の溝や共通むンク宀を圢
成する溝を切削により圢成する際に、欠けや割れが発生
し、歩留たりの䜎䞋ないしは粟床の䜎䞋を匕起こす確率
が高く、奜たしいずはいえないものである。たた、各溝
の圢成䜍眮の粟床、寞法粟床の点からも䞍十分であり、
あたり高品質のものは期埅できないものである。
However, in the case of the head structure as shown in the above publication, when a plurality of grooves forming a flow path and a groove forming a common ink chamber are formed by cutting, chipping or cracking occurs, and the yield is increased. This is not preferable because it has a high probability of causing deterioration or deterioration of accuracy. In addition, it is insufficient from the viewpoint of the accuracy of the formation position of each groove and the dimensional accuracy,
You can't expect too high quality.

【】このような点を考慮し、切削加工で粟床の
よい溝を圢成するために、䜿甚する基板のガラス材料を
特定したものが特公昭−号公報により提
案されおいる第の埓来䟋ずする。
[0006] In consideration of such a point, Japanese Patent Publication No. 63-36950 proposes a glass material of a substrate to be used in order to form a groove with high precision by cutting. Of the conventional example).

【】たた、特公昭−号公報によ
れば、別の芳点ずしお、切削加工に代えお、所謂フォト
リ゜グラフィ技術によりこれらの溝流路甚及びむンク
宀甚を圢成するようにしたものが提案されおいる第
の埓来䟋ずする。
According to Japanese Examined Patent Publication No. 63-44067, these grooves (for flow channels and ink chambers) are formed by a so-called photolithography technique instead of cutting. One has been proposed (referred to as a second conventional example).

【】さらには、特開昭−号公報
によれば、感光性ガラスを利甚しお゚ッチング技術で圢
成するようにしたものが提案されおいる第の埓来䟋
ずする。
Further, according to Japanese Patent Application Laid-Open No. 51-55237, there is proposed a photosensitive glass which is formed by an etching technique (referred to as a third conventional example).

【】[0009]

【発明が解決しようずする課題】ずころが、第の埓来
䟋の堎合、同公報䞭の第図に瀺されるように、䞭継宀
液宀ブロックを別に䜜補しお組立おるこずによりヘ
ッドが完成する構造ずされおおり、組立おコストが高く
぀く。たた、䜿甚するガラス材料を限定したものであ
り、それ以前のものよりは粟床面の進歩・向䞊は認めら
れるものの、切削加工法によるものには倉わりなく、欠
けや割れの発生防止に関しおの改善には限界があり、䞍
十分なものである。
However, in the case of the first conventional example, as shown in FIG. 4 of the publication, the head is completed by separately manufacturing and assembling the relay chamber (liquid chamber) block. The construction cost is high. In addition, the glass materials used are limited, and although advances and improvements in accuracy are recognized over those before that, it is still the same as the cutting method, and it is possible to improve the prevention of chipping and cracking. Is limited and inadequate.

【】たた、第の埓来䟋の堎合、切削法ず異な
り、欠けや割れの発生はなく、䜍眮粟床の䜎䞋も少ない
が、フォトレゞストが暹脂材料であるため、パタヌンが
厩れお寞法粟床が䜎䞋する可胜性があり、極端な堎合に
は、流路甚溝が぀ぶれお詰たっおしたう可胜性もあり、
ヘッドずしおの信頌性に欠けるものずなる。
Further, in the case of the second conventional example, unlike the cutting method, there is no chipping or cracking, and the deterioration of the positional accuracy is small, but since the photoresist is a resin material, the pattern collapses and the dimensional accuracy is high. There is a possibility that it may decrease, and in extreme cases, the channel groove may be crushed and clogged,
It becomes unreliable as a head.

【】さらに、第の埓来䟋の堎合、感光性ガラ
スの゚ッチングによる方法は、切削加工法に比べれば粟
床のよいものずなるが、それでも衚面の粗さの点では、
むンクゞェットの流路ずしお䜿甚する䞊では䞍十分であ
り、あたり郜合のよいものずはいえない。
Further, in the case of the third conventional example, the method of etching the photosensitive glass is more accurate than the cutting method, but still, in terms of surface roughness,
It is not sufficient for use as an ink jet flow path and is not very convenient.

【】[0012]

【課題を解決するための手段】請求項蚘茉の発明で
は、基板䞊に蓄熱局ず発熱局ずこの発熱局に通電するた
めの電極ず保護局ずを圢成した発熱䜓基板ず、
面の結晶方䜍面に切出された単結晶シリコンり゚ハ
䞊に異方性゚ッチングにより぀の等䟡な面
ず぀の面ずで圢成される断面台圢状の耇数
本の平行な流路甚溝及びこれらの流路甚溝ず連通するず
ずもに面による倩井面を有しお前蚘流路甚溝
ず同等の深さの共通液宀領域ずこの共通液宀領域にむン
クを流入するためのむンク流入口ずを圢成した流路基板
ずよりなり、前蚘発熱䜓基板ずこの流路基板ずを発熱面
ず溝面ずが盞察するように積局した。
According to a first aspect of the present invention, there is provided a heat generating substrate having a heat storage layer, a heat generating layer, an electrode for energizing the heat generating layer, and a protective layer formed on the substrate.
A plurality of trapezoidal cross-sections formed by two equivalent (111) planes and one (100) plane are formed by anisotropic etching on a single crystal silicon wafer cut out in the crystal orientation plane of the (0) plane. A common liquid chamber region having a parallel channel and a channel surface communicating with these channel grooves and having a ceiling surface of (100) plane and having a depth equivalent to that of the channel groove and the common liquid chamber region. The heat generating substrate and the flow channel substrate are laminated so that the heat generating surface and the groove surface face each other.

【】この際、請求項蚘茉の発明では、流路甚
溝及び共通液宀領域の面を鏡面状態に仕䞊げ
た。
In this case, according to the second aspect of the invention, the (100) surface of the flow channel groove and the common liquid chamber region is mirror-finished.

【】たた、請求項蚘茉の発明では、発熱䜓基
板の基板を面の結晶方䜍面に切出された単結
晶シリコンり゚ハずし、独立駆動可胜で各流路甚溝に察
応した耇数個の発熱䜓列を軞方向に圢成し
た。
According to the third aspect of the invention, the substrate of the heating element substrate is a single crystal silicon wafer cut out in the crystal orientation plane of the (100) plane, which can be independently driven and corresponds to each channel groove. A plurality of heating element rows were formed in the <110> axis direction.

【】これらの発明においお、むンク流入口に関
しお、請求項蚘茉の発明では、流路基板の共通液宀領
域の倩井面に察する裏面偎からの異方性゚ッチングによ
り圢成された開口ずし、請求項蚘茉の発明では、流路
基板の共通液宀領域の倩井面に察するレヌザ加工により
圢成された開口ずし、請求項蚘茉の発明では、流路基
板の共通液宀領域の偎壁郚に察する異方性゚ッチングに
より圢成された凹郚ずした。
In these inventions, with respect to the ink inlet, in the invention according to claim 4, the opening is formed by anisotropic etching from the back surface side to the ceiling surface of the common liquid chamber region of the flow path substrate, In the invention described in claim 5, the opening is formed by laser processing on the ceiling surface of the common liquid chamber region of the flow path substrate, and in the invention of claim 6, anisotropy with respect to the side wall portion of the common liquid chamber region of the flow path substrate. The recess was formed by etching.

【】[0016]

【䜜甚】請求項蚘茉の発明においおは、流路基板にお
いお断面台圢状の耇数本の平行な流路甚溝ず共通液宀領
域ずを、面の結晶方䜍面に切出された単結晶
シリコンり゚ハを利甚した異方性゚ッチングにより圢成
するようにしたので、異方性゚ッチングの特城を掻かし
お回の゚ッチング工皋で短時間・䜎コストにしお高粟
床に䜜補でき、か぀、溝の䞡偎偎面も非垞に滑らかなも
のずなっおむンクゞェットヘッドの流路ずしお郜合のよ
いものずなる。
In the first aspect of the present invention, a plurality of parallel channel grooves each having a trapezoidal cross section and the common liquid chamber region are cut out in the crystal orientation plane of the (100) plane in the channel substrate. Since it is formed by anisotropic etching using a single crystal silicon wafer, the characteristics of anisotropic etching can be used to perform high-precision fabrication in a single etching step in a short time, at low cost, and in a groove. Both side surfaces are also very smooth, which is convenient for the flow path of the inkjet head.

【】特に、請求項蚘茉の発明においおは、流
路甚溝及び共通液宀領域の面が゚ッチング液
を適切に遞定するこずにより鏡面状態に仕䞊げられおい
るので、流路党䜓が滑らかずなり、むンクの流れがスム
ヌズずなり、ゞェット速床を向䞊させお噎射を安定させ
るこずができ、か぀、噎射の連続駆動呚波数の䞊限もよ
り高くし埗るものずなり、高速印写に適したものずな
る。
In particular, according to the second aspect of the invention, since the (100) surface of the channel groove and the common liquid chamber region is mirror-finished by appropriately selecting the etching solution, the entire channel is formed. Becomes smooth, the ink flow becomes smooth, the jet speed can be improved to stabilize the jetting, and the upper limit of the continuous driving frequency of jetting can be made higher, which is suitable for high-speed printing. Become.

【】加えお、請求項蚘茉の発明においおは、
発熱䜓基板偎に぀いおも、流路基板偎ず同じく、
面の結晶方䜍面に切出された単結晶シリコンり゚ハ
を利甚するものずし、か぀、発熱䜓列を軞方
向に揃えお配列圢成したので、ヘッド䜜補時にノズル郚
を切出す際のダむシング方向をこの結晶軞方向、即ち、
軞方向ずするこずができ、よっお、シリコン
り゚ハの割れやすい方向にダむシングを行えるものずな
り、ダむシング時の砎損がなくなり、歩留たりが著しく
向䞊するものずなる。
In addition, in the invention of claim 3,
Regarding the heating element substrate side as well as the flow path substrate side (10
Since the single crystal silicon wafer cut out in the crystal orientation plane of the (0) plane is used and the heating element rows are aligned and formed in the <110> axial direction, the nozzle portion is cut out at the time of manufacturing the head. The dicing direction of is the crystal axis direction, that is,
The <110> axis direction can be employed, so that the dicing can be performed in the direction in which the silicon wafer is easily cracked, damage during dicing is eliminated, and the yield is significantly improved.

【】請求項蚘茉の発明においおは、共通液宀
領域に察するむンク流入口をその倩井面に察する裏面偎
からの異方性゚ッチングによる開口ずしお圢成したの
で、十分なむンク䟛絊が可胜ずなる倧口埄のむンク流入
口を高粟床に圢成できるものずなる。
According to the fourth aspect of the invention, since the ink inlet port for the common liquid chamber region is formed as an opening by anisotropic etching from the rear surface side with respect to the ceiling surface thereof, a large diameter that enables sufficient ink supply. The ink inflow port can be formed with high precision.

【】請求項蚘茉の発明においおは、共通液宀
領域に察するむンク流入口をその肉厚の最も薄い倩井面
に察するレヌザ加工による開口ずしお圢成したので、簡
単なレヌザ加工法により短時間で倧口埄のむンク流入口
を圢成できるものずなる。
According to the fifth aspect of the invention, since the ink inlet port for the common liquid chamber region is formed as an opening formed by laser processing on the thinnest ceiling surface, a large diameter can be obtained in a short time by a simple laser processing method. The ink inflow port can be formed.

【】請求項蚘茉の発明においおは、共通液宀
領域に察するむンク流入口をその偎壁郚に察する異方性
゚ッチングによる凹郚ずしお圢成したので、流路甚溝、
共通液宀領域ずずもに回の異方性゚ッチング工皋で䜜
補できるものずなり、短時間で高粟床か぀効率のよい流
路基板䜜補が可胜ずなる。
According to the sixth aspect of the present invention, since the ink inlet port for the common liquid chamber region is formed as a concave portion by anisotropic etching on the side wall portion thereof, the flow channel groove,
It can be manufactured together with the common liquid chamber region in one anisotropic etching step, and it is possible to manufacture the flow path substrate with high accuracy and efficiency in a short time.

【】[0022]

【実斜䟋】請求項ないし蚘茉の発明の䞀実斜䟋を図
ないし図に基づいお説明する。本実斜䟋のサヌマル
むンクゞェットヘッドの構成及び動䜜原理を図ないし
図を参照しお説明する。このヘッドチップは図に
瀺すように発熱䜓基板䞊に流路基板を積局させたも
のである。ここに、流路基板には衚裏に貫通したむン
ク流入口が圢成されおいるずずもに、ノズルを圢成
するための流路甚溝が耇数本平行に圢成されおいる。
前蚘むンク流入口はこれらの流路甚溝に連なった共
通液宀領域に連通しおいる。たた、発熱䜓基板䞊に
は図に瀺すように各ノズル流路甚溝に察応し
お゚ネルギヌ䜜甚郚を構成する発熱䜓ヒヌタが発
熱䜓列をなすように耇数個圢成され、各々個別に制埡電
極に接続されおいるずずもに共通電極に共通接続
されおいる。これらの電極の䞀端は発熱䜓基板
の端郚たで匕出され、駆動信号導入郚ずなるボンディ
ングパッド郚ずされおいる。ここに、発熱䜓基板
の発熱面䞊に流路基板の溝面偎を盞察させお積局接合
するこずにより、流路甚溝及び共通液宀領域は閉じ
られた状態ずなり、先端にノズルを有するむンク流路
ずむンク䟛絊宀ずが圢成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the invention described in claims 1 to 4 will be described with reference to FIGS. The configuration and operating principle of the thermal inkjet head of this embodiment will be described with reference to FIGS. As shown in FIG. 2, this head chip 1 has a flow path substrate 3 laminated on a heating element substrate 2. Here, an ink inflow port 4 penetrating the front and back is formed in the flow path substrate 3, and a plurality of flow path grooves 6 for forming nozzles 5 are formed in parallel.
The ink inlet port 4 communicates with a common liquid chamber region 7 that is connected to the flow channel grooves 6. In addition, as shown in FIG. 1, a plurality of heating elements (heaters) 8 forming an energy acting portion corresponding to each nozzle 5 (flow channel 6) are arranged on the heating element substrate 2 so as to form a heating element row. Individually formed, each is individually connected to the control electrode 9 and commonly connected to the common electrode 10. One end of each of these electrodes 9 and 10 is led out to the end of the heating element substrate 2 and serves as a bonding pad section 11 which serves as a drive signal introducing section. Here, the heating element substrate 2
By laminating and bonding the groove surface side of the flow path substrate 3 to the heat generating surface of the flow path substrate 3, the flow path groove 6 and the common liquid chamber region 7 are closed, and the ink flow path having the nozzle 5 at the tip is formed. And an ink supply chamber are formed.

【】このようなヘッドチップにおいお、サヌ
マルむンクゞェットによるむンク噎射は図に瀺すよう
なプロセスにより行われる。たず、定垞状態では同図
に瀺すような状態にあり、ノズル先端のオリフ
ィス面でむンクの衚面匵力ず倖圧ずが平衡状態にあ
る。぀いで、ヒヌタが加熱され、その衚面枩床が急䞊
昇し隣接むンク局に沞隰珟象が起きるたで加熱されるず
同図に瀺すように、埮小な気泡が点圚する状
態ずなる。さらに、ヒヌタ党面で急激に加熱された隣
接むンク局が瞬時に気化し、沞隰膜を䜜り、同図
に瀺すように気泡が成長する。この時、ノズル内
の圧力は、気泡の成長した分だけ䞊昇し、オリフィ
ス面での倖圧ずのバランスが厩れ、オリフィスよりむン
ク柱が成長し始める。同図は気泡が最倧
に成長した状態を瀺し、オリフィス面より気泡の䜓
積に盞圓する分のむンクが抌出される。この時、ヒ
ヌタには既に電流が流れおいない状態にあり、ヒヌタ
の衚面枩床は降䞋し぀぀ある。気泡の䜓積の最倧
倀は電気パルス印加のタむミングよりやや遅れたものず
なる。やがお、気泡はむンクなどにより冷华さ
れお同図に瀺すように収瞮し始める。むンク柱
の先端郚では抌出された速床を保ち぀぀前進し、埌端
郚では気泡の収瞮に䌎うむンク流路の内圧の枛少に
よっおオリフィス面からむンク流路内にむンクが逆
流し、むンク柱基郚にくびれが生ずる。その埌、同
図に瀺すように気泡がさらに収瞮し、ヒヌタ
面にむンクが接し、ヒヌタ面がさらに冷华され
る。オリフィス面では倖圧がむンク流路内圧より高い状
態になるため、メニスカスが倧きくむンク流路内に入り
蟌んでくる。むンク柱の先端郚は液滎ずなっお
蚘録玙図瀺せずの方向ぞ〜msecの速床で飛
翔する。その埌、同図に瀺すように毛现管珟象に
よりオリフィスにむンクが再び䟛絊リフィルさ
れお同図の定垞状態に戻る過皋で、気泡は完
党に消滅する。
In such a head chip 1, ink jetting by a thermal ink jet is performed by the process shown in FIG. First, in the steady state, the state is as shown in FIG. 7A, and the surface tension of the ink 14 and the external pressure are in equilibrium on the orifice surface at the tip of the nozzle 5. Next, when the heater 8 is heated and the surface temperature of the heater 8 rapidly increases until the boiling phenomenon occurs in the adjacent ink layer, minute bubbles 15 are scattered as shown in FIG. Further, the adjacent ink layer that is rapidly heated on the entire surface of the heater 8 is instantly vaporized to form a boiling film,
Bubbles 15 grow as shown in FIG. At this time, the pressure in the nozzle 5 rises as much as the bubble 15 grows, the balance with the external pressure on the orifice surface is lost, and the ink column 16 starts to grow from the orifice. FIG. 6D shows a state in which the bubble 15 has grown to the maximum, and the ink 14 corresponding to the volume of the bubble 15 is extruded from the orifice surface. At this time, the heater 8 is in a state in which no current is already flowing, and the surface temperature of the heater 8 is decreasing. The maximum value of the volume of the bubble 15 is slightly behind the timing of applying the electric pulse. Eventually, the bubbles 15 are cooled by the ink 14 or the like and start contracting as shown in FIG. Ink column 1
At the front end of 6, the ink 14 advances while maintaining the extruding speed, and at the rear end, the ink 14 flows backward from the orifice surface into the ink flow path due to the decrease of the internal pressure of the ink flow path due to the contraction of the bubbles 15, and the ink column 16 Necking occurs at the base. Thereafter, as shown in FIG. 6F, the bubbles 15 further contract, the ink 14 contacts the heater 8 surface, and the heater 8 surface is further cooled. Since the external pressure is higher than the internal pressure of the ink flow path on the orifice surface, a large meniscus enters the ink flow path. The tip of the ink column 16 becomes a droplet 17 and flies toward the recording paper (not shown) at a speed of 5 to 10 m / sec. Thereafter, as shown in FIG. 6G, the ink 15 is supplied (refilled) to the orifice again by the capillary phenomenon and returns to the steady state in FIG.

【】぀いで、このようなヘッドチップを構成
する発熱䜓基板、流路基板等に぀いお詳现に説明す
る。たず、発熱䜓基板に぀いお説明する。䞀般に、こ
の皮のサヌマルむンクゞェットヘッド甚の発熱䜓基板ず
しおは熱䌝導率の高いり゚ハやアルミナセラミック
スなどが䜿甚される他、材料入手の容易なガラス基板な
どが䜿甚されるが、本実斜䟋の発熱䜓基板は単結晶基
板、より奜たしくは、半導䜓工業分野で倚甚されおいる
単結晶り゚ハ、最適には、面の結晶方䜍
面に切出された単結晶り゚ハが甚いられる。このよ
うな単結晶り゚ハ䞊にヒヌタ等が圢成されるこず
になる。
Next, the heating element substrate 2, the flow path substrate 3 and the like which compose the head chip 1 will be described in detail. First, the heating element substrate 2 will be described. Generally, as a heating element substrate for this type of thermal inkjet head, a Si wafer or alumina ceramics having high thermal conductivity is used, and a glass substrate or the like whose material is easily available is used. The heating element substrate 2 is a single crystal substrate, more preferably a single crystal Si wafer widely used in the semiconductor industry field, and optimally, a single crystal Si wafer cut out in the (100) crystal orientation plane is used. . The heater 8 and the like are formed on such a single crystal Si wafer.

【】このり゚ハは䟋えば拡散炉䞭で2 
2 のガスを流しながら、〜℃の高枩
にさらされ、衚面に熱酞化膜2 を〜Ό成長
させる。この熱酞化膜2 は図に瀺すように蓄熱
局ずしお働き、発熱䜓で発生した熱が基板り
゚ハ偎に逃げないようにするこずで、むンク方向に効
率よく熱が䌝わるようにするためのものである。この蓄
熱局䞊にはヒヌタずなる発熱局が圢成され
る。この発熱局を構成する材料ずしおは、タンタル
‐2 の混合物、窒化タンタル、ニクロム、銀‐パ
ラゞりム合金、シリコン半導䜓、或いは、ハフニりム、
ランタン、ゞルコニりム、チタン、タンタル、タングス
テン、モリブデン、ニオブ、クロム、バナゞりム等の金
属の硌化物が有甚である。金属の硌化物䞭、特に優れお
いるものは、硌化ハフニりムであり、以䞋、硌化ゞルコ
ニりム、硌化ランタン、硌化タンタル、硌化バナゞり
ム、硌化ニオブの順ずなる。発熱局はこのような材
料を甚いお、電子ビヌム蒞着法やスパッタリング法など
の手法により圢成される。発熱局の膜厚ずしおは、
単䜍時間圓りの発熱量が所望通りずなるように、その面
積、材料及び熱䜜甚郚分の圢状及び倧きさ、さらには、
実際面での消費電力等によっお決定されるが、通垞、
〜Ό、より奜たしくは〜
Όずされる。本実斜䟋では、その䞀䟋ずしお2
硌化ハフニムを材料ずしおÅの膜厚にスパ
ッタリング圢成されおいる。
This Si wafer is, for example, O 2 in a diffusion furnace,
While flowing a gas of H 2 O, it is exposed to a high temperature of 800 to 1000 ° C. to grow a thermal oxide film SiO 2 on the surface of 1 to 2 Όm. This thermal oxide film SiO 2 functions as a heat storage layer 21 as shown in FIG. 4, and prevents the heat generated by the heating element from escaping to the substrate (Si wafer) side, so that the heat is efficiently transmitted in the ink direction. It is for A heat generating layer 22 serving as the heater 8 is formed on the heat storage layer 21. As a material for forming the heat generating layer 22, a mixture of tantalum-SiO 2 , tantalum nitride, nichrome, silver-palladium alloy, silicon semiconductor, or hafnium,
Borides of metals such as lanthanum, zirconium, titanium, tantalum, tungsten, molybdenum, niobium, chromium and vanadium are useful. Among the metal borides, the most excellent one is hafnium boride, followed by zirconium boride, lanthanum boride, tantalum boride, vanadium boride, and niobium boride in this order. The heat generating layer 22 is formed of such a material by a method such as an electron beam vapor deposition method or a sputtering method. As the film thickness of the heat generating layer 22,
The area, the material and the shape and size of the heat acting portion, and further, so that the heat generation amount per unit time is as desired.
Although it is determined by the actual power consumption, etc.,
0.001 to 0.5 ÎŒm, more preferably 0.01 to 1
ÎŒm. In this embodiment, as an example, HfB 2
(Hafnium boride) is used as a material and is sputtered to a film thickness of 2000 liters.

【】電極を構成する材料ずしおは、通
垞䜿甚されおいる電極材料の倚くのものを䜿甚し埗る。
具䜓的には、䟋えば等が
挙げられ、これらを䜿甚しお蒞着等の手法により発熱局
䞊の所定䜍眮に所定の倧きさ、圢状、膜厚で圢成さ
れる。本実斜䟋では、䟋えばを甚い、スパッタリン
グ法により膜厚Όの電極を圢成した。
As the material forming the electrodes 9 and 10, many of the electrode materials that are normally used can be used.
Specifically, for example, Al, Ag, Au, Pt, Cu or the like is used, and these are formed at a predetermined position on the heat generating layer 22 with a predetermined size, shape and film thickness by a method such as vapor deposition. It In this embodiment, for example, Al is used to form the electrodes 9 and 10 having a film thickness of 1.4 ÎŒm by a sputtering method.

【】぀いで、これらの発熱局や電極
䞊には保護局が圢成される。この保護局に芁
求される特性は、ヒヌタ郚分で発生した熱をむンクに
効率よく䌝達するこずを劚げず、か぀、ヒヌタをむン
クから保護し埗るこずである。よっお、この保護局
を構成する材料ずしおは、䟋えば酞化シリコン、窒化シ
リコン、酞化マグネシりム、酞化アルミニりム、酞化タ
ンタル、酞化ゞルコニりム等がよい。これらを材料ずし
お、電子ビヌム蒞着法やスパッタリング法により保護局
が圢成される。たた、炭化珪玠、酞化アルミニりム
等のセラミックス材料を甚いおもよい。保護局の膜
厚ずしおは、通垞、〜Όずされるが、奜
たしくは、〜Ό、最適には〜Ό皋
床ずするのがよい。本実斜䟋では、2 膜ずしおス
パッタリング法によりΌの膜厚に圢成した。
Next, these heat generating layer 22 and electrodes 9, 1
A protective layer 23 is formed on the 0. The characteristic required for the protective layer 23 is that it does not prevent the heat generated in the heater 8 portion from being efficiently transferred to the ink and that the heater 8 can be protected from the ink. Therefore, this protective layer 23
As a material forming the above, for example, silicon oxide, silicon nitride, magnesium oxide, aluminum oxide, tantalum oxide, zirconium oxide, or the like is preferable. Using these as materials, the protective layer 23 is formed by the electron beam evaporation method or the sputtering method. Alternatively, a ceramic material such as silicon carbide or aluminum oxide may be used. The thickness of the protective layer 23 is usually 0.01 to 10 ÎŒm, preferably 0.1 to 5 ÎŒm, and optimally 0.1 to 3 ÎŒm. In this embodiment, the SiO 2 film is formed to a thickness of 1.2 ÎŒm by the sputtering method.

【】さらに、保護局䞊に耐キャビテヌショ
ン保護局が圢成されおいる。この保護局は発熱
䜓領域を気泡発生によるキャビテヌション砎壊から保護
するためのものであり、䟋えば、をスパッタリング
法によりÅの膜厚に圢成される。さらに、その
䞊郚には、電極察応䜍眮に䜍眮させお膜厚Ό
のesin局が電極保護局ずしお圢成されおいる。
Further, an anti-cavitation protection layer 24 is formed on the protection layer 23. The protective layer 24 is for protecting the heating element region from cavitation destruction due to generation of bubbles, and is formed by sputtering Ta to a thickness of 4000 Å, for example. Further, the film thickness of 2 ÎŒm is formed on the upper part of the electrode at positions corresponding to the electrodes 9 and 10.
m resin layer is formed as the electrode protection layer 25.

【】次に、流路基板に぀いお説明する。この
流路基板は発熱䜓基板ず同じく単結晶り゚ハ、
より具䜓的には、図に瀺すように面の結晶
方䜍に切出されたり゚ハが甚いられる。この単結晶
り゚ハは図における軞ず軞ずが互いに盎亀する
軞ずなるように遞定され、か぀、‐軞面
䞊䞋面が単結晶の面ずなるように遞定さ
れおいる。このようにするず、単結晶の面は
軞に平行で、か぀、‐軞面に察しお玄°
の角床で亀わるこずになる。
Next, the flow path substrate 3 will be described. The flow path substrate 3 is a single crystal Si wafer like the heating element substrate 2,
More specifically, a Si wafer cut out in the crystal orientation of the (100) plane as shown in FIG. 5 is used. This single crystal Si wafer is selected so that the X axis and the Y axis in the drawing are <110> axes orthogonal to each other, and the XY axis plane (upper and lower planes) is the single crystal (100) plane. Has been selected. By doing so, the (111) plane of the single crystal is parallel to the Y axis and is about 54.7 ° with respect to the XY axis plane.
Will intersect at an angle of.

【】このような流路基板に圢成される流路甚
溝は発熱䜓基板ず積局した状態で断面台圢状ずなる
ような圢状ずされるが、その断面台圢状をなす぀の偎
面は各々等䟡な面により傟斜面ずしお圢成さ
れ、むンク流路においお倩井面をなす底面は
面により圢成されおいる。ここに、面は他の
結晶面に比べ氎酞化ナトリりム、氎酞化カリりム、ヒト
ラゞンのようなアルカリ系溶液による゚ッチング速床が
極めお遅く、面をアルカリ系溶液で゚ッチン
グするず、面に察しお玄°をなす
面が珟れ、図に瀺すように断面台圢状をな
すように拡開した流路甚溝が圢成される。このような
断面台圢状溝の䞊郚の幅はフォト゚ッチングの際のフ
ォトレゞストの間隔で定たり、極めお粟床の高いものず
なる。たた、断面台圢状溝の深さは、異方性゚ッチン
グ時間をコントロヌルするこずにより容易に管理でき
る。さらには、このような゚ッチングによっお珟れた
面は鏡面状態ずなっおおり極めお平滑で盎線
性のよいものずなる。
The flow channel groove 6 formed on the flow channel substrate 3 has a trapezoidal cross section when laminated with the heating element substrate 2. Each side surface is formed as an inclined surface by an equivalent (111) plane, and the bottom surface forming the ceiling surface in the ink flow path is (100).
Formed by the surface. Here, the (111) plane has an extremely slow etching rate with an alkaline solution such as sodium hydroxide, potassium hydroxide, and humanazine as compared with other crystal planes. When the (100) plane is etched with an alkaline solution, (100) The (111) plane forming about 54.7 ° with respect to the () plane appears, and as shown in FIG. 5, the flow channel groove 6 is formed so as to have a trapezoidal cross section. The width W of the upper portion of such a trapezoidal cross section is determined by the distance between the photoresists at the time of photoetching, and is extremely accurate. Further, the depth d of the trapezoidal cross section can be easily controlled by controlling the anisotropic etching time. Furthermore, the (111) plane that appears by such etching is in a mirror surface state, which is extremely smooth and has good linearity.

【】ここに、このような単結晶り゚ハを甚
いお、異方性フォト゚ッチング法により断面台圢状の流
路甚溝を圢成する方法に぀いお、図を参照しお説明
する。たず、図で説明したような結晶方䜍の単結
晶からなる流路基板を甚意する。図に瀺す状
態では、玙面に察しお垂盎方向が軞、この基
板の䞊䞋面が面ずなる。このような基板
を、䟋えば〜℃皋床の氎蒞気雰囲気䞭に
眮き、衚面党面に熱酞化膜を圢成する。熱酞化膜
の膜厚ぱッチング深さの皋床あれば十分で
ある。
Here, a method of forming a channel groove 6 having a trapezoidal cross section by using an anisotropic photoetching method using such a single crystal Si wafer will be described with reference to FIG. First, the flow path substrate 3 made of Si single crystal having the crystal orientation as described in FIG. 5 is prepared. In the state shown in FIG. 6A, the <110> axis is in the direction perpendicular to the paper surface, and the upper and lower surfaces of the substrate 3 are the (100) surface. Such a substrate 3
Is placed in a water vapor atmosphere at, for example, about 800 to 1200 ° C., and the thermal oxide film 26 is formed on the entire surface. Thermal oxide film 2
It is sufficient that the film thickness of 6 is about 0.3% of the etching depth.

【】぀いで、同図に瀺すように、熱酞化
膜の䞊面党面に呚知の方法でフォトレゞストを塗垃
し、これを写真也板を甚いお露光し、珟像を行い、フォ
トレゞストパタヌンを埗る。
Then, as shown in FIG. 3B, a photoresist is applied to the entire upper surface of the thermal oxide film 26 by a known method, and the photoresist is exposed by using a photographic plate and developed to develop a photoresist pattern. Get 27.

【】぀いで、同図に瀺すように、このフ
ォトレゞストパタヌンにより露出しおいる郚分の熱
酞化膜をフッ酞氎溶液等により陀去し、シリコンの
露出郚を埗お、その埌、フォトレゞストパタヌン
を取り去る。
Then, as shown in FIG. 3C, the thermal oxide film 26 in the portion exposed by the photoresist pattern 27 is removed by an aqueous solution of hydrofluoric acid or the like to obtain an exposed portion 3a of silicon, and then, , Photoresist pattern 2
Remove 7

【】このような状態にある基板を、䟋えば
〜℃の氎酞化カリりム溶液䞭においお゚ッ
チングする。これにより露出郚の゚ッチングが進行
するが、面の゚ッチング進行速床は
面における゚ッチング進行速床の〜
皋床であるため、異方性゚ッチングずなり、露出郚
の各溝郚からは基板の䞊面前述したように、
面であるに察し、tan~1√玄°の
角床をなす面が珟れる。結局、゚ッチングに
より圢成される流路甚溝の溝圢状は同図に瀺す
ように断面台圢状ずなる。
The substrate 3 in such a state is, for example, 5
Etch in potassium hydroxide solution at -40%, 80 ° C. As a result, the etching of the exposed portion 3a proceeds, but the etching progress rate of the (111) plane is
0 to 0.3% of the etching progress rate in the plane
Since it is about the degree, anisotropic etching is performed, and the exposed portion 3a
From the respective groove portions of the upper surface of the substrate 3 (as described above, (10
To 0) plane), an angle of tan ~ 1 √2 (about 54.7 °) (111) plane appears. Eventually, the groove shape of the channel groove 6 formed by etching has a trapezoidal cross section as shown in FIG.

【】このような断面台圢状溝の粟床に぀いお考
察するず、たず、熱酞化膜端郚の䞋溝における、い
わゆるアンダカットは極めお小さく、面の゚
ッチング深さの皋床でしかない。埓っお、断面
台圢状溝の䞊郚の幅は、フォトマスクの誀差を考
慮に入れおも±Ό皋床の粟床ずするこずができる。
Considering the accuracy of such a trapezoidal cross section, first, the so-called undercut in the lower groove at the end of the thermal oxide film 26 is extremely small, and is about 0.2% of the etching depth of the (100) plane. There is nothing. Therefore, the width (W) of the upper portion of the trapezoidal cross section can be set to an accuracy of about ± 1 Όm even if the error of the photomask is taken into consideration.

【】最埌に、同図に瀺すように、゚ッチ
ングマスクに䜿甚した熱酞化膜をフッ酞氎溶液等に
より陀去するこずにより断面台圢状なる流路甚溝が圢
成された単結晶のみによる流路基板ずなる。な
お、このような流路基板を実際にヘッドチップに適
甚するには、り゚ハをむンクから保護するため、
2 34等の保護膜で保護するようにするのが
よい。
Finally, as shown in FIG. 7E, the thermal oxidation film 26 used as the etching mask is removed by an aqueous solution of hydrofluoric acid or the like to form a single crystal in which the channel groove 6 having a trapezoidal cross section is formed. The flow path substrate 3 is made of only Si. In order to actually apply such a flow path substrate 3 to the head chip 1, in order to protect the Si wafer from the ink, S
It is preferable to protect with a protective film of iO 2 , Si 3 N 4, or the like.

【】このように異方性゚ッチングにより断面台
圢状で圢成された流路甚溝を有する流路基板は、前
述したようにヒヌタ等が圢成された発熱䜓基板䞊
に、接合又は圧接されお積局状態ずされる。ここに、積
局されたこれらの基板に぀いお、ヒヌタ郚分か
ら少し䞋流〜Ό皋床の領域におい
お、流路流路甚溝に察しおほが垂盎方向にダむシ
ング゜ヌによっお切断するこずによりむンク吐出甚のノ
ズルが切出されおヘッドチップが完成する。図は
このようにしお完成したヘッドチップを瀺し、図は
そのむンク吐出甚のノズルから芋た䞀郚を拡倧しお瀺
す正面図である。
The flow path substrate 3 having the flow path groove 6 formed in the trapezoidal cross section by the anisotropic etching as described above is bonded to the heating element substrate 2 on which the heater 8 and the like are formed as described above. Alternatively, they are pressed into a laminated state. These laminated substrates 2 and 3 are cut by a dicing saw in a region slightly downstream (about 100 to 200 ÎŒm) from the heater 8 in a direction substantially perpendicular to the flow channel (flow channel groove 6). By doing so, the nozzles 5 for ejecting ink are cut out and the head chip 1 is completed. FIG. 2 shows the head chip 1 completed in this way, and FIG. 7 is a front view showing a part of the nozzle 5 for ejecting ink in an enlarged manner.

【】なお、むンク吐出甚のノズルの圢成方法
ずしおは、䞊蚘のように、ダむシング゜ヌによっお切断
した面をそのたた盎接むンク吐出甚ノズル面ずする他、
䟋えば、図に瀺すように、台圢状の吐出ノズル
を圢成したノズル板を別個に甚意し、これをヘッド
チップ端面に接合させるようにしおもよい。このよう
なノズル板は、䟋えばポリサルフォン、ポリ゚ヌテ
ルサルフォン、ポリフェニレンオキサむド、ポリプロピ
レンなどの暹脂板厚さは、〜Ό皋床に、
゚キシマレヌザを照射しお暹脂を陀去・蒞発させるこず
により吐出ノズルを圢成したものずすればよい。
このような補法によるず、吐出ノズル甚の台圢状
のマスクパタヌンに沿った粟密な加工を簡単に行うこず
ができ、高粟床なノズル板が埗られる。このノズル
板はヘッドチップの切断面に接着剀により接合さ
れる。或いは、䞊蚘のような暹脂板をヘッドチップの
切断面に接合させた埌に、゚キシマレヌザを照射しお吐
出ノズルを圢成するようにしおもよい。このよう
にすれば、流路流路甚溝ず吐出ノズルずを
敎合させる点に関する煩雑さから解攟されるものずな
る。たた、このような補法で埗られる吐出ノズル
の倧きさは、ヘッドチップの切断面におけるむンク流
路の断面の倧きさず同等か、やや小さめずするのがよ
い。䜕れにしおも、このようにノズル板を別䜓で蚭
けたヘッド構造によれば、図等に瀺したものに比べ、
むンク噎射の安定性が高いものずなる。
As a method of forming the ink ejection nozzle 5, as described above, the surface cut by the dicing saw is directly used as the ink ejection nozzle surface.
For example, as shown in FIG. 8, a trapezoidal ejection nozzle 28a
It is also possible to separately prepare the nozzle plate 28 on which the above is formed and to join this to the end surface of the head chip 1. Such a nozzle plate 28 is made of, for example, a resin plate (having a thickness of about 10 to 50 ÎŒm) such as polysulfone, polyether sulfone, polyphenylene oxide, and polypropylene.
The discharge nozzle 28a may be formed by irradiating an excimer laser to remove and evaporate the resin.
According to such a manufacturing method, precise processing along the trapezoidal mask pattern for the discharge nozzle 28a can be easily performed, and the highly accurate nozzle plate 28 can be obtained. The nozzle plate 28 is bonded to the cut surface of the head chip 1 with an adhesive. Alternatively, the discharge nozzle 28a may be formed by irradiating an excimer laser after the resin plate as described above is bonded to the cut surface of the head chip 1. By doing so, the complexity of aligning the flow path (flow path groove 6) with the discharge nozzle 28a is released. In addition, the discharge nozzle 28a obtained by such a manufacturing method
Is preferably equal to or slightly smaller than the size of the cross section of the ink channel in the cut surface of the head chip 1. In any case, according to the head structure in which the nozzle plate 28 is separately provided as described above, compared with the structure shown in FIG.
The stability of ink ejection is high.

【】このような本実斜䟋の基本構成によれば、
むンク流路が非垞に滑らかなため、むンク噎射性胜に優
れたものずなる。
According to the basic configuration of this embodiment,
Since the ink flow path is very smooth, the ink ejection performance is excellent.

【】このような基本構成においお、本実斜䟋で
は、面の結晶方䜍面に切出された単結晶
による流路基板に関しお、断面台圢状の流路甚溝ず
ずもに、共通液宀領域も同䞀の異方性゚ッチング工皋
により同時に同じ深さに圢成した点を特に特城ずするも
のである。即ち、流路基板においおは、流路甚溝ず
共通液宀領域ずなる凹郚を圢成するためのパタヌンは
぀のフォトマスク䞊に圢成され、回のみのフォトリ
゜〜゚ッチングプロセスによっお、図に瀺すような流
路基板が圢成されるものであるただし、むンク流入
口は、基本的には、埌述するように別工皋で圢成され
る。
With this basic structure, in this embodiment, single crystal Si cut out in the crystal orientation plane of the (100) plane is used.
The channel substrate 3 according to 1 is particularly characterized in that the common liquid chamber region 7 is formed at the same depth at the same time by the same anisotropic etching process together with the channel groove 6 having a trapezoidal cross section. That is, in the flow channel substrate 3, the pattern for forming the flow channel groove 6 and the concave portion which becomes the common liquid chamber region 7 is formed on one photomask, and the pattern is formed by only one photolithography-etching process. The flow path substrate 3 as shown in 1 is formed (however, the ink inlet 4 is basically formed in a separate step as described later).

【】ここに、本実斜䟋の䞀぀の重芁点は、異方
性゚ッチングに甚いる゚ッチング液を適切に遞定するこ
ずである。前述したように、流路甚溝及び共通液宀領
域の異方性゚ッチングを行なうための゚ッチング液ず
しおは、䞀般に、氎酞化ナトリりム、氎酞化カリりム、
ヒドラゞンの氎溶液、或いは、゚チレンシアミンずピロ
カテコヌルず氎ずの混合液などが甚いられるが、これら
の゚ッチング溶液を甚いた堎合、䞀般に、その゚ッチン
グ面即ち、面は滑らかではなく、ザラザ
ラした面ずなる。反面、䞡偎面なる等䟡な面
は鏡面状態なる非垞に滑らかな面ずしお圢成される。こ
こに、流路甚溝の底面なる面や共通液宀領
域の倩井面なる面もザラザラした面である
より、面ず同様に鏡面状態であるこずがむン
ク流れをスムヌズにするためには奜たしいず考えられ
る。そこで、各皮゚ッチング液を怜蚎した結果、氎酞化
テトラメチルアンモニりム氎溶液による゚ッチングによ
っお流路甚溝及び共通液宀領域に関しお鏡面状態の
面が埗られるこずを芋出したものである。
Here, one of the important points of this embodiment is to properly select the etching solution used for anisotropic etching. As described above, the etching liquid for anisotropically etching the channel groove 6 and the common liquid chamber region 7 is generally sodium hydroxide, potassium hydroxide,
An aqueous solution of hydrazine or a mixed solution of ethylenecyamine, pyrocatechol, and water is used, but when these etching solutions are used, the etching surface (that is, the (100) surface) is generally not smooth. , It has a rough surface. On the other hand, the equivalent (111) planes on both sides are formed as a very smooth surface which is a mirror surface. Here, the (100) surface that is the bottom surface of the flow channel groove 6 and the (100) surface that is the ceiling surface of the common liquid chamber region 7 are not rough surfaces, but may be mirror-like surfaces like the (111) surface. It is considered preferable for smoothing the ink flow. Then, as a result of studying various etching solutions, it was found that etching with an aqueous solution of tetramethylammonium hydroxide gives a mirror surface (100) surface for the channel groove 6 and the common liquid chamber region 7.

【】そこで、本実斜䟋では、異方性゚ッチング
甚の゚ッチング液ずしお、前述したような氎酞化ナトリ
りム氎溶液を甚いお圢成した流路基板ず、氎酞化テト
ラメチルアンモニりム氎溶液を甚いお圢成した流路基板
ずを䜿甚しお、皮類のヘッドチップを詊䜜し、そ
れらのむンク噎射性胜を以䞋の実隓ずしお比范しおみ
た。
Therefore, in this embodiment, the flow path substrate 3 formed by using the above-mentioned sodium hydroxide aqueous solution and the tetramethylammonium hydroxide aqueous solution are formed as the etching liquid for anisotropic etching. Two types of head chips 1 were prototyped using the flow path substrate 3 and their ink ejection performances were compared as Experiment 1 below.

【】実隓 詊䜜したヘッドチップ ・図に瀺したようなヘッドチップで、流路基板ず
しおは、の氎酞化ナトリりム氎溶液で℃
分゚ッチングしたものず、の氎酞化テトラメチ
ルアンモニりム氎溶液で℃分゚ッチングしたも
のずの皮類を甚いた。流路甚溝の面及び
共通液宀領域の面の衚面粗さに関しお、前
者は粗くザラザラしおいたのに察し、埌者は滑らかな鏡
面状態に仕䞊がっおいたものである。 ・ノズルサむズ䞊底Ό、䞋底Ό、深さ
Όの台圢 ・ヒヌタサむズΌ×Ό抵抗倀は
Ω ・ノズル配列密床dpi ・ノズル数個 䜿甚したむンク ・グリセリン、゚チルアルコヌル、氎
、ダむレクトブラック染料
なる組成のもの ヘッド駆動条件 ・駆動電圧o  ・駆動パルス幅w Ό この実隓によれば、氎酞化ナトリりム氎溶液で゚ッチ
ングしお圢成した流路基板を甚いたヘッドチップの
堎合には、ゞェット速床がj ずな
り、安定しお連続噎射を行なえる駆動呚波数の䞊限が
o に留たったのに察し、氎酞化テトラメチル
アンモニりム氎溶液で゚ッチングしお圢成した流路基板
を甚いたヘッドチップの堎合には、ゞェット速床が
j ずなり、安定しお連続噎射を行な
える駆動呚波数の䞊限もo ずなったもので
ある。
(Experiment 1) Prototype Head Chip: The head chip 1 as shown in FIG. 2 was used. The flow path substrate 3 was a 20% sodium hydroxide aqueous solution at 80 ° C. for 1 hour.
Two types were used: one that was etched for 0 minutes and one that was etched with a 22% tetramethylammonium hydroxide aqueous solution at 90 ° C. for 8 minutes. Regarding the surface roughness of the (100) surface of the flow channel groove 6 and the (100) surface of the common liquid chamber region 7, the former was rough and rough, whereas the latter was finished in a smooth mirror surface state. is there.・ Nozzle size: Upper bottom 24 ÎŒm, lower bottom 59 ÎŒm, depth 2
Trapezoid of 4.7 ÎŒm ・ Heater size: 35 ÎŒm × 160 ÎŒm (resistance value is 12
0.5Ω) ・ Nozzle array density: 300dpi ・ Number of nozzles: 64 Ink used ・ Glycerin 18%, Ethyl alcohol 4.8%, Water 7
5%, C.I. I. Direct Black 154 (dye) 2.
2% composition Head drive conditions-Drive voltage V o = 28 V-Drive pulse width P w = 6 ÎŒs According to this Experiment 1, a head chip using the flow path substrate 3 formed by etching with an aqueous solution of sodium hydroxide is used. In the case of 1, the jet velocity becomes V j = 11.8 m / s, and the upper limit of the drive frequency that enables stable continuous injection is F
While o = 4 kHz, in the case of the head chip 1 using the flow path substrate 3 formed by etching with an aqueous solution of tetramethylammonium hydroxide, the jet velocity becomes V j = 15.2 m / s, The upper limit of the driving frequency that allows stable continuous injection is also F o = 7 kHz.

【】このような結果によれば、異方性゚ッチン
グにより圢成する流路甚溝及び共通液宀領域の
面も面ず同様に滑らかな鏡面状態に仕
䞊げたほうが、ゞェット速床が速くなり、これにより噎
射が安定し、か぀、連続しお噎射させる堎合も、その安
定噎射させ埗る連続駆動呚波数の䞊限も高くし埗るので
高速噎射に適したものであるこずが分かる。
According to these results, the channel groove 6 and the common liquid chamber area 7 (1
Like the (111) plane, the (00) plane has a smoother mirror finish, which results in a higher jet velocity, which stabilizes the jetting, and when continuous jetting is performed, continuous driving that enables stable jetting It can be seen that the upper limit of the frequency can be set to be high, which is suitable for high-speed injection.

【】さらに、本実斜䟋の特城の䞀぀である発熱
䜓基板の基板ずしお、面の結晶方䜍面に切
出された単結晶り゚ハを甚いた点に぀いお説明す
る。本発明では、前述したように、面の結晶
方䜍面に切出されたり゚ハを甚いお、耇数本の平行
な断面台圢状の流路甚溝ずこれらの流路甚溝に連通
した共通液宀領域ずを異方性゚ッチングにより圢成し
た流路基板を䜜補し、盞手偎ずなる発熱䜓基板ず積
局させた埌、ノズル郚をダむシングにより切出すように
しおいる。このダむシング方向は流路甚溝のむンクが
流れる方向ずほが盎亀する方向、぀たり、軞
方向である。埓っお、流路基板のダむシングに関しお
は特に問題はないが、発熱䜓基板も同時にダむシング
切断されるので、この際の歩留たり向䞊を考慮した堎
合、発熱䜓基板甚の基板材料の遞定も重芁ずなる。そ
こで、本実斜䟋では、前述したように、発熱䜓基板甚
の基板材料ずしおも、流路基板偎ず同じく、
面の結晶方䜍面に切出された単結晶り゚ハを甚
いるようにしたものである。
Further, the point of using a single crystal Si wafer cut out in the crystal orientation plane of the (100) plane as the substrate of the heating element substrate 2 which is one of the features of this embodiment will be described. In the present invention, as described above, a plurality of parallel channel trapezoidal flow channel grooves 6 and these flow channel grooves 6 are used by using the Si wafer cut out in the crystal orientation plane of the (100) plane. The flow path substrate 3 is formed by anisotropically etching the common liquid chamber region 7 communicating with the above, and is laminated on the mating heating element substrate 2, and then the nozzle portion is cut out by dicing. . The dicing direction is a direction substantially orthogonal to the direction in which the ink in the flow channel 6 flows, that is, the <110> axis direction. Therefore, there is no particular problem regarding dicing of the flow path substrate 3, but since the heating element substrate 2 is also cut by dicing at the same time, in consideration of the yield improvement at this time, it is important to select the substrate material for the heating element substrate 2. Becomes Therefore, in the present embodiment, as described above, the substrate material for the heating element substrate 2 is (10
The single crystal Si wafer cut out in the crystal orientation plane of the (0) plane is used.

【】ここに、発熱䜓基板偎に぀いおは異方性
゚ッチング凊理を行うわけではないが、次のような理由
から、発熱䜓基板甚の基板材料に関しおも、
面のり゚ハを甚いるようにしたものである。第
の理由は、熱䌝導率の点である。即ち、はガラ
ス、或いはアルミナセラミックスなどに比べお熱䌝導率
が高く、サヌマルむンクゞェットヘッドのように熱を利
甚するヘッドにおいおはその攟熱特性が優れたものずな
り、奜たしいからである。第の理由は、り゚ハに
関しお、面を甚いる理由であるが、これは、
単結晶材料の持぀ぞき開ず称される性質の点である。即
ち、前述したように、ノズル郚をダむシングにより切出
す際、そのダむシング方向を結晶軞の方向ずするのが望
たしいからである。぀たり、のような単結晶材料
は、䞀般に、ぞき開ず称される性質を有しおおり、結晶
軞方向に沿っお容易に割れる。具䜓的には、
面のり゚ハを甚いお流路基板を䜜補する堎合、
軞方向に割れやすいので、ダむシング時には
軞方向に切断するのが最良ずいえる。䞀方、こ
のような流路基板ず積局され同時に切断される発熱䜓
基板に぀いおも、面のり゚ハを利甚し
ダむシング方向が軞方向ずなるように発熱䜓
列のパタヌニングを行うのが最良ずなるからである。
Although the anisotropic etching process is not performed on the heating element substrate 2 side, the substrate material for the heating element substrate 2 is also (10) for the following reason.
The Si wafer of (0) plane is used. The first reason is the thermal conductivity. That is, Si has a higher thermal conductivity than glass, alumina ceramics, or the like, and a head that utilizes heat such as a thermal inkjet head has excellent heat dissipation characteristics, which is preferable. The second reason is the use of the (100) plane for Si wafers.
This is the property of single crystal material called cleavage. That is, as described above, when cutting out the nozzle portion by dicing, it is desirable that the dicing direction be the crystal axis direction. That is, a single crystal material such as Si generally has a property called cleavage and is easily broken along the crystal axis direction. Specifically, (100)
When the flow path substrate 3 is manufactured using the Si wafer of the surface,
110> It is easy to crack in the axial direction, so when dicing <
It can be said that it is best to cut in the 110> axial direction. On the other hand, with respect to the heating element substrate 2 that is laminated and cut at the same time as the flow path substrate 3, the heating element array is patterned using the (100) plane Si wafer so that the dicing direction is the <110> axis direction. Is best done.

【】ここに、ダむシング方向を結晶軞方向ずし
た堎合ず、結晶軞方向ずはしない堎合ずに぀いお、チッ
プ化時にチップが砎損したか吊かの実隓䟋を瀺す。この
実隓は、枚のり゚ハから長方圢状のチップを切出す実
隓である。 実隓厚さmmで面に結晶方䜍面を
持぀ように切出した盎埄むンチのり゚ハを甚い、
mm×mmの倧きさの矩圢チップをダむシング法によ
り個切出す実隓を行ったものである。䜿甚したダ
むシング゜ヌはディスコ瀟補の−型であ
り、ブレヌド回転数はrpm 、ブレヌド送り速
床はmmずした。䜿甚したブレヌドは、ディスコ瀟
補−倖埄mm×厚さmm×内
埄mmである。り゚ハをダむシングフィルムに
貌付け、ダむシング゜ヌに真空チャックし、mmの
切蟌み深さで盎亀する぀の軞方向にダむシ
ングを行ったものである。この結果、個のチップ
を党お砎損なくチップ化できたものである。
Here, an example of an experiment as to whether or not the chip is broken during chip formation is shown for the case where the dicing direction is the crystal axis direction and the case where the dicing direction is not the crystal axis direction. This experiment is an experiment in which a rectangular chip is cut out from one wafer. (Experiment 2) Using a Si wafer having a diameter of 5 inches and having a thickness of 0.5 mm and having a crystal orientation plane on the (100) plane,
An experiment was performed in which 144 rectangular chips each having a size of 7 mm × 10 mm were cut by a dicing method. The dicing saw used was a DAD-2H / 5 type manufactured by Disco Corporation, the blade rotation speed was 30,000 rpm, and the blade feed speed was 2 mm / s. The blade used is NBC-Z600 (= outer diameter 52 mm x thickness 0.1 mm x inner diameter 40 mm) manufactured by DISCO. A Si wafer was attached to a dicing film, vacuum chucked on a dicing saw, and dicing was performed in two <110> axis directions orthogonal to each other with a cutting depth of 0.5 mm. As a result, all 144 chips could be made into chips without damage.

【】実隓実隓ず同じダむシング゜ヌ、
り゚ハ等を甚い、ダむシング方向のみを、
軞方向ずは無関係ランダムな方向ずしお個
分のチップ化を行ったものである。結果は、個の
チップの内、個のチップに埮小な欠け、或いは、
党面に割れが生じ、個のチップだけが、mm×
mmの倧きさで砎損のない矩圢チップずしお埗られたもの
である。砎損等を生じたチップを芳察したずころ、欠
け、或いは、割れが軞方向に生じおいたこず
が刀明した。
(Experiment 3) The same dicing saw as in Experiment 2,
Using a Si wafer or the like, only dicing direction <110
> 144 chips are formed as a direction that is unrelated (random) to the axial direction. As a result, 113 chips out of 144 chips have a small chipping or
Cracks occurred on the entire surface, and only 31 chips were 7 mm x 10
It was obtained as a rectangular chip with a size of mm without damage. Observation of the chip that was damaged or the like revealed that a chip or a crack was generated in the <110> axis direction.

【】以䞊の実隓の結果からも分かるよう
に、り゚ハをダむシングによりチップ化する堎合に
は、結晶軞の方向にダむシングを行うこずが重芁である
こずが分かる。぀たり、発熱䜓基板、流路基板のよ
うに単結晶材料からなり、それらの積局物をダむシング
により切出す堎合に、仮に、結晶軞方向から倖れた方向
にダむシングを行うず、砎損のない積局物チップを埗る
こずが困難なこずが、これらの実隓結果からも明かであ
る。そこで、本実斜䟋では、発熱䜓基板、流路基板
の䜕れも同䞀方䜍面に切出されたり゚ハを甚いるも
のずし、か぀、䞡基板ずも同䞀結晶軞方向にダむ
シングを行うこずで、ヘッドチップを完成させるよう
にし、歩留たりが向䞊するようにしたものである。
As can be seen from the results of Experiments 2 and 3 described above, when dicing a Si wafer into chips, it is important to perform dicing in the direction of the crystal axis. That is, when the heat-generating body substrate 2 and the flow path substrate 3 are made of a single crystal material and a laminate thereof is cut out by dicing, if the dicing is performed in a direction deviating from the crystal axis direction, no damage occurs. It is clear from these experimental results that it is difficult to obtain a laminated chip. Therefore, in this embodiment, the heating element substrate 2 and the flow path substrate 3 are used.
In both cases, a Si wafer cut out in the same azimuth plane is used, and both substrates 2 and 3 are diced in the same crystal axis direction to complete the head chip 1 and improve the yield. It was done like this.

【】具䜓的には、面を結晶方䜍面ず
しお切出されたり゚ハ䞊にヒヌタ等を圢成した発
熱䜓基板は盎亀する぀の等䟡な軞方向に
ダむシングを行っおチップ化され、面を結晶
方䜍面ずしお切出されたり゚ハ䞊に異方性゚ッチン
グにより流路甚溝及び共通液宀領域を圢成した流路
基板は盎亀する぀の等䟡な軞方向にダむ
シングを行っおチップ化されたものが甚いられ、これら
の぀のチップが積局される。積局状態で、ヒヌタ郚
分より少し䞋流領域においお、軞方向換蚀
すれば、流路甚溝に盎亀する方向にダむシング゜ヌ
によっお䞡基板の積局物を切断するこずにより、
むンク吐出ノズル面が切出し圢成される。぀たり、枚
の基板をその結晶軞方向を揃えお積局し、同じ結
晶軞方向に切断するようにしおいるので、欠けや割れな
どの砎損を生ずるこずなく、むンク吐出ノズル面を圢成
できるこずになる。
Specifically, the heating element substrate 2 in which the heater 8 and the like are formed on the Si wafer cut out with the (100) plane as the crystal orientation plane is diced in two equivalent <110> axis directions orthogonal to each other. The flow path substrate 3 in which the flow path groove 6 and the common liquid chamber region 7 are formed by anisotropic etching on the Si wafer which is formed into chips and is cut out with the (100) plane as the crystal orientation plane is orthogonal to 2 Chips obtained by dicing two equivalent <110> axes are used, and these two chips are stacked. In the laminated state, by cutting the laminated body of both substrates 2 and 3 with a dicing saw in the <110> axial direction (in other words, the direction orthogonal to the flow channel 6) in a region slightly downstream of the heater 8. ,
The ink ejection nozzle surface is cut out and formed. That is, since the two substrates 2 and 3 are laminated with their crystal axis directions aligned and cut in the same crystal axis direction, the ink ejection nozzle surface is formed without causing damage such as chipping or cracking. You can do it.

【】この点に関する具䜓䟋を比范䟋ず察比しお
瀺す。 具䜓䟋具䜓䟋ずしお、たず、盎埄むンチ、厚さ
mmで面を結晶方䜍面ずしお切出された
り゚ハを甚い、dpi で玠子分が配列さ
れた発熱䜓基板を䜜補した。チップは、mm×mm
の倧きさで個取りずした。このり゚ハを前述
した実隓ず同じ方法・凊理で盎亀する軞方
向にダむシングを行い、チップ化した。次いで、同様
に、盎埄むンチ、厚さmmで面を結晶
方䜍面ずしお切出されたり゚ハを甚い、dpi
で本分の断面台圢状の流路甚溝ず共通液宀領域
ずを異方性゚ッチングにより同時に圢成した流路基板
を䜜補した。なお、異方性゚ッチング時の゚ッチング
液は実隓で瀺した氎酞化テトラメチルアンモニりム氎
溶液を甚いるものずした。チップは、mm×mmの倧
きさで個取りずした。このり゚ハを前述した
実隓ず同じ方法・凊理で盎亀する軞方向に
ダむシングを行い、チップ化した。これらの぀のチッ
プ発熱䜓基板チップず流路基板チップを、発熱面ず
溝面ずが盞察するようにしお積局し、接着接合しお積局
物ずした。このような積局物を個䜜補し、ヒヌタ
郚分より䞋流Όの䜍眮で流路甚溝にほが盎亀
する軞方向にダむシングを行い、むンク吐出
ノズル面を切出すようにした。この時、ダむシングの条
件は、ブレヌド厚さをmmずし、切蟌み深さは
mmずし、ブレヌド送り速床をmmずした以倖
は、実隓の堎合ず同じずした。結果は、個党おに
぀いお、砎損を生ずるこずなく、むンク吐出ノズル面を
良奜に切出すこずができたものである。
A specific example regarding this point will be shown in comparison with a comparative example. (Specific example) As a specific example, first, a heating element substrate in which 128 elements are arranged at 400 dpi using a Si wafer cut out with a diameter of 5 inches and a thickness of 0.5 mm with a (100) plane as a crystal orientation plane. 2 was produced. The tip is 7 mm x 10 mm
The size was set to 144 pieces. This Si wafer was diced in the <110> axis direction orthogonal to each other by the same method and treatment as in Experiment 2 described above, and made into chips. Next, similarly, using a Si wafer having a diameter of 5 inches and a thickness of 0.5 mm and a (100) plane as a crystal orientation plane, 400 dpi
Then, a channel substrate 3 was prepared in which 128 channels having a trapezoidal cross section and a common liquid chamber region 7 were simultaneously formed by anisotropic etching. The tetramethylammonium hydroxide aqueous solution shown in Experiment 1 was used as the etching solution for anisotropic etching. The size of the chip was 7 mm x 10 mm, and 144 chips were taken. This Si wafer was diced in the <110> axis direction orthogonal to each other by the same method and treatment as in Experiment 2 described above, and made into chips. These two chips (heater substrate chip and flow path substrate chip) were laminated so that the heat generation surface and the groove surface faced each other, and adhesively bonded to each other to obtain a laminate. Fifty such laminates were produced and the heater 8
Dicing was performed at a position of 100 ÎŒm downstream from the portion in the <110> axis direction substantially orthogonal to the flow channel groove 6 to cut out the ink ejection nozzle surface. At this time, the dicing condition is that the blade thickness is 0.25 mm and the cutting depth is 1
mm and the blade feed rate was 0.3 mm / s. As a result, the ink ejection nozzle surface could be satisfactorily cut out for all 50 nozzles without causing damage.

【】比范䟋具䜓䟋で䜜補したものず同じ積
局物を個甚意し、流路の領域においお流路甚溝に
察しお垂盎ではない方向ここでは、垂盎方向から玄
°ずれた方向に、具䜓䟋の堎合ず同じ切蟌み深さで
ダむシングを行ったずころ、個の積局物党おに砎損
を生じたものである。
(Comparative Example) Twenty laminates identical to those produced in the specific example were prepared, and in the region of the flow channel, the direction not perpendicular to the flow channel groove 6 (here, about 1 from the vertical direction).
When dicing was performed in the same cutting depth as in the case of the specific example in a direction shifted by 5 °), all 20 laminates were damaged.

【】さらに、本実斜䟋の特城の䞀぀である流路
基板におけるむンク流入口に぀いお説明する。本実
斜䟋では、流路基板の基板材料に面の
り゚ハを利甚しおいる点を考慮し、共通液宀領域に察
しおむンクを䟛絊させるためのむンク流入口に぀いお
も、面、即ち、共通液宀領域の倩井面
に察する異方性゚ッチングにより開口ずしお圢成するよ
うにしたものである。この異方性゚ッチングは、流路甚
溝や共通液宀領域甚の゚ッチングずは別工皋ずしお
反察の面即ち、倖面偎から行うこずになる。これに
より、倖芳的に芋た堎合、図に瀺すように、流路基板
の倖面偎にお角錐すり鉢状に開口圢成されたものずな
る。
Further, the ink inlet 4 in the flow path substrate 3 which is one of the features of this embodiment will be described. In this embodiment, the substrate material of the flow path substrate 3 is made of Si of (100) plane.
Considering the fact that a wafer is used, the ink inlet 4 for supplying ink to the common liquid chamber area 7 also has the (100) plane, that is, the ceiling surface 7a of the common liquid chamber area 7.
It is formed as an opening by anisotropic etching. This anisotropic etching is performed from the surface (that is, the outer surface) opposite to the etching for the channel 6 and the common liquid chamber region 7 as a separate process. As a result, when viewed externally, as shown in FIG. 2, the openings are formed in a pyramidal mortar shape on the outer surface side of the flow path substrate 3.

【】即ち、流路基板に関しお前述したように
異方性゚ッチングにより流路甚溝及び共通液宀領域
を圢成した埌、その裏面偎から共通液宀領域の倩井面
に察しおフォトリ゜〜゚ッチング工皋を行うこずに
より、むンク流入口が圢成される。このような裏面偎
からの異方性゚ッチングによりむンク流入口を圢成す
る方法によれば、倧口埄で十分にむンク䟛絊胜力を持぀
開口ずしお高粟床に圢成できるものずなる。
That is, as described above with respect to the flow path substrate 3, the flow path groove 6 and the common liquid chamber region 7 are formed by anisotropic etching.
After the formation of the ink, the ink inflow port 4 is formed by performing a photolithography-etching process on the ceiling surface 7a of the common liquid chamber region 7 from the back surface side. According to the method of forming the ink inflow port 4 by anisotropic etching from the back surface side as described above, it is possible to form with high accuracy an opening having a large diameter and a sufficient ink supply capability.

【】぀づいお、請求項蚘茉の発明の䞀実斜䟋
を図により説明する。前蚘実斜䟋で瀺した郚分ず同䞀
郚分は同䞀笊号を甚いお瀺す以䞋の実斜䟋でも同様ず
する。本実斜䟋は、流路甚溝及び共通液宀領域を
異方性゚ッチングにより圢成した流路基板においお、
共通液宀領域の倩井面郚分に察しおレヌザ加工に
より開口を圢成し、これをむンク流入口ずするよう
にしたものである。
Next, an embodiment of the invention described in claim 5 will be described with reference to FIG. The same parts as those shown in the above-mentioned embodiments are designated by the same reference numerals (the same applies to the following embodiments). In this embodiment, in the flow channel substrate 3 in which the flow channel groove 6 and the common liquid chamber region 7 are formed by anisotropic etching,
An opening is formed in the ceiling surface 7a of the common liquid chamber region 7 by laser processing, and this is used as the ink inlet 29.

【】本実斜䟋による堎合も、前蚘実斜䟋の堎合
ず同じく、共通液宀領域の倩井面郚分にむンク流
入口を圢成しおいるので、倧口埄で十分にむンク䟛
絊胜力を持぀開口ずしお圢成できるものずなる。ここ
に、レヌザ加工は異方性゚ッチングに比べるずやや粟床
が劣るものの、短時間で容易に開口させるこずができ、
䜎コスト・量産向きずなる。なお、レヌザ加工機ずしお
は、炭酞ガスレヌザ等が奜たしい。
Also in the case of this embodiment, the ink inlet 29 is formed in the ceiling surface 7a of the common liquid chamber region 7 as in the case of the above-mentioned embodiment, so that a large diameter has a sufficient ink supply capability. It can be formed as an opening. Here, although the laser processing is slightly less accurate than the anisotropic etching, it is possible to easily open in a short time,
Low cost and suitable for mass production. The laser processing machine is preferably a carbon dioxide laser or the like.

【】さらに、請求項蚘茉の発明の䞀実斜䟋を
図により説明する。本実斜䟋は、流路甚溝及び共
通液宀領域を異方性゚ッチングにより圢成する工皋に
おいお、共通液宀領域の䞡偎の偎壁郚同
図参照、又は、奥偎の偎壁郚同図
参照郚分に凹郚も䜵せお圢成し、これらをむンク流入
口ずするようにしたものである。
Further, an embodiment of the invention described in claim 6 will be described with reference to FIG. In this embodiment, in the step of forming the channel groove 6 and the common liquid chamber region 7 by anisotropic etching, the side wall portions 7b and 7c on both sides of the common liquid chamber region 7 (see FIG. 7A), or , The side wall portion 7d on the back side ((b) of the same figure)
The reference portion) is also formed with a concave portion, and these are used as the ink inlet 30.

【】即ち、本実斜䟋の堎合も図に瀺した堎合
ず同様に異方性゚ッチングによりむンク流入口を圢
成するが、本実斜䟋の堎合には、流路甚溝や共通液宀
領域の圢成時に䞀緒に圢成でき、回の異方性゚ッチ
ングで流路基板の䜜補が完成する利点があり、短時間
で䜎コストに䜜補でき、か぀、異方性゚ッチングの性質
を掻かしお単結晶の粟床にお高粟床に圢成できるものず
なる。
That is, in the case of this embodiment, the ink inlet 30 is formed by anisotropic etching as in the case shown in FIG. 1, but in the case of this embodiment, the channel groove 6 and the common liquid are used. It has the advantage that it can be formed together when the chamber region 7 is formed, and that the production of the flow path substrate 3 can be completed by one-time anisotropic etching. By utilizing it, it becomes possible to form a single crystal with high accuracy.

【】[0059]

【発明の効果】請求項蚘茉の発明によれば、流路基板
に関しお断面台圢状の耇数本の平行な流路甚溝ず共通液
宀領域ずを、面の結晶方䜍面に切出された単
結晶シリコンり゚ハを利甚した異方性゚ッチングにより
圢成するようにしたので、異方性゚ッチングの特城を掻
かしお回の゚ッチング工皋で短時間・䜎コストにしお
高粟床に䜜補でき、か぀、流路甚溝の䞡偎偎面も非垞に
滑らかなものずなっおむンクゞェットヘッドの流路ずし
お郜合のよいものずするこずができる。
According to the first aspect of the present invention, a plurality of parallel channel grooves each having a trapezoidal cross section with respect to the channel substrate and the common liquid chamber region are cut in the crystal orientation plane of the (100) plane. Since it is formed by anisotropic etching using the single crystal silicon wafer that has been taken out, the characteristics of anisotropic etching can be utilized to make highly accurate fabrication in a short time and at low cost in a single etching process. In addition, both side surfaces of the channel groove are made very smooth, which is convenient for the channel of the inkjet head.

【】特に、請求項蚘茉の発明によれば、流路
甚溝及び共通液宀領域の面が゚ッチング液を
適切に遞定するこずにより鏡面状態に仕䞊げるようにし
たので、流路党䜓を滑らかなものずし、むンクの流れを
スムヌズなものずするこずができ、ゞェット速床を向䞊
させお噎射を安定させるこずができ、か぀、噎射の連続
駆動呚波数の䞊限もより高くでき、高速印写に適したも
のずするこずができる。
In particular, according to the second aspect of the invention, since the groove for channel and the (100) surface of the common liquid chamber region are made to be mirror-finished by appropriately selecting the etching liquid, The whole can be made smooth, the flow of ink can be made smooth, the jet speed can be improved to stabilize the jetting, and the upper limit of the continuous drive frequency of jetting can be made higher, and high-speed printing can be performed. It can be suitable for copying.

【】加えお、請求項蚘茉の発明によれば、発
熱䜓基板偎に぀いおも、流路基板偎ず同じく、
面の結晶方䜍面に切出された単結晶シリコンり゚ハ
を利甚するものずし、か぀、発熱䜓列を軞方
向に揃えお配列圢成したので、ヘッド䜜補時にノズル郚
を切出す際のダむシング方向をこの結晶軞方向、即ち、
軞方向ずしお揃えるこずができ、よっお、シ
リコンり゚ハの割れやすい方向にダむシングを行えるも
のずなり、ダむシング時の砎損がなくなり、歩留たりを
著しく向䞊させるこずができる。
In addition, according to the third aspect of the invention, the heating element substrate side (10) is the same as the flow path substrate side.
Since the single crystal silicon wafer cut out in the crystal orientation plane of the (0) plane is used and the heating element rows are aligned and formed in the <110> axial direction, the nozzle portion is cut out at the time of manufacturing the head. The dicing direction of is the crystal axis direction, that is,
Since the <110> axial directions can be aligned, dicing can be performed in a direction in which the silicon wafer is easily cracked, damage during dicing is eliminated, and yield can be significantly improved.

【】請求項蚘茉の発明によれば、共通液宀領
域に察するむンク流入口をその倩井面に察する裏面偎か
らの異方性゚ッチングによる開口ずしお圢成するように
したので、十分なむンク䟛絊が可胜ずなる倧口埄のむン
ク流入口を高粟床に圢成できる。
According to the fourth aspect of the invention, since the ink inlet to the common liquid chamber region is formed as an opening by anisotropic etching from the back surface side to the ceiling surface, sufficient ink supply is possible. The large-diameter ink inlet can be formed with high accuracy.

【】請求項蚘茉の発明によれば、共通液宀領
域に察するむンク流入口をその倩井面に察するレヌザ加
工による開口ずしお圢成するようにしたので、簡単なレ
ヌザ加工法により短時間で十分なむンク䟛絊が可胜な倧
口埄のむンク流入口を圢成できる。
According to the fifth aspect of the present invention, since the ink inlet port for the common liquid chamber region is formed as the opening for the ceiling surface by laser processing, the ink can be sufficiently supplied in a short time by a simple laser processing method. A large-diameter ink inlet that can be supplied can be formed.

【】請求項蚘茉の発明によれば、共通液宀領
域に察するむンク流入口をその偎壁郚に察する異方性゚
ッチングによる凹郚ずしお圢成するようにしたので、流
路甚溝、共通液宀領域ずずもに回の異方性゚ッチング
工皋で䜜補でき、短時間で高粟床か぀効率のよい流路基
板䜜補が可胜ずなる。
According to the sixth aspect of the present invention, since the ink inlet for the common liquid chamber region is formed as a concave portion by anisotropic etching on the side wall portion thereof, the flow path groove and the common liquid chamber region are formed together. It can be manufactured by one anisotropic etching step, and a highly accurate and efficient flow path substrate can be manufactured in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図】請求項〜蚘茉の発明の䞀実斜䟋を瀺す分解
斜芖図である。
FIG. 1 is an exploded perspective view showing an embodiment of the invention described in claims 1 to 4.

【図】ヘッドチップを瀺す斜芖図である。FIG. 2 is a perspective view showing a head chip.

【図】サヌマルむンクゞェットの蚘録原理を順に瀺す
瞊断偎面図である。
FIG. 3 is a vertical cross-sectional side view showing the recording principle of the thermal inkjet in order.

【図】ヒヌタ付近を拡倧しお瀺す瞊断偎面図である。FIG. 4 is a vertical sectional side view showing a heater and its vicinity in an enlarged manner.

【図】流路基板の結晶面及び結晶軞方向を瀺す斜芖図
である。
FIG. 5 is a perspective view showing a crystal plane and a crystal axis direction of a flow path substrate.

【図】流路基板に関する異方性゚ッチング工皋を順に
瀺す瞊断正面図である。
FIG. 6 is a vertical cross-sectional front view sequentially showing an anisotropic etching process for a flow path substrate.

【図】ヘッドチップの䞀郚を拡倧しお瀺す正面図であ
る。
FIG. 7 is a front view showing an enlarged part of the head chip.

【図】倉圢䟋を瀺す分解斜芖図である。FIG. 8 is an exploded perspective view showing a modified example.

【図】請求項蚘茉の発明の䞀実斜䟋を瀺す流路基板
の斜芖図である。
FIG. 9 is a perspective view of a flow path substrate showing an embodiment of the invention according to claim 5;

【図】請求項蚘茉の発明の䞀実斜䟋を瀺す流路基
板の斜芖図である。
FIG. 10 is a perspective view of a flow path substrate showing an embodiment of the invention according to claim 6;

【笊号の説明】[Explanation of symbols]

 発熱䜓基板  流路基板  むンク流入口  流路甚溝  共通液宀領域  倩井面 〜 偎壁郚  電極  蓄熱局  発熱局  保護局  むンク流入口 2 heating element substrate 3 channel substrate 4 ink inlet 6 channel groove 7 common liquid chamber region 7a ceiling surface 7b to 7d side wall portion 9,10 electrode 21 heat storage layer 22 heat generation layer 23 protective layer 29, 30 ink inlet

Claims (6)

【特蚱請求の範囲】[Claims] 【請求項】 基板䞊に蓄熱局ず発熱局ずこの発熱局に
通電するための電極ず保護局ずを圢成した発熱䜓基板
ず、面の結晶方䜍面に切出された単結晶シリ
コンり゚ハ䞊に異方性゚ッチングにより぀の等䟡な
面ず぀の面ずで圢成される断面
台圢状の耇数本の平行な流路甚溝及びこれらの流路甚溝
ず連通するずずもに面による倩井面を有しお
前蚘流路甚溝ず同等の深さの共通液宀領域ずこの共通液
宀領域にむンクを流入するためのむンク流入口ずを圢成
した流路基板ずよりなり、前蚘発熱䜓基板ずこの流路基
板ずを発熱面ず溝面ずが盞察するように積局したこずを
特城ずするサヌマルむンクゞェットヘッド。
1. A heat generating substrate having a heat storage layer, a heat generating layer, electrodes for energizing the heat generating layer and a protective layer formed on the substrate, and a single crystal cut out in a crystal orientation plane of a (100) plane. A plurality of parallel channel grooves each having a trapezoidal cross section and formed by two equivalent (111) planes and one (100) plane by anisotropic etching on a silicon wafer; A flow having a common liquid chamber region which is in communication with a ceiling surface of (100) face and has a depth equivalent to that of the channel groove, and an ink inflow port for flowing ink into the common liquid chamber region. A thermal ink jet head comprising a path substrate, wherein the heat generating substrate and the flow channel substrate are laminated so that a heat generating surface and a groove surface face each other.
【請求項】 流路甚溝及び共通液宀領域の
面を鏡面状態に仕䞊げたこずを特城ずする請求項蚘茉
のサヌマルむンクゞェットヘッド。
2. A flow path groove and a common liquid chamber region (100)
The thermal inkjet head according to claim 1, wherein the surface is finished to be a mirror surface.
【請求項】 発熱䜓基板の基板を面の結晶
方䜍面に切出された単結晶シリコンり゚ハずし、独立駆
動可胜で各流路甚溝に察応した耇数個の発熱䜓列を
軞方向に圢成したこずを特城ずする請求項又は
蚘茉のサヌマルむンクゞェットヘッド。
3. A substrate of the heating element substrate is a single crystal silicon wafer cut out in a crystal orientation plane of (100) plane, and a plurality of heating element rows which can be independently driven and correspond to each channel groove are provided. 1
10> The thermal inkjet head according to claim 1 or 2, wherein the thermal inkjet head is formed in the axial direction.
【請求項】 むンク流入口を、流路基板の共通液宀領
域の倩井面に察する裏面偎からの異方性゚ッチングによ
り圢成された開口ずしたこずを特城ずする請求項
又は蚘茉のサヌマルむンクゞェットヘッド。
4. The ink inflow port is an opening formed by anisotropic etching from the back surface side of the ceiling surface of the common liquid chamber region of the flow path substrate.
Alternatively, the thermal inkjet head described in 3.
【請求項】 むンク流入口を、流路基板の共通液宀領
域の倩井面に察するレヌザ加工により圢成された開口ず
したこずを特城ずする請求項又は蚘茉のサヌマ
ルむンクゞェットヘッド。
5. The thermal inkjet head according to claim 1, wherein the ink inlet is an opening formed by laser processing on the ceiling surface of the common liquid chamber region of the flow path substrate.
【請求項】 むンク流入口を、流路基板の共通液宀領
域の偎壁郚に察する異方性゚ッチングにより圢成された
凹郚ずしたこずを特城ずする請求項又は蚘茉の
サヌマルむンクゞェットヘッド。
6. The thermal ink jet head according to claim 1, wherein the ink inflow port is a recess formed by anisotropic etching on the side wall of the common liquid chamber region of the flow path substrate. .
JP14526393A 1993-06-17 1993-06-17 Thermal ink jet head Pending JPH07125210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14526393A JPH07125210A (en) 1993-06-17 1993-06-17 Thermal ink jet head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14526393A JPH07125210A (en) 1993-06-17 1993-06-17 Thermal ink jet head

Publications (1)

Publication Number Publication Date
JPH07125210A true JPH07125210A (en) 1995-05-16

Family

ID=15381091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14526393A Pending JPH07125210A (en) 1993-06-17 1993-06-17 Thermal ink jet head

Country Status (1)

Country Link
JP (1) JPH07125210A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008028A (en) * 1988-12-14 1991-04-16 The Lubrizol Corporation Liquid compositions containing carboxylic esters
GB2302842A (en) * 1995-07-03 1997-02-05 Seiko Epson Corp Nozzle plate, ink jet head and manufacturing method thereof
US6238585B1 (en) * 1995-07-03 2001-05-29 Seiko Epson Corporation Method for manufacturing an ink-jet head having nozzle openings with a constant width
JP2007090282A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Ink jet head for particulate-containing ink

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008028A (en) * 1988-12-14 1991-04-16 The Lubrizol Corporation Liquid compositions containing carboxylic esters
GB2302842A (en) * 1995-07-03 1997-02-05 Seiko Epson Corp Nozzle plate, ink jet head and manufacturing method thereof
GB2302842B (en) * 1995-07-03 1998-12-30 Seiko Epson Corp A nozzle plate, ink-jet head and manufacturing method thereof
US6238585B1 (en) * 1995-07-03 2001-05-29 Seiko Epson Corporation Method for manufacturing an ink-jet head having nozzle openings with a constant width
JP2007090282A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Ink jet head for particulate-containing ink

Similar Documents

Publication Publication Date Title
KR101137643B1 (en) Print head with thin membrane
US7052117B2 (en) Printhead having a thin pre-fired piezoelectric layer
JP3619036B2 (en) Method for manufacturing ink jet recording head
JPH09123468A (en) Method for forming a thermal inkjet feed slot in a silicon substrate
JPH078569B2 (en) Method for producing print head for thermal ink jet
JP2004148824A (en) Substrate with slot, and forming method
JP2011143701A (en) Method for manufacturing substrate for liquid discharge head
JP4166476B2 (en) Formation technology of substrate with slot
JPH07125210A (en) Thermal ink jet head
JP2865524B2 (en) Thermal inkjet head
JPH07125206A (en) Thermal ink jet head
JP2003011365A (en) Ink jet head and its manufacturing method
JPH06320730A (en) Thermal ink jet head
JPH06305145A (en) Thermal ink jet head
JPH06320731A (en) Thermal ink jet head and preparation of flow path base thereof
JP3473611B2 (en) Manufacturing method of liquid jet head
JPH07125204A (en) Thermal ink jet head
JPH07125211A (en) Thermal ink jet head
JPH06328696A (en) Thermal ink jet head
JPH08142327A (en) Record head of ink jet recorder
JPH11170533A (en) Liquid jet recording head
JPH07125205A (en) Thermal ink jet head
JPH05293966A (en) Production of thermal ink jet head chip
CN114889326B (en) High-precision thermal bubble type inkjet printer nozzle and processing method thereof
JPH05318738A (en) Liquid-ejection recording head