JPH07123035B2 - High frequency inductively coupled plasma / mass spectrometer - Google Patents
High frequency inductively coupled plasma / mass spectrometerInfo
- Publication number
- JPH07123035B2 JPH07123035B2 JP62161592A JP16159287A JPH07123035B2 JP H07123035 B2 JPH07123035 B2 JP H07123035B2 JP 62161592 A JP62161592 A JP 62161592A JP 16159287 A JP16159287 A JP 16159287A JP H07123035 B2 JPH07123035 B2 JP H07123035B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- mass spectrometer
- inductively coupled
- coupled plasma
- high frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009616 inductively coupled plasma Methods 0.000 title claims description 12
- 150000003839 salts Chemical class 0.000 claims description 14
- 238000010790 dilution Methods 0.000 claims description 12
- 239000012895 dilution Substances 0.000 claims description 12
- 239000006199 nebulizer Substances 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 7
- 239000000443 aerosol Substances 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 230000002572 peristaltic effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000006698 induction Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、高周波誘導結合プラズマと質量分析計とを結
合させてなる高周波誘導結合プラズマ・質量分析装置に
関し、更に詳しくは、未知試料の測定に際してもノズル
の小穴に塩が検出したりせず、該未知試料に含まれる被
測定元素を正確に測定できる高周波誘導結合プラズマ・
質量分析装置に関する。Description: TECHNICAL FIELD The present invention relates to a high-frequency inductively coupled plasma / mass spectrometer in which a high-frequency inductively coupled plasma and a mass spectrometer are combined, and more specifically, measurement of an unknown sample. Also in this case, high frequency inductively coupled plasma that can accurately measure the element to be measured contained in the unknown sample without detecting salt in the small hole of the nozzle.
The present invention relates to a mass spectrometer.
<従来の技術> 高周波誘導結合プラズマ・質量分析装置は、高周波誘導
結合プラズマを用いて試料を励起させ、生じたイオンを
ノズルやスキマーからなるインターフェースを介して質
量分析計に導びいて特定質量のイオンのみを電気的に検
出することにより、試料中の被測定元素を分析するよう
に構成されている。また、上記試料は、試料槽から該試
料を霧化するネブライザへ送出されてエアロゾル試料と
なり、その後、プラズマトーチの内室へアルゴンガスに
よって送出されるようになっている。このようにして導
入された上記試料は上述の如く高周波誘導結合プラズマ
で励起され、生じたイオンがノズルやスキマーからなる
インターフェイスを介して例えば四重極マスフィルタ等
でなる質量分析計検出器で検出され、該検出信号に基い
て記録計等の表示部にマススペクトルが描かれ上記試料
中の被測定元素が分析されるようになっている。<Prior Art> A high-frequency inductively coupled plasma / mass spectrometer uses a high-frequency inductively coupled plasma to excite a sample, and guides generated ions to a mass spectrometer through an interface composed of a nozzle and a skimmer to measure a specific mass. The element to be measured in the sample is analyzed by electrically detecting only the ions. Further, the sample is sent from a sample tank to a nebulizer for atomizing the sample to be an aerosol sample, and then sent to the inner chamber of the plasma torch by argon gas. The sample introduced in this way is excited by the high frequency inductively coupled plasma as described above, and the generated ions are detected by the mass spectrometer detector such as a quadrupole mass filter through the interface including the nozzle and skimmer. Based on the detection signal, a mass spectrum is drawn on the display unit such as a recorder to analyze the element to be measured in the sample.
<発明が解決しようとする問題点> 然し乍ら、上記従来例においては試料槽内に塩濃度が0.
1%程度以上の試料を貯留し該試料を上記プラズマ内に
導入すると、上記ノズルの小穴(オリフィス構造の小
穴)に塩が析出して該小穴を閉塞し究極的に分析ができ
なくなったりする欠点があった。このような閉塞が生ず
ると、高周波誘導結合プラズマを一旦消化し該閉塞を取
り除かなければならず多くの時間や労力を費やす欠点も
あった。<Problems to be Solved by the Invention> However, in the above-mentioned conventional example, the salt concentration in the sample tank is 0.
When 1% or more of the sample is stored and introduced into the plasma, salt is deposited in the small hole of the nozzle (small hole of the orifice structure) and the small hole is blocked, so that analysis cannot be finally performed. was there. If such a blockage occurs, there is a drawback in that it is necessary to once digest the high frequency inductively coupled plasma to remove the blockage, which consumes a lot of time and labor.
本発明はかかる従来例の欠点に鑑みてなされたものであ
り、その目的は、未知試料の測定に際してノズルの小穴
に塩が析出したりせず該未知試料に含まれる被測定元素
を正確に測定できるような高周波誘導結合プラズマ・質
量分析装置を提供することにある。The present invention has been made in view of the drawbacks of the conventional example, and its object is to accurately measure the element to be measured contained in the unknown sample without salt precipitation in the small holes of the nozzle when measuring the unknown sample. An object of the present invention is to provide such a high frequency inductively coupled plasma / mass spectrometer.
<問題点を解決するための手段> このような目的を達成するために、本発明は、 ネブライザで霧化したエアゾル試料をノズルからプラズ
マに導いて励起し、生じたイオンを質量分析計に導いて
分析する高周波誘導結合プラズマ・質量分析装置におい
て、 前記ネブライザに供給する試料の希釈割合を制御するコ
ントローラと、 このコントローラを制御すると共に、予め、前記ノズル
に塩が検出しない濃度に希釈された試料を用いて前記質
量分析計でスキャンして得た所定カウント数以上ある元
素のカウント数の総和から前記試料の濃度を求め、前記
試料の希釈倍率を前記質量分析計の測定感度に適するよ
うに演算して求めるコンピュータと、 を設け、前記コンピュータで決定した希釈倍率に基づい
て前記コントローラを制御し、適正濃度に希釈した試料
で定性スキャンを規定回数行って、前記試料中の元素を
分析することを特徴としている。<Means for Solving Problems> In order to achieve such an object, the present invention guides an aerosol sample atomized by a nebulizer from a nozzle to plasma and excites it, and guides generated ions to a mass spectrometer. In a high-frequency inductively coupled plasma / mass spectroscope for analysis, a controller that controls the dilution ratio of the sample supplied to the nebulizer, and a controller that controls this controller and is diluted in advance to a concentration at which salt is not detected in the nozzle. The concentration of the sample is obtained from the sum of the count numbers of elements having a predetermined count number or more obtained by scanning with the mass spectrometer using, and the dilution ratio of the sample is calculated to be suitable for the measurement sensitivity of the mass spectrometer. , And the computer is provided, and the controller is controlled based on the dilution ratio determined by the computer to obtain an appropriate concentration. Interpretation was qualitative scan performed prescribed number of times in the sample, it is characterized by analyzing the elements of the sample.
<実施例> 以下、本発明について図を用いて詳しく説明する。第1
図は本発明実施例の構成説明図であり、図中、1aは試料
を貯留している槽、1bは例えば純水のような溶媒を貯留
している槽、2a,2bは試料や溶媒を送液するペリスタル
ティックポンプ、3はこれら2a,2bの送液流量を制御す
るコントローラ、4はコントローラ3に指令信号を送る
コンピュータ、5は試料を霧化してエアロゾル試料とす
るネブライザ、6は最外室6a,外室6b,および内室6cを有
する例えば三重管構造のプラズマトーチ、7aはアルゴン
ガス供給源、7bは該供給源から送出されるアルゴンガス
の圧力を調節する圧力調節器、8は高周波誘導結合プラ
ズマ、9は高周波誘導コイル、10は高周波誘導コイル9
に高周波エネルギーを供給する高周波電源、11はノズ
ル、12はスキマー、13はフォアチャンバー、14はフォア
チャンバー13内を例えば1torr.まで吸引する真空ポン
プ、15はセンターチャンバー、16はセンターチャンバー
15内を例えば10-2torr.まで吸引する真空ポンプ、17は
例えば四重極マスフィルタのような極子、18はリアチャ
ンバー、19はリアチャンバー18内を例えば10-4torr.ま
で吸引する真空ポンプ、20は二次電子増倍管、21は例え
ばマイクロコンピュータのような信号処理部である。
尚、センターチャンバー15内にはイオンレンズが配設さ
れることもある。<Example> Hereinafter, the present invention will be described in detail with reference to the drawings. First
The figure is a configuration explanatory view of an embodiment of the present invention, in the figure, 1a is a tank storing a sample, 1b is a tank storing a solvent such as pure water, 2a, 2b is a sample or a solvent A peristaltic pump for feeding a liquid, 3 a controller for controlling the flow rate of these 2a, 2b, 4 a computer for sending a command signal to the controller 5, 5 a nebulizer for atomizing a sample into an aerosol sample, and 6 an outermost A plasma torch having, for example, a triple-tube structure having a chamber 6a, an outer chamber 6b, and an inner chamber 6c, 7a is an argon gas supply source, 7b is a pressure regulator for adjusting the pressure of argon gas delivered from the supply source, and 8 is High frequency induction coupled plasma, 9 high frequency induction coil, 10 high frequency induction coil 9
A high-frequency power supply for supplying high-frequency energy, 11 is a nozzle, 12 is a skimmer, 13 is a fore chamber, 14 is a vacuum pump for sucking the inside of the fore chamber 13 to 1 torr., 15 is a center chamber, 16 is a center chamber
For example, a vacuum pump that sucks the inside of 15 to 10 -2 torr., 17 is a pole such as a quadrupole mass filter, 18 is a rear chamber, and 19 is a vacuum that sucks the inside of the rear chamber 18 to, for example, 10 -4 torr. A pump, 20 is a secondary electron multiplier, and 21 is a signal processing unit such as a microcomputer.
An ion lens may be provided in the center chamber 15.
このような構成からなる本発明の実施例において、コン
ピュータ4の指令でコントローラ3が第1ペリスタルテ
ィックポンプ2aおよび第2のペリスタルティックポンプ
2bの回転を制御し、試料槽1aから流量l1(例えば0.05ml
/min.)で試料が流れ溶媒槽1bから流量l2(例えば2.5ml
/min.)で溶媒が流れるようになる。このため、これら
の試料と溶媒は混合してのちネブライザ5で霧化されて
エアロゾル試料となる。該エアロゾル試料はアルゴンガ
ス供給源7aから圧力調節器7bを介して送出されたアルゴ
ンガスに搬送されるようにしてプラズマトーチ6の内室
6cに導入される。また、プラズマトーチ6の最外室6aお
よび外室6bには、ガス供給源7aから圧力調節器7b介して
アルゴンガスが送出されている。一方、高周波誘導コイ
ル9には高周波電源10から高周波エネルギーが供給さ
れ、該コイル9の周囲に高周波磁界(図示せず)が形成
され、該磁界の作用でプラズマ8が生ずる。このプラズ
マ8内のイオンは、ノズル11およびスキマー12を通って
センターチャンバー15内に引き出され、その後、極子17
で検出される。該検出信号は二次電子増倍管20で増幅さ
れてのち信号処理部21に送出され、所定の信号処理が施
され図示しない記録計等にマススペクトルを描いて試料
の分析値を与えるようになる。ところで、上述のような
溶媒による試料の希釈は次のようにしてコンピュータ4
による分析プログラムに従って行なわれる。先ず、試料
槽1a内には塩濃度が5%以下の試料を入れるものとす
る。塩濃度が5%を超えるような試料では、ネブライザ
やプラズマトーチに塩が析出してしまうからである。ま
た、第1ペリスタルティックポンプ2aおよび第2ペリス
タルティックポンプ2bの送液流量が夫々l1(例えば0.05
ml/min.)およびl2(例えば2.5ml/min.)となるように
コントローラ3で制御されているため、塩濃度が5%の
試料であっても 即ち0.1%まで希釈されることになる。このように50倍
希釈が最初に行なわれるため、ノズル11の小穴に塩が最
初から析出することは回避される。次に、高速定性スキ
ャン(例えば1チャンネル当り約400μ秒で1質量単位
あたり16チャンネルのスキャンを仮に質量250まで行
う)を1回行ない、信号処理部21で得られる元素信号の
うち例えば1000カウント以上の元素についてカウント数
の和S50を求める。該S50の値が(1)式を満足するとき
上記l1およびl2の値は夫々0.05ml/min.および2.5ml/mi
n.の状態が保たれ、上述の如く試料は約50倍に希釈され
る。また、上記S50の値が(2)式を満足するとき上記l
1およびl2の値は夫々0.1ml/minおよび1.9ml/min.とさ
れ、 倍即ち20倍に試料が希釈される。上記S50の値が(3)
式を満足するとき上記l1およびl2の値は夫々1.0ml/min.
および1.0ml/minとされ、 倍即ち2倍に試料が希釈される。更に、上記S50の値が
(4)式を満足するとき上記l1およびl2の値が夫々1.0m
l/min.および0ml/min.とされ、試料は希釈されることな
くネブライザ5へ送出される。In the embodiment of the present invention having such a configuration, the controller 3 causes the first peristaltic pump 2a and the second peristaltic pump to operate in response to a command from the computer 4.
The rotation of 2b is controlled, and the flow rate from the sample tank 1a is l 1 (eg 0.05 ml
/ min.) and the sample flows from the solvent tank 1b at a flow rate of l 2 (eg 2.5 ml
/ min.) and the solvent starts to flow. Therefore, these samples and the solvent are mixed and then atomized by the nebulizer 5 to form an aerosol sample. The aerosol sample is conveyed to the argon gas sent from the argon gas supply source 7a through the pressure regulator 7b, and the inner chamber of the plasma torch 6
Introduced in 6c. Further, argon gas is sent from the gas supply source 7a to the outermost chamber 6a and the outer chamber 6b of the plasma torch 6 via the pressure regulator 7b. On the other hand, high frequency energy is supplied to the high frequency induction coil 9 from a high frequency power source 10, a high frequency magnetic field (not shown) is formed around the coil 9, and a plasma 8 is generated by the action of the magnetic field. The ions in the plasma 8 are extracted into the center chamber 15 through the nozzle 11 and the skimmer 12, and then the pole 17
Detected in. The detection signal is amplified by the secondary electron multiplier 20 and then sent to the signal processing unit 21, where it is subjected to predetermined signal processing so that a mass spectrum is drawn on a recorder (not shown) to give an analysis value of the sample. Become. By the way, the sample is diluted with the solvent as described above in the following manner.
According to the analysis program by. First, a sample having a salt concentration of 5% or less is put in the sample tank 1a. This is because in a sample having a salt concentration of more than 5%, salt is deposited on the nebulizer or plasma torch. In addition, the liquid delivery flow rates of the first peristaltic pump 2a and the second peristaltic pump 2b are respectively l 1 (for example, 0.05
ml / min.) and l 2 (eg, 2.5 ml / min.) are controlled by the controller 3, so even if the sample has a salt concentration of 5%. That is, it will be diluted to 0.1%. Since the 50-fold dilution is first performed in this manner, it is possible to prevent the salt from precipitating in the small holes of the nozzle 11 from the beginning. Next, a high-speed qualitative scan (for example, a scan of 16 channels per mass unit is performed up to a mass of 250 for about 400 μsec per channel) is performed once, and for example, 1000 or more counts of elemental signals obtained by the signal processing unit 21. Calculate the sum S 50 of the count numbers for the element. When the value of S 50 satisfies the equation (1), the values of l 1 and l 2 are 0.05 ml / min. And 2.5 ml / mi, respectively.
The state of n. is maintained, and the sample is diluted about 50 times as described above. Also, when the value of S 50 above satisfies the equation (2), the above l
The values of 1 and l 2 are 0.1 ml / min and 1.9 ml / min, respectively, Samples are diluted by a factor of 2, or 20. The value of S 50 above is (3)
When the equation is satisfied, the above l 1 and l 2 values are 1.0 ml / min, respectively.
And 1.0 ml / min, Samples are diluted by a factor of two. Further, when the value of S 50 satisfies the equation (4), the values of l 1 and l 2 are 1.0 m respectively.
1 / min. and 0 ml / min., and the sample is delivered to the nebulizer 5 without being diluted.
S50≧100.000 (1) 10.000<S50<100.000 (2) 2.000<S50<10.000 (3) S50≦2.000 (4) このように上記S50の値に応じて試料の希釈倍率が決定
される。その後、あらかじめ定められた回数(いわゆる
規定回数)だけ定性スキャンが行なわれ、最終的に被測
定元素の分析値が示されて定性分析が終了する。尚、本
発明は上述の実施例に限定されることなく種々の変形が
可能であり、例えば上記S50の値に対応させて希釈倍率
をもっと細かく設定し試料中の塩濃度が最大でも0.1%
以下となるようにしてもよい。S 50 ≧ 100.000 (1) 10.000 <S 50 <100.000 (2) 2.000 <S 50 <10.000 (3) S 50 ≦ 2.000 (4) Thus, the dilution ratio of the sample is determined according to the above S 50 value. It After that, the qualitative scan is performed a predetermined number of times (so-called a prescribed number of times), and finally the analysis value of the element to be measured is shown and the qualitative analysis is completed. The present invention is not limited to the above-mentioned examples, and various modifications can be made.For example, the dilution ratio is set more finely in accordance with the value of S 50 , and the salt concentration in the sample is 0.1% at the maximum.
It may be as follows.
<発明の効果> 以上詳しく説明したような本発明によれば、未知試料の
測定に際してノズルの小穴に塩が析出したりせず該未知
試料に含まれる被測定元素を正確に測定できるような高
周波誘導結合プラズマ・質量分析装置が実現する。ま
た、このような分析装置によれば、希釈倍率をコンピュ
ータが決定し自動的に新しい希釈倍率を希釈して定性分
析が行なわれるため、ノズルへの塩の析出もなく人手に
よる繁雑な希釈操作等が省ける利点がある。<Effects of the Invention> According to the present invention as described in detail above, a high-frequency wave capable of accurately measuring an element to be measured contained in an unknown sample without causing salt to be deposited in a small hole of a nozzle when measuring an unknown sample. An inductively coupled plasma / mass spectrometer is realized. Also, with such an analyzer, the computer determines the dilution ratio and automatically dilutes the new dilution ratio for qualitative analysis, so there is no precipitation of salt on the nozzle and complicated manual dilution operations, etc. There is an advantage that can be omitted.
図は本発明実施例の構成説明図である。 2a,2b……ペリスタルティックポンプ、3……コントロ
ーラ、5……ネブライザ、11……ノズル、12……スキマ
ー。The figure is a diagram for explaining the configuration of the embodiment of the present invention. 2a, 2b ... peristaltic pump, 3 ... controller, 5 ... nebulizer, 11 ... nozzle, 12 ... skimmer.
Claims (1)
ルからプラズマに導いて励起し、生じたイオンを質量分
析計に導いて分析する高周波誘導結合プラズマ・質量分
析装置において、 前記ネブライザに供給する試料の希釈割合を制御するコ
ントローラと、 このコントローラを制御すると共に、予め、前記ノズル
に塩が検出しない濃度に希釈された試料を用いて前記質
量分析計でスキャンして得た所定カウント数以上ある元
素のカウント数の総和から前記試料の濃度を求め、前記
試料の希釈倍率を前記質量分析計の測定感度に適するよ
うに演算して求めるコンピュータと、 を設け、前記コンピュータで決定した希釈倍率に基づい
て前記コントローラを制御し、適正濃度に希釈した試料
で定性スキャンを規定回数行って、前記試料中の元素を
分析することを特徴とした高周波誘導結合プラズマ・質
量分析装置。1. A high frequency inductively coupled plasma-mass spectrometer for guiding an aerosol sample atomized by a nebulizer to a plasma from a nozzle to excite it, and guiding the generated ions to a mass spectrometer for analysis. A sample supplied to the nebulizer. And a controller for controlling the dilution ratio of the element, and an element having a predetermined count number or more obtained by scanning with the mass spectrometer using a sample diluted in advance with a concentration that does not detect salt in the nozzle while controlling the controller. The concentration of the sample is obtained from the sum of the count numbers of, and a computer for calculating the dilution ratio of the sample so as to be suitable for the measurement sensitivity of the mass spectrometer is provided, and based on the dilution ratio determined by the computer. By controlling the controller and performing a qualitative scan a specified number of times with a sample diluted to an appropriate concentration, the elements in the sample are Inductively coupled plasma mass spectrometer which is characterized in that analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62161592A JPH07123035B2 (en) | 1987-06-29 | 1987-06-29 | High frequency inductively coupled plasma / mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62161592A JPH07123035B2 (en) | 1987-06-29 | 1987-06-29 | High frequency inductively coupled plasma / mass spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01124951A JPH01124951A (en) | 1989-05-17 |
JPH07123035B2 true JPH07123035B2 (en) | 1995-12-25 |
Family
ID=15738066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62161592A Expired - Lifetime JPH07123035B2 (en) | 1987-06-29 | 1987-06-29 | High frequency inductively coupled plasma / mass spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07123035B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742167B2 (en) | 2005-06-17 | 2010-06-22 | Perkinelmer Health Sciences, Inc. | Optical emission device with boost device |
US8622735B2 (en) * | 2005-06-17 | 2014-01-07 | Perkinelmer Health Sciences, Inc. | Boost devices and methods of using them |
JP4903515B2 (en) * | 2006-08-11 | 2012-03-28 | アジレント・テクノロジーズ・インク | Inductively coupled plasma mass spectrometer |
JP4822346B2 (en) * | 2006-10-31 | 2011-11-24 | アジレント・テクノロジーズ・インク | Diagnostic and calibration system for inductively coupled plasma mass spectrometer |
CN113933376B (en) * | 2021-10-27 | 2024-09-27 | 雅邦绿色过程与新材料研究院南京有限公司 | Semiconductor solvent ICP-MS determination method based on multiple dilution method |
CN117054512B (en) * | 2023-09-04 | 2024-03-12 | 上海有色金属工业技术监测中心有限公司 | Method for detecting trace elements in high-purity material for nuclear power |
-
1987
- 1987-06-29 JP JP62161592A patent/JPH07123035B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01124951A (en) | 1989-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4903515B2 (en) | Inductively coupled plasma mass spectrometer | |
US4999492A (en) | Inductively coupled plasma mass spectrometry apparatus | |
Tao et al. | Decrease of solvent water loading in inductively coupled plasma mass spectrometry by using a membrane separator | |
JPH07123035B2 (en) | High frequency inductively coupled plasma / mass spectrometer | |
Kaneco et al. | Optimization of operating conditions in individual airborne particle analysis by inductively coupled plasma mass spectrometry | |
US6236012B1 (en) | Plasma torch with an adjustable injector and gas analyzer using such a torch | |
JP2962626B2 (en) | Mass spectrometer | |
JP2000164169A (en) | Mass spectrometer | |
JPH0582080A (en) | Mass spectrometer | |
JPS6226757A (en) | Inductively coupled plasma mass spectrometer | |
JPH09159610A (en) | Plasma analyzer equipped with sample introduction stabilization mechanism | |
JPH0615392Y2 (en) | High frequency inductively coupled plasma mass spectrometer | |
JPH06267497A (en) | Induced plasma mass spectrograph | |
JPH10106483A (en) | ICP analyzer | |
EP4362061A2 (en) | Mass spectrometer and method for setting analysis condition | |
JPH0518844Y2 (en) | ||
JPS62208535A (en) | High-frequency inductive coupling plasma/mass analyzer | |
JPH0518845Y2 (en) | ||
JPH0638372Y2 (en) | High frequency inductively coupled plasma mass spectrometer | |
JPH07118298B2 (en) | High frequency inductively coupled plasma mass spectrometer | |
JPH0736325B2 (en) | High frequency inductively coupled plasma / mass spectrometer | |
JPH05151931A (en) | High frequency induction coupling type plasma mass-spectrometer | |
JPH05121041A (en) | High frequency induction coupling plasma mass spectrometer | |
JPH0448628Y2 (en) | ||
JPH02123658A (en) | Mass spectrometer for high frequency induction bonded plasma |