[go: up one dir, main page]

JPH07120638B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH07120638B2
JPH07120638B2 JP1191886A JP19188689A JPH07120638B2 JP H07120638 B2 JPH07120638 B2 JP H07120638B2 JP 1191886 A JP1191886 A JP 1191886A JP 19188689 A JP19188689 A JP 19188689A JP H07120638 B2 JPH07120638 B2 JP H07120638B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
refractory metal
titanium
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1191886A
Other languages
Japanese (ja)
Other versions
JPH0355829A (en
Inventor
和之 須賀原
泰男 山口
隆志 一法師
靖朗 井上
正 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1191886A priority Critical patent/JPH07120638B2/en
Publication of JPH0355829A publication Critical patent/JPH0355829A/en
Publication of JPH07120638B2 publication Critical patent/JPH07120638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6743Silicon

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関し、特に絶縁体上
の半導体層に設けた回路素子を配線するための配線層を
形成する方法の改良に関するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for forming a wiring layer for wiring a circuit element provided on a semiconductor layer on an insulator. It is a thing.

〔従来の技術〕[Conventional technology]

半導体装置の高性能化のため、絶縁体上に厚さ1000Å
(=0.1μm)程度の半導体単結晶層を設け、この半導
体単結晶層にMOSトランジスタ(以下、薄膜トランジス
タと称する)等で構成された回路素子を製造する試みが
なされている。
Thick 1000 Å on the insulator to improve the performance of semiconductor devices
An attempt has been made to provide a semiconductor single crystal layer of about (= 0.1 μm) and to manufacture a circuit element composed of a MOS transistor (hereinafter referred to as a thin film transistor) or the like on the semiconductor single crystal layer.

また、この薄膜トランジスタに耐熱配線等の要請があ
り、チタン(Ti)をはじめとする高融点金属又は半導体
との化合物による配線が開発されている。
In addition, there is a demand for heat resistant wiring for this thin film transistor, and wiring made of a compound with a refractory metal such as titanium (Ti) or a semiconductor has been developed.

第2図(a)〜(e)は従来の薄膜トランジスタの耐熱
配線の形成方法を示す工程別段面図であり、以下、図に
従って形成方法を説明する。
2 (a) to 2 (e) are step-by-step sectional views showing a conventional method for forming a heat-resistant wiring of a thin film transistor, which will be described below with reference to the drawings.

第2図(a)において、1は単結晶シリコン基板、2は
二酸化シリコン膜(SiO2、以下酸化膜と称す)で厚さは
0.5μm〜1μmである。3は厚さ1000Åの単結晶シリ
コン膜である。1〜3の構造はいわゆるSOI(Silicon O
n Insulator)構造と呼ばれるもので、SIMOX(Separati
on by IMplanted OXygen)法やレーザ再結晶化法によっ
て形成される。4は燐を多量にドープした多結晶シリコ
ンからなるゲート電極、5は酸化膜、6は酸化膜5上に
開けられ、単結晶シリコン3にまで達するコンタクトで
ある。
In FIG. 2 (a), 1 is a single crystal silicon substrate, 2 is a silicon dioxide film (SiO 2 , hereinafter referred to as an oxide film), and its thickness is
It is 0.5 μm to 1 μm. Reference numeral 3 is a single crystal silicon film having a thickness of 1000Å. Structures 1 to 3 are so-called SOI (Silicon O
n Insulator) structure, SIMOX (Separati
on by IMplanted OXygen) method or laser recrystallization method. Reference numeral 4 is a gate electrode made of polycrystalline silicon heavily doped with phosphorus, 5 is an oxide film, and 6 is a contact which is opened on the oxide film 5 and reaches the single crystal silicon 3.

次に第2図(b)に示すように、コンタクト6を含む耐
熱配線を行う領域に多結晶シリコン7を1000Å堆積す
る。そして、第2図(c)に示すように、この上にチタ
ン8をスパッタ法により厚さ700Åで全面に堆積する。
この後、700℃,N2雰囲気中でランプアニールを1分間行
い、チタン8と多結晶シリコン7を反応させて、チタン
シリサイド(TiSi2)を形成する。
Next, as shown in FIG. 2B, 1000 Å of polycrystalline silicon 7 is deposited in the region including the contact 6 where the heat resistant wiring is to be formed. Then, as shown in FIG. 2 (c), titanium 8 is deposited on the entire surface by sputtering to a thickness of 700 Å.
After that, lamp annealing is performed for 1 minute in a N 2 atmosphere at 700 ° C. to react titanium 8 with polycrystalline silicon 7 to form titanium silicide (TiSi 2 ).

次に硫酸溶液に浸潤させて未反応のチタン(酸化膜5上
のチタン)を除去する。さらに、多結晶シリコン7とチ
タン8を完全に反応,化合させるため、800℃,N2雰囲気
中で1分間ランプアニールを行ってチタンシリサイド9
を形成したのが第2図(d)である。
Next, it is soaked in a sulfuric acid solution to remove unreacted titanium (titanium on the oxide film 5). Further, in order to completely react and combine the polycrystalline silicon 7 and the titanium 8, a lamp anneal is performed in an N 2 atmosphere at 800 ° C. for 1 minute to form a titanium silicide 9
2D is formed.

そして最初的に第2図(e)に示すように、層間絶縁膜
10,アルミニウム配線11を形成し、耐熱配線を使用したM
OSトランジスタを絶縁体上に形成する。ここで耐熱配線
は、MOS型記憶素子のビット線、あるいはこの薄膜トラ
ンジスタを多層にわたって積層化した三次元回路素子の
配線として用いられる。
First, as shown in FIG. 2 (e), the interlayer insulating film
10, M with aluminum wiring 11 formed and heat resistant wiring
An OS transistor is formed on the insulator. Here, the heat resistant wiring is used as a bit line of a MOS type memory element or a wiring of a three-dimensional circuit element in which the thin film transistors are laminated in multiple layers.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような薄膜トランジスタの耐熱配線においては、多
結晶シリコン3の比抵抗が非常に大きいことから、配線
9と単結晶シリコン層3とのコンタクト抵抗を低減する
ためには、多結晶シリコン層3を完全にシリサイド化し
なければならず、チタンの量が少ない場合には低抵抗化
を図ることができない。
In such a heat resistant wiring of a thin film transistor, since the specific resistance of the polycrystalline silicon 3 is very large, in order to reduce the contact resistance between the wiring 9 and the single crystal silicon layer 3, the polycrystalline silicon layer 3 is completely removed. Therefore, if the amount of titanium is small, the resistance cannot be reduced.

一方、このような要求から、チタン8の膜厚をチタンシ
リサイドを形成するための化学当量分の多結晶シリコン
7の膜厚よりも厚く形成し、チタンの量を多くすると、
チタンはシリサイド化反応において供給過剰となり単結
晶シリコン3とのコンタクト部分でシリコン原子を吸い
上げてしまうという現象が生じる。単結晶シリコン3は
絶縁体上に形成され、その膜厚も1000Åと薄く形成され
ていることから、チタンシリサイド形成のため無限にシ
リコン原子を供給することはできず、この場合、第3図
のコンタクト部分の拡大断面図に示すように、コンタク
ト部に密度の小さいシリコン原子からなる高抵抗領域12
が生じてしまうことになる。
On the other hand, from such requirements, if the film thickness of titanium 8 is made thicker than the film thickness of the polycrystalline silicon 7 equivalent to the chemical equivalent for forming titanium silicide, and the amount of titanium is increased,
Titanium is oversupplied in the silicidation reaction, and a phenomenon occurs in which silicon atoms are sucked up at the contact portion with the single crystal silicon 3. Since the single crystal silicon 3 is formed on the insulator and its film thickness is as thin as 1000Å, it is impossible to supply silicon atoms infinitely because of titanium silicide formation. In this case, as shown in FIG. As shown in the enlarged cross-sectional view of the contact portion, the high resistance region 12 made of low density silicon atoms is formed in the contact portion.
Will occur.

従って、従来の製造方法において、低抵抗のコンタクト
部を形成するためには、チタンの量と多結晶シリコンの
量を化学当量的に合わせて堆積することが必要とされる
が、これは実用上不可能なことであり、上述のようにチ
タンの量が多くても少なくてもコンタクト部は高抵抗に
なってしまうという問題点があった。
Therefore, in the conventional manufacturing method, in order to form a contact portion having low resistance, it is necessary to deposit the amount of titanium and the amount of polycrystalline silicon so that they are chemically equivalent to each other. This is impossible, and there is a problem that the contact portion has a high resistance regardless of whether the amount of titanium is large or small as described above.

この発明は上記のような問題点を解消するためになされ
たもので、高抵抗領域を含まない耐熱配線を薄膜トラン
ジスタ上に形成することができる半導体装置の製造方法
を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a method of manufacturing a semiconductor device capable of forming a heat resistant wiring that does not include a high resistance region on a thin film transistor.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る半導体装置の製造方法は、絶縁体上に形
成された半導体活性層上の配線形成領域に、第1の非単
結晶半導体層,高融点金属層,及び第2の非単結晶半導
体層を順次形成した後、上記第1,第2の半導体層と上記
高融点金属層とを化合させて配線層を形成するように
し、かつ、上記第1の半導体層,高融点金属層,及び第
2の半導体層を順次形成する際に各層の層厚を、第1,第
2の半導体層と上記高融点金属層とを化合させる工程に
おいて、上記第1の半導体層が完全に上記高融点金属層
と化合し、かつ、上記半導体活性層が上記高融点金属層
と化合しないような層厚としたものである。
According to the method of manufacturing a semiconductor device of the present invention, a first non-single-crystal semiconductor layer, a refractory metal layer, and a second non-single-crystal semiconductor are provided in a wiring formation region on a semiconductor active layer formed on an insulator. After sequentially forming the layers, the first and second semiconductor layers and the refractory metal layer are combined to form a wiring layer, and the first semiconductor layer, the refractory metal layer, and When the second semiconductor layers are sequentially formed, the layer thicknesses of the respective layers are adjusted so that the first semiconductor layer has a high melting point in the step of combining the first and second semiconductor layers with the high melting point metal layer. The layer thickness is such that it combines with the metal layer and the semiconductor active layer does not combine with the refractory metal layer.

〔作用〕[Action]

この発明においては、絶縁体上に形成された半導体活性
層上の配線形成領域に、第1の非単結晶半導体層,高融
点金属層,及び第2の非単結晶半導体層を順次形成した
後、上記第1,第2の半導体層と上記高融点金属層とを化
合させて配線層を形成するようにし、かつ、上記第1の
半導体層,高融点金属層,及び第2の半導体層を順次形
成する際に各層の層厚を、第1,第2の半導体層と上記高
融点金属層とを化合させる工程において、上記第1の半
導体層が完全に上記高融点金属層と化合し、かつ、上記
半導体活性層が上記高融点金属層と化合しないような層
厚としたから、活性層に接する非単結晶半導体層が完全
に高融点金属と化合されており、かつ活性層を構成する
原子が高融点金属と化合することが抑制された、低抵抗
の耐熱配線を実現できる。
In the present invention, after the first non-single-crystal semiconductor layer, the refractory metal layer, and the second non-single-crystal semiconductor layer are sequentially formed in the wiring formation region on the semiconductor active layer formed on the insulator, A wiring layer is formed by combining the first and second semiconductor layers and the refractory metal layer, and the first semiconductor layer, the refractory metal layer, and the second semiconductor layer are formed. In the step of combining the first and second semiconductor layers with the refractory metal layer, the first semiconductor layer is completely combined with the refractory metal layer when the layers are sequentially formed, Moreover, since the semiconductor active layer has a layer thickness that does not combine with the refractory metal layer, the non-single-crystal semiconductor layer in contact with the active layer is completely combined with the refractory metal and constitutes the active layer. Realization of low resistance heat resistant wiring in which atoms are prevented from combining with refractory metals Wear.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。な
お、この実施例の説明において従来技術の説明と重複す
る部分については適宜その説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. It should be noted that in the description of this embodiment, the description overlapping with the description of the conventional technique will be appropriately omitted.

第1図(a)は第2図(a)に示されている構造上に厚
さ300Åの多結晶シリコン71と厚さ700Åのチタン81,及
び厚さ1000Åの多結晶シリコン72を全面に順次堆積した
ものである。
FIG. 1 (a) shows the structure shown in FIG. 2 (a), in which a polycrystalline silicon 71 having a thickness of 300 Å, a titanium 81 having a thickness of 700 Å, and a polycrystalline silicon 72 having a thickness of 1000 Å are sequentially formed on the entire surface. It has been deposited.

その後、第1図(b)に示すように、この多結晶シリコ
ン71,72とチタン81を配線領域を残してエッチングして
除去する。このエッチングはCF4をエッチングガスの主
成分とする反応性イオンエッチング法で行う。
Thereafter, as shown in FIG. 1B, the polycrystalline silicon 71, 72 and titanium 81 are removed by etching leaving a wiring region. This etching is performed by the reactive ion etching method using CF 4 as a main component of etching gas.

この後、シリサイド化反応のため、800℃,N2雰囲気中で
1分間ランプアニールを行ってチタンとシリコンを反応
させ、第1図(c)に示すようなチタンシリサイド91の
上に未反応の多結晶シリコン73が残った構造を得る。そ
の後、未反応の多結晶シリコン層73を除去し、第2図
(d)に示す従来の方法と同様の方法でその上層に絶縁
膜10を介してアルミニウム配線を形成して回路素子を完
成する。
After that, for silicidation reaction, lamp annealing is performed in an N 2 atmosphere at 800 ° C. for 1 minute to react titanium and silicon, and unreacted on the titanium silicide 91 as shown in FIG. 1 (c). A structure in which the polycrystalline silicon 73 remains is obtained. After that, the unreacted polycrystalline silicon layer 73 is removed, and aluminum wiring is formed thereover via the insulating film 10 by the same method as the conventional method shown in FIG. 2 (d) to complete the circuit element. .

このような本実施例においては、チタン81の下の多結晶
シリコン71の膜厚をチタンシリサイド形成のために必要
な膜厚(1000Å)の半分以下としたために、単結晶シリ
コン3とチタンシリサイド91のコンタクト部分6に多結
晶シリコンが残留することがなく、さらには、シリサイ
ド化反応は単結晶シリコン3より内部に原子移動速度が
速い結晶粒界を含む多結晶シリコン72の存在する上部へ
迅速に進むため、単結晶シリコン3中のシリコン原子が
シリサイド化反応のため吸い上げられることがなくな
り、高抵抗領域が形成されず、コンタクト部分の低抵抗
化を図ることができる。また、従来のようにチタンの量
と多結晶シリコンの量とを化学当量的に合わせて堆積す
る必要もなくなるので、工程を簡略化することができ
る。
In this embodiment, since the film thickness of the polycrystalline silicon 71 under the titanium 81 is half or less than the film thickness (1000Å) necessary for forming titanium silicide, the single crystal silicon 3 and the titanium silicide 91 are formed. The polycrystalline silicon does not remain in the contact portion 6 of the above, and the silicidation reaction is rapidly performed to the upper portion where the polycrystalline silicon 72 including the crystal grain boundary having a higher atomic transfer rate inside the single crystal silicon 3 exists. Therefore, the silicon atoms in the single crystal silicon 3 are not sucked up due to the silicidation reaction, the high resistance region is not formed, and the resistance of the contact portion can be reduced. In addition, since it is not necessary to deposit the amount of titanium and the amount of polycrystalline silicon in a stoichiometrically equivalent amount as in the conventional case, the process can be simplified.

なお、上記実施例においては非単結晶の半導体層として
多結晶シリコンを使用したが、これは非晶質の半導体層
を使用してもよい。
Although polycrystalline silicon is used as the non-single-crystal semiconductor layer in the above-mentioned embodiments, an amorphous semiconductor layer may be used.

また、さらに高融点金属としてはチタンを使用したが、
これは半導体と安定な化合物をつくることができる高融
点金属であればチタン以外のものでもよく、この場合に
おいても上記実施例と同様の効果を奏する。
In addition, although titanium was used as the refractory metal,
This may be a refractory metal other than titanium as long as it is a refractory metal capable of forming a stable compound with a semiconductor, and in this case, the same effect as that of the above-described embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、絶縁体上に形成され
た半導体活性層上の配線形成領域に、第1の非単結晶半
導体層,高融点金属層,及び第2の非単結晶半導体層を
順次形成した後、上記第1,第2の半導体層と上記高融点
金属層とを化合させて配線層を形成するようにし、か
つ、上記第1の半導体層,高融点金属層,及び第2の半
導体層を順次形成する際に各層の層厚を、第1,第2の半
導体層と上記高融点金属層とを化合させる工程におい
て、上記第1の半導体層が完全に上記高融点金属層と化
合し、かつ、上記半導体活性層が上記高融点金属層と化
合しないような層厚としたから、活性層に接する非単結
晶半導体層が完全に高融点金属と化合されており、かつ
活性層を構成する原子が高融点金属と化合することが抑
制された、低抵抗の耐熱配線を実現できる効果がある。
As described above, according to the present invention, the first non-single-crystal semiconductor layer, the refractory metal layer, and the second non-single-crystal semiconductor are provided in the wiring formation region on the semiconductor active layer formed on the insulator. After sequentially forming the layers, the first and second semiconductor layers and the refractory metal layer are combined to form a wiring layer, and the first semiconductor layer, the refractory metal layer, and When the second semiconductor layers are sequentially formed, the layer thicknesses of the respective layers are adjusted so that the first semiconductor layer has a high melting point in the step of combining the first and second semiconductor layers with the high melting point metal layer. Combined with the metal layer, and, since the semiconductor active layer has a layer thickness so as not to combine with the refractory metal layer, the non-single crystal semiconductor layer in contact with the active layer is completely combined with the refractory metal, In addition, it is possible to suppress the combination of the atoms that make up the active layer with refractory metals, and have low resistance and heat resistance. There is an effect that wiring can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)はこの発明の一実施例による半導
体装置の製造方法を説明するための工程別断面図、第2
図(a)〜(e)は従来の半導体装置の製造方法を示す
工程別断面図、第3図は従来の半導体装置のコンタクト
部の拡大断面図である。 図において、1は単結晶シリコン基板、2は酸化膜、3
は単結晶シリコン層、4はゲート電極、5は酸化膜、6
はコンタクト、71,72,73は多結晶シリコン、81はチタ
ン、91はチタンシリサイド。 なお図中同一符号は同一又は相当部分を示す。
1 (a) to 1 (c) are sectional views for explaining the method of manufacturing a semiconductor device according to an embodiment of the present invention by step,
FIGS. 3A to 3E are cross-sectional views by step showing a method for manufacturing a conventional semiconductor device, and FIG. 3 is an enlarged cross-sectional view of a contact portion of a conventional semiconductor device. In the figure, 1 is a single crystal silicon substrate, 2 is an oxide film, 3
Is a single crystal silicon layer, 4 is a gate electrode, 5 is an oxide film, 6
Are contacts, 71, 72, 73 are polycrystalline silicon, 81 is titanium, and 91 is titanium silicide. The same reference numerals in the drawings indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 靖朗 兵庫県伊丹市瑞原4丁目1番地 三菱電機 株式会社エル・エス・アイ研究所内 (72)発明者 西村 正 兵庫県伊丹市瑞原4丁目1番地 三菱電機 株式会社エル・エス・アイ研究所内 (56)参考文献 特開 昭61−230373(JP,A) 特開 昭62−166568(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuro Inoue, 4-chome, Mizuhara, Itami City, Hyogo Prefecture Mitsubishi Electric Co., Ltd. LSE Research Laboratory (72) Tadashi Nishimura 4-chome, Mizuhara, Itami City, Hyogo Prefecture Address Mitsubishi Electric Co., Ltd. LSI Research Institute (56) Reference JP-A-61-230373 (JP, A) JP-A-62-166568 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁体上に形成された半導体活性層を有す
る半導体装置の製造方法において、 上記半導体活性層上の配線形成領域に非単結晶の第1の
半導体層を形成する第1の工程と、 該第1の半導体層上に高融点金属層を形成する第2の工
程と、 該高融点金属層上に非単結晶の第2の半導体層を形成す
る第3の工程と、 上記第1,第2の半導体層と上記高融点金属層とを化合さ
せ、配線層を形成する第4の工程とを含み、 かつ、上記第1〜第3の工程で形成される第1の半導体
層,高融点金属層,及び第2の半導体層の層厚を、上記
第4の工程において、上記第1の半導体層が完全に上記
高融点金属層と化合し、かつ、上記半導体活性層が上記
高融点金属層と化合しないような層厚としたことを特徴
とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device having a semiconductor active layer formed on an insulator, comprising: a first step of forming a non-single-crystal first semiconductor layer in a wiring formation region on the semiconductor active layer. A second step of forming a refractory metal layer on the first semiconductor layer, a third step of forming a non-single-crystal second semiconductor layer on the refractory metal layer, A first semiconductor layer formed by the first to third steps, including a first step of forming a wiring layer by combining a second semiconductor layer and the refractory metal layer The layer thicknesses of the refractory metal layer and the second semiconductor layer are adjusted so that the first semiconductor layer is completely combined with the refractory metal layer in the fourth step, and the semiconductor active layer is A method of manufacturing a semiconductor device, wherein the layer thickness is set so as not to combine with the refractory metal layer.
JP1191886A 1989-07-25 1989-07-25 Method for manufacturing semiconductor device Expired - Fee Related JPH07120638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191886A JPH07120638B2 (en) 1989-07-25 1989-07-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191886A JPH07120638B2 (en) 1989-07-25 1989-07-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0355829A JPH0355829A (en) 1991-03-11
JPH07120638B2 true JPH07120638B2 (en) 1995-12-20

Family

ID=16282094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191886A Expired - Fee Related JPH07120638B2 (en) 1989-07-25 1989-07-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07120638B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726081A (en) * 1995-10-18 1998-03-10 United Microelectronics Corp. Method of fabricating metal contact of ultra-large-scale integration metal-oxide semiconductor field effect transistor with silicon-on-insulator structure
JP4383841B2 (en) 2003-12-12 2009-12-16 キヤノン株式会社 interchangeable lens
JP4636227B2 (en) * 2004-01-19 2011-02-23 セイコーエプソン株式会社 Manufacturing method of semiconductor device
CN101523581A (en) 2007-01-10 2009-09-02 夏普株式会社 Method for manufacturing semiconductor device, method for manufacturing display device, semiconductor device, method for manufacturing semiconductor element, and semiconductor element
KR101602251B1 (en) * 2009-10-16 2016-03-11 삼성전자주식회사 Wiring structure and method for the forming the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715997B2 (en) * 1985-04-05 1995-02-22 セイコーエプソン株式会社 Method for manufacturing semiconductor device
JPS62166568A (en) * 1986-01-20 1987-07-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH0355829A (en) 1991-03-11

Similar Documents

Publication Publication Date Title
JPS6128232B2 (en)
JPS6039866A (en) integrated semiconductor circuit
JPS6072272A (en) Manufacturing method of semiconductor device
JPH07120638B2 (en) Method for manufacturing semiconductor device
KR0161380B1 (en) Transistor of semiconductor device and manufacturing method thereof
JPH10270380A (en) Semiconductor device
JPH0194645A (en) Manufacture of semiconductor device
TW490744B (en) Semiconductor device and method of producing the same
JPH02271663A (en) Laminated two active layer memory device
JPS59195870A (en) semiconductor equipment
JPS59197162A (en) semiconductor equipment
JP2918914B2 (en) Semiconductor device and manufacturing method thereof
JPS61267365A (en) Semiconductor device
JPH0441510B2 (en)
JPS59208772A (en) Manufacture of semiconductor device
JPS63119548A (en) Manufacture of semiconductor device
JPS61135156A (en) Semiconductor device and its manufacturing method
JPH0227727A (en) Semiconductor device
JPH0466108B2 (en)
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof
JPH0754846B2 (en) Capacitor manufacturing method
JPS63293857A (en) Manufacture of semiconductor device
JPS5846651A (en) Structure of electrode wiring and its manufacture
JPS5835976A (en) Insulated gate type field-effect semiconductor device and manufacture thereof
JPH02308564A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees