JPH07122292A - Sealed lead acid battery - Google Patents
Sealed lead acid batteryInfo
- Publication number
- JPH07122292A JPH07122292A JP5270326A JP27032693A JPH07122292A JP H07122292 A JPH07122292 A JP H07122292A JP 5270326 A JP5270326 A JP 5270326A JP 27032693 A JP27032693 A JP 27032693A JP H07122292 A JPH07122292 A JP H07122292A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- negative electrode
- stacking direction
- pressure
- retainer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002253 acid Substances 0.000 title claims abstract description 20
- 125000006850 spacer group Chemical group 0.000 claims abstract description 84
- 238000010521 absorption reaction Methods 0.000 claims abstract description 24
- 239000008151 electrolyte solution Substances 0.000 claims description 13
- 238000010030 laminating Methods 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 26
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 26
- 239000007789 gas Substances 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
(57)【要約】
【目的】 極板群の両端に位置する負極板における酸素
ガス吸収反応を十分に抑制できる密閉形鉛蓄電池を得
る。
【構成】 両端に負極板3,3が位置するように正極板
4,負極板3及びリテーナ5を積層して極板群2を構成
する。極板群2の両端の負極板3と電槽内壁1aとの間
に加圧スペーサ6を配置する。加圧スペーサ6を負極板
3より大きな外形寸法を有する弾性体から構成する。加
圧スペーサ6は、両端の負極板3の積層方向外側端面3
a側からのガス吸収反応を抑制するように負極板の積層
方向外側端面3a,上端縁3b及び両側端縁を連続的に
覆う。加圧スペーサ6に負極板3を嵌合する極板嵌合用
凹部6aを形成する。加圧スペーサ6と負極板3との間
に補足用リテーナを配置する。
(57) [Summary] [Objective] To obtain a sealed lead acid battery capable of sufficiently suppressing the oxygen gas absorption reaction in the negative electrode plates located at both ends of the electrode plate group. [Structure] A positive electrode plate 4, a negative electrode plate 3, and a retainer 5 are stacked so that the negative electrode plates 3 and 3 are located at both ends to form an electrode plate group 2. The pressure spacers 6 are arranged between the negative electrode plates 3 on both ends of the electrode plate group 2 and the inner wall 1a of the battery case. The pressure spacer 6 is composed of an elastic body having an outer size larger than that of the negative electrode plate 3. The pressure spacers 6 are the outer end faces 3 of the negative electrode plates 3 on both ends in the stacking direction.
The outer end surface 3a, the upper end edge 3b, and both end edges of the negative electrode plate in the stacking direction are continuously covered so as to suppress the gas absorption reaction from the a side. An electrode plate fitting recess 6 a for fitting the negative electrode plate 3 is formed in the pressure spacer 6. A supplementary retainer is arranged between the pressure spacer 6 and the negative electrode plate 3.
Description
【0001】[0001]
【産業上の利用分野】本発明は、密閉形鉛蓄電池の改良
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed lead acid battery.
【0002】[0002]
【従来の技術】一般的な密閉形鉛蓄電池では、正極板の
枚数に対して負極板の枚数を1枚多くし、正極板と負極
板との間にリテーナを配置して、積層方向の両端に負極
板を配置するように構成した極板群が用いられている。
このような構成の極板群では、極板群の両端に位置する
負極板は電極としての反応にはあまり関与せず、正極板
から発生する酸素ガスの吸収反応に多く関与している。
充電末期あるいはトリクル充電中に正極板で発生した酸
素ガスが負極板に至る経路としては、極板間のリテーナ
中を直接横切って負極板に達する経路と、発生した酸素
ガスが一旦極板群の周辺部に出た後再び負極板へ達する
経路とがある。極板群の両端に位置す負極板では、特に
後者の経路即ち発生した酸素ガスが一旦極板群の周辺部
に出た後再び負極板へ達する経路を通って来る酸素ガス
の量が多く、これによって多くのガス吸収反応を起こ
す。そこで両端に位置する負極板の負極活物質の量を少
なくしたり、両端に位置する負極板と電槽との間にリテ
ーナを設けて、両端に位置する負極板の酸素ガス吸収反
応を抑制する技術が提案された。2. Description of the Related Art In a general sealed lead-acid battery, the number of negative electrode plates is increased by one with respect to the number of positive electrode plates, and a retainer is arranged between the positive electrode plate and the negative electrode plate so that both ends in the stacking direction are stacked. An electrode plate group configured to arrange the negative electrode plate is used.
In the electrode plate group having such a configuration, the negative electrode plates located at both ends of the electrode plate group are not much involved in the reaction as an electrode, but are much involved in the absorption reaction of oxygen gas generated from the positive electrode plate.
Oxygen gas generated in the positive electrode plate at the end of charging or during trickle charge reaches the negative electrode plate by directly passing through the retainer between the electrode plates to reach the negative electrode plate and the oxygen gas generated once There is a path to reach the negative electrode plate again after appearing in the peripheral portion. In the negative electrode plates located at both ends of the electrode plate group, particularly the latter route, that is, the amount of oxygen gas coming through the route in which the generated oxygen gas once exits the periphery of the electrode plate group and then reaches the negative electrode plate again, This causes many gas absorption reactions. Therefore, the amount of the negative electrode active material of the negative electrode plates located at both ends is reduced, or retainers are provided between the negative electrode plates located at both ends and the battery case to suppress the oxygen gas absorption reaction of the negative electrode plates located at both ends. The technology was proposed.
【0003】[0003]
【発明が解決しようとする課題】しかしながらこれらの
従来技術では、ガス吸収反応をある程度少なくすること
ことはできても、電槽内壁と負極板の積層方向外側端面
との間から進入する酸素ガスの吸収反応を大幅に抑制す
ることはできなかった。電槽内壁と負極板の積層方向外
側端面との間に酸素ガスが進入して滞留する間隙または
空間が多くあるほど、負極板の積層方向外側端面側から
のガス吸収反応は大きくなる。そしてこのガス吸収反応
が多くなり過ぎると、極板群中において局所的に反応が
起こり、温度上昇も伴って、熱逸走状態となり易く、ト
リクル充電等の充電電流が上昇するという問題点が発生
する。However, in these prior arts, although the gas absorption reaction can be reduced to some extent, the oxygen gas entering from between the inner wall of the battery case and the outer end face of the negative electrode plate in the stacking direction can be reduced. The absorption reaction could not be significantly suppressed. The gas absorption reaction from the outer end face side of the negative electrode plate in the stacking direction increases as the gap or space in which the oxygen gas enters and stays between the inner wall of the battery case and the outer end face side of the negative electrode plate in the stacking direction increases. If this gas absorption reaction increases too much, a reaction locally occurs in the electrode plate group, and a temperature rise also easily causes a heat escape state, causing a problem that the charging current such as trickle charging increases. .
【0004】電槽内壁と両端の負極板との間に加圧スペ
ーサを配置して極板群を加圧した場合には、加圧スペー
サと密着している負極板の積層方向外側端面の部分にお
ける酸素ガス吸収反応は部分的に抑制できる。しかしな
がら、従来は加圧スペーサによって酸素ガス吸収反応を
抑制させることを積極的には考えていなかっため、従来
提案されている加圧スペーサでは、十分に負極板の積層
方向外側端面側における酸素ガス吸収反応を抑制するこ
とができなかった。When a pressure spacer is arranged between the inner wall of the battery case and the negative electrode plates at both ends to apply pressure to the electrode plate group, the portion of the outer end face in the stacking direction of the negative electrode plate which is in close contact with the pressure spacer. The oxygen gas absorption reaction in can be partially suppressed. However, conventionally, since the pressurizing spacer has not been positively considered to suppress the oxygen gas absorption reaction, the conventionally proposed pressurizing spacer does not sufficiently absorb the oxygen gas on the outer end face side in the stacking direction of the negative electrode plate. The reaction could not be suppressed.
【0005】本発明の目的は、極板群の両端に位置する
負極板における酸素ガス吸収反応を十分に抑制できる密
閉形鉛蓄電池を提供することにある。An object of the present invention is to provide a sealed lead acid battery capable of sufficiently suppressing the oxygen gas absorption reaction in the negative electrode plates located at both ends of the electrode plate group.
【0006】本は発明の他の目的は、極板群中での局部
的な酸素ガス吸収を抑え、トリクル,フロート等の充電
電流を低減させ、熱的に安定な密閉形鉛蓄電池を提供す
ることである。Another object of the present invention is to provide a sealed lead-acid battery which suppresses local absorption of oxygen gas in the electrode plate group, reduces the charging current of trickle, float, etc. and is thermally stable. That is.
【0007】本発明の更に他の目的は、極板群の両端に
位置する負極板における酸素ガス吸収反応を十分に抑制
して、しかも容量を大きくすることができる密閉形鉛蓄
電池を提供することにある。Still another object of the present invention is to provide a sealed lead acid battery capable of sufficiently suppressing the oxygen gas absorption reaction in the negative electrode plates located at both ends of the electrode plate group and increasing the capacity. It is in.
【0008】[0008]
【課題を解決するための手段】本願発明は、両端に負極
板が位置するように正極板,負極板及びリテーナを積層
してなる極板群の両端の負極板と電槽内壁との間に加圧
スペーサが配置されてなる密閉形鉛蓄電池を改良の対象
とする。SUMMARY OF THE INVENTION According to the present invention, a positive electrode plate, a negative electrode plate and a retainer are laminated so that the negative electrode plates are located at both ends thereof. A sealed lead-acid battery in which a pressure spacer is arranged is targeted for improvement.
【0009】請求項1の発明では、加圧スペーサとし
て、負極板より大きな外形寸法を有し且つ両端の負極板
の積層方向外側端面側からのガス吸収反応を抑制するよ
うに対応する負極板の前記積層方向外側端面と該負極板
の少なくとも上端縁及び両側端縁を連続的に覆う弾性体
を用いる。ここで本願明細書における弾性体には、スポ
ンジのように酸素ガスを自由に通過させる孔または通路
を多数有する多孔質の弾性体は含まれない。弾性体とし
ては、耐酸性を有するゴム製の弾性体が好ましく例えば
クロロプレンゴム製の発泡ゴムからなる弾性体を用いる
ことができる。According to the first aspect of the present invention, as the pressure spacer, a negative electrode plate having a larger outer dimension than the negative electrode plate and adapted to suppress the gas absorption reaction from the outer end face side of the negative electrode plates at both ends in the stacking direction. An elastic body is used that continuously covers the outer end surface in the stacking direction and at least the upper end edge and both end edges of the negative electrode plate. Here, the elastic body in the present specification does not include a porous elastic body having a large number of holes or passages through which oxygen gas can freely pass, like a sponge. As the elastic body, an elastic body made of rubber having acid resistance is preferable, and for example, an elastic body made of foamed rubber made of chloroprene rubber can be used.
【0010】請求項2の発明では、少なくとも負極板の
積層方向外側端面と上端縁と両側端縁とを包むように負
極板を嵌合する極板嵌合用凹部を弾性体に設ける。According to the second aspect of the present invention, the elastic body is provided with the electrode plate fitting recess for fitting the negative electrode plate so as to wrap at least the outer end face in the stacking direction, the upper end edge and both end edges of the negative electrode plate.
【0011】請求項3の発明では、加圧スペーサの内壁
面と負極板の積層方向外側端面との間に補足用リテーナ
を配置する。加圧スペーサに極板嵌合用凹部を形成する
場合には、極板嵌合用凹部の内部に補足用リテーナを配
置するスペースを形成すればよく、極板嵌合用凹部を形
成しない場合には、加圧スペーサに補足用リテーナを収
納する収納用凹部を形成すればよい。According to the third aspect of the invention, a supplementary retainer is arranged between the inner wall surface of the pressure spacer and the outer end surface of the negative electrode plate in the stacking direction. When forming the electrode plate fitting recess in the pressure spacer, a space for arranging the supplementary retainer may be formed inside the electrode plate fitting recess. A storage recess for storing the supplementary retainer may be formed in the pressure spacer.
【0012】請求項4の発明では、弾性体からなる加圧
スペーサの電槽の底面と対向する部分に前記補足用リテ
ーナに電解液を供給する通路を形成する。According to the fourth aspect of the present invention, a passage for supplying the electrolytic solution to the supplementary retainer is formed in a portion of the pressure spacer made of an elastic body that faces the bottom surface of the battery case.
【0013】[0013]
【作用】請求項1の発明のように、弾性体によって極板
群の両端に位置する負極板の積層方向外側端面と該負極
板の少なくとも上端縁及び両側端縁を連続的に覆うと、
極板群の周辺に出た酸素ガスを極板群の外側から両端に
位置する負極板の積層方向外側端面まで導くガス通路を
実質的に無くすことができる。したがって本発明によれ
ば、両端の負極板における積層方向外側端面からのガス
吸収反応の発生を阻止することができ、極板群の両端の
負極板における酸素ガス吸収反応を抑制して、熱逸走現
象の発生を防止する。また弾性体の介在により、極板群
内の加圧力も所定の範囲に保つことができ、電池性能を
向上させることができる。なお弾性体は、負極板の下端
縁を覆っていても覆っていなくてもよい。これは酸素ガ
スは上方に向いながら移動するため、負極板の下端縁側
から酸素ガスが進入することは実質的にないからであ
る。According to the first aspect of the present invention, when the elastic body continuously covers the outer end face in the stacking direction of the negative electrode plates located at both ends of the electrode plate group and at least the upper end edge and both end edges of the negative electrode plate,
It is possible to substantially eliminate the gas passage that guides the oxygen gas emitted around the electrode plate group from the outside of the electrode plate group to the outer end faces in the stacking direction of the negative electrode plates located at both ends. Therefore, according to the present invention, it is possible to prevent the generation of gas absorption reaction from the outer end faces in the stacking direction of the negative electrode plates at both ends, suppress the oxygen gas absorption reaction at the negative electrode plates at both ends of the electrode plate group, and to conduct heat escape. Prevent the occurrence of the phenomenon. In addition, due to the presence of the elastic body, the pressing force inside the electrode plate group can be maintained within a predetermined range, and the battery performance can be improved. The elastic body may or may not cover the lower edge of the negative electrode plate. This is because the oxygen gas moves upward while the oxygen gas does not substantially enter from the lower end edge side of the negative electrode plate.
【0014】請求項2の発明のように、弾性体に極板嵌
合用凹部を形成すると、弾性体の移動を防止することが
できる上、負極板の少なくとも上端縁及び両側端縁を確
実に覆うことができる。When the recess for electrode plate fitting is formed in the elastic body as in the second aspect of the present invention, movement of the elastic body can be prevented and at least the upper end edge and both side edges of the negative electrode plate are surely covered. be able to.
【0015】請求項3の発明のように、加圧スペーサの
内壁面と負極板の積層方向外側端面との間に補足用リテ
ーナを配置すると、補足用リテーナに電解液が含浸され
るため、極板群の両端に位置する負極板を積極的に電極
として活用することができる。そのため電池の容量を高
めることができて、電池の長寿命化を図ることができ
る。When the supplementary retainer is arranged between the inner wall surface of the pressure spacer and the outer end face of the negative electrode plate in the stacking direction as in the third aspect of the invention, the supplementary retainer is impregnated with the electrolytic solution, and therefore the electrode The negative electrode plates located at both ends of the plate group can be positively utilized as electrodes. Therefore, the capacity of the battery can be increased and the life of the battery can be extended.
【0016】請求項4の発明のように、加圧スペーサの
電槽の底面と対向する部分に補足用リテーナに電解液を
供給する通路を形成すると、加圧スペーサと負極板との
間に配置した補足用リテーナに電解液を速やかに浸透さ
せることができる。According to the fourth aspect of the present invention, when the passage for supplying the electrolytic solution to the supplementary retainer is formed in the portion of the pressure spacer facing the bottom surface of the battery case, the passage is arranged between the pressure spacer and the negative electrode plate. The electrolyte solution can quickly penetrate into the supplementary retainer.
【0017】[0017]
【実施例】以下図面を参照して、本発明の一実施例を説
明する。図1は、本発明の密閉形鉛蓄電池の一実施例の
要部の概略部分断面図を示している。この図において、
1は電槽の一部を構成する電槽本体であり、2は電槽本
体1内に収納された極板群である。極板群2は、6枚の
負極板3…と、5枚の正極板4…と、10枚のリテーナ
5…とを積層して構成されている。この極板群2は、2
V−40Ah蓄電池の極板群を構成している。極板群2
の積層方向両端に位置する負極板3,3と電槽本体1の
壁部1aとの間に加圧スペーサ(第1の加圧スペーサ)
6,6が配置されている。この加圧スペーサ6,6は、
負極板3、3より大きな外形寸法を有する弾性体によっ
て構成されている。具体的には、厚みが5mmのクロロプ
レンゴム製の発泡ゴムからなる弾性体を用いている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic partial cross-sectional view of the essential parts of an embodiment of the sealed lead-acid battery of the present invention. In this figure,
Reference numeral 1 is a battery case body that constitutes a part of the battery case, and 2 is a group of electrode plates housed in the battery case body 1. The electrode plate group 2 is formed by laminating six negative electrode plates 3, ..., Five positive electrode plates 4, ..., And ten retainers 5. This electrode group 2 is 2
It constitutes an electrode plate group of the V-40Ah storage battery. Electrode group 2
Between the negative electrode plates 3 and 3 located at both ends in the stacking direction and the wall portion 1a of the battery case body 1 (first pressure spacer).
6 and 6 are arranged. The pressure spacers 6 and 6 are
The negative electrode plates 3 and 3 are made of an elastic body having a larger outer dimension. Specifically, an elastic body made of chloroprene rubber foam rubber having a thickness of 5 mm is used.
【0018】本実施例で用いる加圧スペーサ6,6は、
図2(A)に示すような構造を有している。この加圧ス
ペーサ6は、負極板3の積層方向外側端面3aと、上端
縁3bと、両側端縁3cと下端縁3dとを包むように負
極板3を嵌合する極板嵌合用凹部6aを有している。ま
た加圧スペーサ6は、負極板3の耳部3eの根元部分が
嵌合される嵌合部も有している。この極板嵌合用凹部6
aは、極板群2の周辺に出た酸素ガスが極板群2の外側
から両端に位置する負極板3,3の積層方向外側端面3
a,3aまで入り込むガス通路を実質的に無くして、両
端の負極板3、3の積層方向外側端面側3a,3aから
のガス吸収反応を抑制するように形成されている。また
この極板嵌合用凹部6aは、底面が積層方向外側端面3
aと接触するように形成されており、両方の面の密着度
は極板群2と電槽本体1の壁部1aとの間で厚み方向に
圧縮される加圧スペーサ6の圧縮力が強くなるほど高く
なる。これらの構成によって、両端の負極板3,3にお
ける積層方向外側端面3a,3aからのガス吸収反応の
発生を抑制することができる。The pressure spacers 6 and 6 used in this embodiment are
It has a structure as shown in FIG. The pressure spacer 6 has an electrode plate fitting recess 6a for fitting the negative electrode plate 3 so as to enclose the outer end surface 3a of the negative electrode plate 3 in the stacking direction, the upper end edge 3b, both side end edges 3c and the lower end edge 3d. is doing. The pressure spacer 6 also has a fitting portion into which the base portion of the ear portion 3e of the negative electrode plate 3 is fitted. This electrode plate fitting recess 6
a is the outer end face 3 in the stacking direction of the negative electrode plates 3 and 3 in which the oxygen gas discharged around the electrode plate group 2 is located at both ends from outside the electrode plate group 2.
It is formed so as to substantially eliminate the gas passages that enter the a and 3a and suppress the gas absorption reaction from the outer end face sides 3a and 3a of the negative electrode plates 3 and 3 at the both ends in the stacking direction. The bottom surface of the electrode plate fitting recess 6a has an outer end surface 3 in the stacking direction.
It is formed so as to come into contact with a, and the degree of adhesion of both surfaces is such that the compression force of the pressure spacer 6 that is compressed in the thickness direction between the electrode plate group 2 and the wall portion 1a of the battery case body 1 is strong. The higher it gets. With these configurations, it is possible to suppress the occurrence of gas absorption reaction from the outer end faces 3a, 3a in the stacking direction of the negative electrode plates 3, 3 at both ends.
【0019】図2(B)は、加圧スペーサ6´(第2の
加圧スペーサ)の他の例を示している。この加圧スペー
サ6´が、図2(A)の加圧スペーサ6と異なる点は、
極板嵌合用凹部が電槽本体の底面側に開口しているため
に、負極板3の下端縁3dが加圧スペーサ6´によって
は覆われていない点である。なおこの例では負極板3の
下端縁と加圧スペーサの下端面とが一致しているが、加
圧スペーサ6´の下端を負極板3の下端縁を越える位置
まで延ばしてもよいのは勿論である。この加圧スペーサ
6´のように、負極板3の下端縁を覆っていなくても、
酸素ガスは上方に向いながら移動するため、負極板の下
端縁側から酸素ガスが進入することは実質的にないた
め、実質的に問題はない。但し、この場合には、加圧ス
ペーサ6´の圧縮力を高めて、できるだけ加圧スペーサ
6´と負極板3の積層方向外側端面との間の密着度を高
くしておくのが好ましい。FIG. 2B shows another example of the pressure spacer 6 '(second pressure spacer). This pressure spacer 6'is different from the pressure spacer 6 of FIG.
Since the electrode plate fitting recess is open to the bottom surface side of the battery case body, the lower end edge 3d of the negative electrode plate 3 is not covered by the pressure spacer 6 '. In this example, the lower end edge of the negative electrode plate 3 and the lower end surface of the pressure spacer are aligned with each other, but the lower end of the pressure spacer 6'may extend to a position beyond the lower edge of the negative electrode plate 3, as a matter of course. Is. Even if the lower end edge of the negative electrode plate 3 is not covered like the pressure spacer 6 ',
Since oxygen gas moves upward, oxygen gas does not substantially enter from the lower end edge side of the negative electrode plate, so that there is substantially no problem. However, in this case, it is preferable to increase the compressive force of the pressure spacer 6 ′ so that the degree of adhesion between the pressure spacer 6 ′ and the outer end surface of the negative electrode plate 3 in the stacking direction is as high as possible.
【0020】図2(A)及び(B)の加圧スペーサ6,
6´は、いずれも負極板3を嵌合する極板嵌合用凹部を
備えているが、加圧スペーサを構成する弾性体の弾力性
を適宜に選定することにより、極板嵌合用凹部を有しな
いシート状の加圧スペーサ(第3の加圧スペーサ)であ
っても、負極板3が加圧スペーサに食い込むため、負極
板3の少なくとも積層方向外側端面3aと上端縁3bと
両側端縁3cとを連続的に覆うことができる。シート状
の加圧スペーサを用いる場合でも、負極板3と加圧スペ
ーサとの位置関係は、図2(A)及び(B)に示す負極
板と加圧スペーサとの位置関係と同じ位置関係を取るこ
とができる。The pressure spacer 6, shown in FIGS.
Each of 6'has a pole plate fitting recess into which the negative electrode plate 3 is fitted. However, by appropriately selecting the elasticity of the elastic body forming the pressure spacer, 6'has a pole plate fitting recess. Even if it is a sheet-like pressure spacer (third pressure spacer), the negative electrode plate 3 bites into the pressure spacer, and therefore at least the outer end face 3a in the stacking direction, the upper end edge 3b, and the both end edges 3c of the negative electrode plate 3. And can be covered continuously. Even when the sheet-like pressure spacer is used, the positional relationship between the negative electrode plate 3 and the pressure spacer has the same positional relationship as the positional relationship between the negative electrode plate and the pressure spacer shown in FIGS. 2A and 2B. Can be taken.
【0021】前述の第1〜第3の加圧スペーサを用いた
各種の密閉形鉛蓄電池A〜Fを用意し、比較のために加
圧スペーサの代わりにリテーナを配置した従来の密閉形
鉛蓄電池Gを用意した。蓄電池Aは、図2(A)の第1
の加圧スペーサ6を用いた蓄電池であり、蓄電池Bは第
1の加圧スペーサ6の極板嵌合用凹部6aの下端側の端
部を負極板3の下端縁を越える位置まで延ばした加圧ス
ペーサを用いた蓄電池である。また蓄電池Cは図2
(B)に示した第2の加圧スペーサ6´を用い、負極板
としてその下端縁が加圧スペーサ6´の下端面より上側
に位置する蓄電池であり、蓄電池Dは図2(B)に示し
た加圧スペーサ6´を用いて図2(B)に示す関係で陰
極板を配置した蓄電池である。蓄電池Eは、極板嵌合用
凹部を有しないシート状の第3の加圧スペーサを用い
て、負極板を図2(A)に示すように加圧スペーサの中
央に配置した蓄電池であり、蓄電池Fはシート状の第3
の加圧スペーサを用いて、負極板を図2(B)に示すよ
うに配置した蓄電池である。蓄電池Gは、加圧スペーサ
の代わりにリテーナを配置した従来の蓄電池である。な
お使用した各加圧スペーサの外形寸法は、リテーナと同
一寸法である。Various sealed lead-acid batteries A to F using the above-mentioned first to third pressure spacers are prepared, and a conventional sealed lead-acid battery in which a retainer is arranged instead of the pressure spacers for comparison. G was prepared. The storage battery A is the first battery shown in FIG.
The storage battery B is a storage battery using the pressurizing spacer 6, and the storage battery B is a pressurizing device in which the end of the first pressurizing spacer 6 on the lower end side of the electrode plate fitting recess 6 a is extended to a position beyond the lower end edge of the negative electrode plate 3. It is a storage battery using a spacer. The storage battery C is shown in FIG.
The second pressure spacer 6'shown in (B) is a storage battery whose lower end edge is located above the lower end surface of the pressure spacer 6'as a negative electrode plate, and the storage battery D is shown in FIG. 2 (B). It is a storage battery in which the cathode plate is arranged in the relationship shown in FIG. The storage battery E is a storage battery in which a negative electrode plate is arranged in the center of the pressure spacer as shown in FIG. 2A using a sheet-shaped third pressure spacer having no electrode plate fitting recess. F is a sheet-like third
2B is a storage battery in which the negative electrode plate is arranged as shown in FIG. 2B. The storage battery G is a conventional storage battery in which a retainer is arranged instead of the pressure spacer. The external dimensions of each pressure spacer used are the same as those of the retainer.
【0022】前述の各蓄電池A〜Gを45℃の雰囲気中
に放置し、2.275Vでのトリクル電流値を測定し
た。その結果を図3に示す。この結果は放置後1か月の
結果であるが、本発明の実施例の蓄電池A〜Fは従来の
蓄電池Gの約半分の電流値となっている。ただし、弾性
体からなる加圧スペーサの圧縮の程度を少なくして、負
極板と各加圧スペーサとの密着度または食い込み具合を
小さくした場合には、図3に破線で示すような結果とな
った。この結果から判るように、弾性体からなる加圧ス
ペーサの圧縮力または加圧スペーサによる加圧力を小さ
くすると、効果は認められるものの効果は小さい。The above storage batteries A to G were left in an atmosphere of 45 ° C. and the trickle current value at 2.275 V was measured. The result is shown in FIG. This result is a result of one month after being left, but the storage batteries A to F of the embodiment of the present invention have a current value about half that of the conventional storage battery G. However, if the degree of compression of the pressure spacer made of an elastic material is reduced to reduce the degree of adhesion or the biting degree between the negative electrode plate and each pressure spacer, the result shown by the broken line in FIG. 3 is obtained. It was As can be seen from this result, when the compression force of the pressure spacer made of an elastic body or the pressure applied by the pressure spacer is reduced, the effect is recognized but the effect is small.
【0023】次に放電性能について比較した結果を図4
に示す。図4において、蓄電池Gは前述の通り、加圧ス
ペーサの代わりにリテーナを用いたものであり、本発明
品に関しては代表として蓄電池A[図2(A)の第1の
加圧スペーサ6と負極板とを用いた蓄電池]と蓄電池E
(シート状の第3の加圧スペーサを用いた蓄電池)につ
いての測定結果を示している。なお蓄電池A´は、第1
の加圧スペーサ6の極板嵌合用凹部6aの内部に補足用
リテーナを配置するスペースを形成し、極板嵌合用凹部
6aの内壁面と負極板3の積層方向外側端面3aとの間
に補足用リテーナを配置した蓄電池である。Next, the results of comparison of discharge performance are shown in FIG.
Shown in. In FIG. 4, as described above, the storage battery G uses a retainer in place of the pressure spacer. As for the product of the present invention, as a representative, the storage battery A [the first pressure spacer 6 and the negative electrode of FIG. Battery Using Plate] and Battery E
The measurement result about (a storage battery using a sheet-shaped third pressure spacer) is shown. The storage battery A'is the first
A space for arranging a supplementary retainer is formed inside the electrode plate fitting recess 6a of the pressure spacer 6, and the supplementary space is provided between the inner wall surface of the electrode plate fitting recess 6a and the outer end face 3a of the negative electrode plate 3 in the stacking direction. A storage battery in which a retainer for the vehicle is arranged.
【0024】放電試験条件は、1CA放電で終止電圧は
1.6Vである。図4から判るように、本発明の実施例
の蓄電池A,E及びA´は放電持続時間が長くなってい
る。特に、極板嵌合用凹部6aの内壁面と負極板3の積
層方向外側端面3aとの間に補足用リテーナを配置した
蓄電池A´の放電持続時間は、従来の蓄電池Gに比較し
て約20%長くなっている。これは極板群の加圧が十分
であって、しかも極板群の両端に位置する負極板への電
解液の供給が十分なものとなることによる効果であると
考えられる。The discharge test conditions are 1 CA discharge and a final voltage of 1.6V. As can be seen from FIG. 4, the storage batteries A, E and A'of the embodiment of the present invention have a long discharge duration. In particular, the discharge duration of the storage battery A ′ in which the supplementary retainer is arranged between the inner wall surface of the electrode plate fitting recess 6a and the outer end surface 3a of the negative electrode plate 3 in the stacking direction is about 20 times that of the conventional storage battery G. % Longer. It is considered that this is because the pressurization of the electrode plate group is sufficient and the electrolytic solution is sufficiently supplied to the negative electrode plates located at both ends of the electrode plate group.
【0025】次に加圧スペーサ内壁面と負極板3の積層
方向外側端面3aとの間に補足用リテーナを配置した蓄
電池(前述の蓄電池A´タイプの蓄電池)の吸液性につ
いて比較した。図5(A)及び(B)は弾性体からなる
シート状の弾性体に補足用リテーナを収納する収納用凹
部16a,16´aを形成した2種類の加圧スペーサ1
6,16´と、負極板3と、補足用リテーナ5´との関
係を概略的に示した図である。図5(A)は、補足用リ
テーナ5´の外周を完全に囲むようにして収納する収納
用凹部16aをシート状弾性体の中央部に形成したもの
である。図5(B)は、補足用リテーナ5´の外周の下
端面を露出させるようにして収納する収納用凹部16´
aをシート状弾性体に形成したものである。図6は、こ
の2種類の加圧スペーサ16,16´の収納用凹部に収
納したリテーナ5´に電解液が浸透するまでの時間を示
している。なお測定時の、加圧力は20kg/cm2 であっ
た。電解液は1.320の比重を有し、メチルレッドで
着色した。図6より明らかなとおり、リテーナへの電解
液の浸透性は図5(B)に示した加圧スペーサ16のよ
うに下側端部が開口して電槽内部の空間と連通する形状
の収納用凹部16´aを用いるほうが、1/3の時間で
電解液を浸透させることができる。なお図5(A)の加
圧スペーサ16でも、下側端部に収納用凹部16aと電
槽内部の空間と連通する連通路を設ければ、電解液の浸
透時間を短縮することができる。なお図2(A)及び
(B)に示した加圧スペーサ6,6´のように、極板収
納用凹部6aを有する加圧スペーサを用いる場合には、
極板収納用凹部6a内に更に補足用リテーナを収納する
ためのスペースを設ければよい。Next, the liquid absorption properties of a storage battery (a storage battery of the aforementioned storage battery A'type) in which a supplementary retainer is arranged between the inner wall surface of the pressure spacer and the outer end surface 3a of the negative electrode plate 3 in the stacking direction were compared. FIGS. 5A and 5B are two types of pressure spacers 1 in which sheet-like elastic bodies made of elastic body are formed with storage recesses 16a and 16'a for storing supplementary retainers.
It is the figure which showed roughly the relationship between 6,16 ', the negative electrode plate 3, and the retainer 5'for a supplement. In FIG. 5A, a storage recess 16a is formed in the center of the sheet-shaped elastic body so as to completely surround the outer circumference of the supplementary retainer 5 '. FIG. 5B shows a storage recess 16 ′ for storing the supplementary retainer 5 ′ such that the outer peripheral lower end surface is exposed.
The sheet a is a sheet-like elastic body. FIG. 6 shows the time until the electrolytic solution permeates into the retainer 5 ′ housed in the housing recesses of the two types of pressure spacers 16 and 16 ′. The pressure applied during the measurement was 20 kg / cm 2 . The electrolyte had a specific gravity of 1.320 and was colored with methyl red. As is clear from FIG. 6, the permeability of the electrolytic solution into the retainer is stored in a shape in which the lower end is open and communicates with the space inside the battery case, as in the pressure spacer 16 shown in FIG. 5B. The use of the recessed portion 16'a allows the electrolytic solution to permeate in 1/3 of the time. Even in the pressure spacer 16 of FIG. 5A, if the communication passage communicating with the storage recess 16a and the space inside the battery case is provided at the lower end, the permeation time of the electrolytic solution can be shortened. When using a pressure spacer having a recess 6a for accommodating an electrode plate, such as the pressure spacers 6 and 6'shown in FIGS. 2A and 2B,
A space for accommodating the supplementary retainer may be provided in the electrode plate accommodating recess 6a.
【0026】加圧スペーサと極板群の両端に位置する負
極板との間に補足用リテーナを配置した蓄電池では放電
容量が増大する。容量をより増大させるためには、図5
(B)に示すように、収納用凹部16´aの下側端部が
開口して電槽内部の空間と連通するものを用いるほうが
よい。そこで図5(B)に示した構造を用いた蓄電池F
´について蓄電池のサイクル寿命特性を調べた。その結
果を図7に示す。比較のために加圧スペーサの代わりに
リテーナを用いた蓄電池Gについてもサイクル寿命特性
を調べた。図7から判るように蓄電池F´のサイクル寿
命特性は良好である。これは弾性体からなる加圧スペー
サの挿入により加圧が均一に維持されたため、活物質の
脱落や格子の伸び等が抑制されたための効果であると考
える。In a storage battery in which a supplementary retainer is arranged between the pressure spacer and the negative electrode plates located at both ends of the electrode plate group, the discharge capacity increases. To further increase the capacity, see FIG.
As shown in (B), it is better to use one that opens at the lower end of the storage recess 16'a and communicates with the space inside the battery case. Therefore, a storage battery F using the structure shown in FIG.
′ Was examined for cycle life characteristics of the storage battery. The result is shown in FIG. 7. For comparison, the cycle life characteristics of the storage battery G using a retainer instead of the pressure spacer were also examined. As can be seen from FIG. 7, the cycle life characteristic of the storage battery F ′ is good. It is considered that this is because the pressure was uniformly maintained by the insertion of the pressure spacer made of an elastic material, and the drop of the active material and the elongation of the lattice were suppressed.
【0027】上述したように、本発明の実施例の密閉形
鉛蓄電池では、極板群の両端に位置する負極板と電槽内
壁との間に弾性体からなる加圧スペーサを設け、加圧ス
ペーサに負極板の各縁部が侵入する形に構成し、加圧ス
ペーサと負極板との間に補足用リテーナを配置したの
で、従来の密閉形鉛蓄電池に比べて極板群の両端に位置
する負極板の酸素ガス吸収が抑制されることにより、ト
リクル充電、フロート充電電流値が小さくなる。このた
め、熱逸走のような熱的特性は向上する。また、弾性体
からなる加圧スペーサの挿入により、極板群にかかる加
圧が常に一定となり、電池のサイクル寿命特性は大幅に
向上する点で優れている。As described above, in the sealed lead-acid battery of the embodiment of the present invention, the pressure spacers made of an elastic body are provided between the negative electrode plates located at both ends of the electrode plate group and the inner wall of the battery case to apply pressure. The spacer is configured so that each edge of the negative electrode plate penetrates, and the retainer for supplement is arranged between the pressure spacer and the negative electrode plate, so it is positioned at both ends of the electrode plate group compared to the conventional sealed lead acid battery. By suppressing the absorption of oxygen gas by the negative electrode plate, the trickle charge and float charge current values are reduced. Therefore, thermal characteristics such as heat escape are improved. Further, by inserting a pressure spacer made of an elastic body, the pressure applied to the electrode plate group is always constant, which is excellent in that the cycle life characteristic of the battery is significantly improved.
【0028】[0028]
【発明の効果】請求項1の発明によれば、弾性体からな
る加圧スペーサによって極板群の両端に位置する負極板
の積層方向外側端面と該負極板の少なくとも上端縁及び
両側端縁を連続的に覆うため、極板群の周辺に出た酸素
ガスが極板群の外側から両端に位置する負極板の積層方
向外側端面まで入り込むガス通路を実質的に無くすこと
ができる。そのため本発明によれば、両端の負極板にお
ける積層方向外側端面からのガス吸収反応の発生を阻止
することができて、極板群の両端の負極板における酸素
ガス吸収反応を抑制して熱逸走現象の発生を防止できる
利点がある。また弾性体の介在により、極板群内の加圧
力も所定の範囲に保つことができ、電池性能を向上させ
ることができる。According to the first aspect of the present invention, the pressure spacers made of an elastic material are used to separate the outer end faces of the negative electrode plates in the stacking direction, which are located at both ends of the electrode plate group, and at least the upper end edge and both end edges of the negative electrode plate. Since the electrodes are continuously covered, it is possible to substantially eliminate the gas passage through which the oxygen gas discharged around the electrode plate group enters from the outside of the electrode plate group to the outer end faces in the stacking direction of the negative electrode plates located at both ends. Therefore, according to the present invention, it is possible to prevent the occurrence of gas absorption reaction from the outer end faces in the stacking direction of the negative electrode plates at both ends, suppress the oxygen gas absorption reaction in the negative electrode plates at both ends of the electrode plate group, and to perform heat escape. There is an advantage that the occurrence of the phenomenon can be prevented. In addition, due to the presence of the elastic body, the pressing force inside the electrode plate group can be maintained within a predetermined range, and the battery performance can be improved.
【0029】請求項2の発明によれば、弾性体に極板嵌
合用凹部を形成するため、弾性体の移動を防止すること
ができる上、負極板の少なくとも上端縁及び両側端縁を
確実に覆うことができる利点がある。According to the second aspect of the invention, since the recess for fitting the electrode plate is formed in the elastic body, it is possible to prevent the elastic body from moving, and at least the upper end edge and both side edges of the negative electrode plate are surely secured. There is an advantage that it can be covered.
【0030】請求項3の発明によれば、加圧スペーサの
内壁面と負極板の積層方向外側端面との間に補足用リテ
ーナを配置するため、補足用リテーナに含浸された電解
液により極板群の両端に位置する負極板を積極的に電極
として活用することができ、電池の容量を高めることが
できて、電池の長寿命化を図ることができる利点があ
る。According to the third aspect of the present invention, since the supplementary retainer is arranged between the inner wall surface of the pressure spacer and the outer end surface of the negative electrode plate in the stacking direction, the electrode plate is formed by the electrolytic solution impregnated in the supplementary retainer. The negative electrode plates located at both ends of the group can be positively utilized as electrodes, and the battery capacity can be increased, and the battery life can be extended.
【0031】請求項4の発明によれば、弾性体の電槽の
底面と対向する部分に補足用リテーナに電解液を供給す
る通路を形成するため、加圧スペーサと負極板との間に
配置した補足用リテーナに電解液を速やかに浸透させる
ことができる。According to the fourth aspect of the invention, since the passage for supplying the electrolytic solution to the supplementary retainer is formed in the portion of the elastic body facing the bottom surface of the battery case, it is arranged between the pressure spacer and the negative electrode plate. The electrolyte solution can quickly penetrate into the supplementary retainer.
【図1】本発明の密閉形鉛蓄電池の一実施例の要部の概
略部分断面図を示している。FIG. 1 is a schematic partial cross-sectional view of a main part of an embodiment of a sealed lead-acid battery of the present invention.
【図2】(A)及び(B)はそれぞれ本発明で用いるこ
とができる加圧スペーサと負極板板とを組み合わせた状
態を示す図である。FIGS. 2A and 2B are diagrams showing a state in which a pressure spacer and a negative electrode plate that can be used in the present invention are combined.
【図3】本発明品と従来品の45℃でのトリクル充電電
流値を示す図である。FIG. 3 is a graph showing trickle charge current values at 45 ° C. of the product of the present invention and the conventional product.
【図4】本発明の3種類の蓄電池と従来品の放電持続時
間を示す図である。FIG. 4 is a diagram showing discharge durations of three types of storage batteries of the present invention and a conventional product.
【図5】(A)及び(B)は、それぞれシート状の弾性
体に補足用リテーナを収納する収納用凹部を形成した2
種類の加圧スペーサと、負極板と、補足用リテーナとの
関係を概略的に示した図である。5 (A) and 5 (B) respectively show a sheet-shaped elastic body having a storage recess for storing a supplementary retainer.
It is the figure which showed roughly the relationship of the kind of pressurization spacer, the negative electrode plate, and the retainer for a supplement.
【図6】図5(A)及び(B)の加圧スペーサを用いた
場合の補足用リテーナへの電解液浸透性を比較するため
の図である。FIG. 6 is a diagram for comparing the electrolyte permeability of the supplementary retainer when the pressure spacers of FIGS. 5A and 5B are used.
【図7】本発明の蓄電池と従来の蓄電池のサイクル寿命
特性を示す図である。FIG. 7 is a diagram showing cycle life characteristics of a storage battery of the present invention and a conventional storage battery.
1 電槽 2 極板群 3 負極板 4 正極板 5 リテーナ 5´ 補足用リテーナ 6,6´,16,16´ 加圧スペーサ DESCRIPTION OF SYMBOLS 1 Battery case 2 Electrode plate group 3 Negative electrode plate 4 Positive electrode plate 5 Retainer 5'Retainer for supplementation 6, 6 ', 16, 16' Pressure spacer
Claims (4)
負極板及びリテーナを積層してなる極板群の前記両端の
負極板と電槽内壁との間に加圧スペーサが配置されてな
る密閉形鉛蓄電池であって、 前記加圧スペーサとして、前記負極板より大きな外形寸
法を有し且つ前記両端の負極板の積層方向外側端面側か
らのガス吸収反応を抑制するように対応する前記負極板
の前記積層方向外側端面と該負極板の少なくとも上端縁
及び両側端縁を連続的に覆う弾性体を用いたことを特徴
とする密閉形鉛蓄電池。1. A positive electrode plate so that negative electrode plates are positioned at both ends,
A sealed lead-acid battery in which a pressure spacer is disposed between the negative electrode plates at both ends of the electrode plate group formed by laminating a negative electrode plate and a retainer and the inner wall of the battery case, wherein the negative electrode is the negative electrode. The outer end face of the negative electrode plate in the stacking direction and at least the upper end edge of the negative electrode plate having outer dimensions larger than those of the plates and corresponding to suppress gas absorption reaction from the outer end face side of the negative electrode plate in the stacking direction. A sealed lead-acid battery using an elastic body that continuously covers both side edges.
記積層方向外側端面と前記上端縁と前記両側端縁とを包
むように前記負極板を嵌合する極板嵌合用凹部を有して
いる請求項1に記載の密閉形鉛蓄電池。2. The elastic body has an electrode plate fitting recess for fitting the negative electrode plate so as to enclose at least the outer end surface of the negative electrode plate in the stacking direction, the upper end edge and the both end edges. Item 1. The sealed lead acid battery according to Item 1.
の前記積層方向外側端面との間に補足用リテーナが配置
されている請求項2に記載の密閉形鉛蓄電池。3. The sealed lead-acid battery according to claim 2, wherein a supplementary retainer is arranged between the inner wall surface of the pressure spacer and the outer end surface of the negative electrode plate in the stacking direction.
部分に前記補足用リテーナに電解液を供給する通路を有
している請求項3に記載の密閉形鉛蓄電池。4. The sealed lead-acid battery according to claim 3, wherein the elastic body has a passage for supplying an electrolytic solution to the supplementary retainer at a portion facing the bottom surface of the battery case.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5270326A JPH07122292A (en) | 1993-10-28 | 1993-10-28 | Sealed lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5270326A JPH07122292A (en) | 1993-10-28 | 1993-10-28 | Sealed lead acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07122292A true JPH07122292A (en) | 1995-05-12 |
Family
ID=17484712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5270326A Withdrawn JPH07122292A (en) | 1993-10-28 | 1993-10-28 | Sealed lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07122292A (en) |
-
1993
- 1993-10-28 JP JP5270326A patent/JPH07122292A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101411003B (en) | Battery module, method of fabricating the same, and vehicle having battery module | |
JP2779266B2 (en) | Rechargeable battery | |
US6482544B1 (en) | Battery package | |
JP2993069B2 (en) | Sealed battery pack | |
US9601732B2 (en) | Battery module for mitigating gas accumulation and methods thereof | |
JP2021082477A (en) | Battery pack | |
US4207384A (en) | Electric storage batteries | |
US12095104B2 (en) | Battery pack and battery holder | |
JPS61114464A (en) | Sealed type storage battery | |
JPH07122292A (en) | Sealed lead acid battery | |
US3741810A (en) | Battery construction | |
US20220278401A1 (en) | Power storage device | |
JPH0715812B2 (en) | Sealed lead acid battery | |
CN214898608U (en) | Battery stack structure and laminate polymer battery | |
US20220294023A1 (en) | Method for manufacturing secondary battery | |
KR20140145493A (en) | Battery modules and packs for improved battery life and stability | |
JP2726849B2 (en) | Sealed lead-acid battery | |
KR101023142B1 (en) | Lithium secondary battery | |
JPS6266557A (en) | Jar of lead-storage battery | |
JPH06215794A (en) | Thin sealed storage battery | |
JPH0635374Y2 (en) | Sealed lead acid battery | |
JPH07326380A (en) | Sealed lead acid battery | |
JPH0214121Y2 (en) | ||
JPH0883624A (en) | Sealed storage battery | |
JPS61126766A (en) | Flat type cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010130 |