[go: up one dir, main page]

JPH07119737B2 - Solute concentration measuring device - Google Patents

Solute concentration measuring device

Info

Publication number
JPH07119737B2
JPH07119737B2 JP2072994A JP7299490A JPH07119737B2 JP H07119737 B2 JPH07119737 B2 JP H07119737B2 JP 2072994 A JP2072994 A JP 2072994A JP 7299490 A JP7299490 A JP 7299490A JP H07119737 B2 JPH07119737 B2 JP H07119737B2
Authority
JP
Japan
Prior art keywords
concentration
solute
electrolyte
ion
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2072994A
Other languages
Japanese (ja)
Other versions
JPH03272449A (en
Inventor
重代記 森永
信義 伊藤
久雄 加藤
雅彦 小島
充 月東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City of Nagoya
Original Assignee
City of Nagoya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City of Nagoya filed Critical City of Nagoya
Priority to JP2072994A priority Critical patent/JPH07119737B2/en
Publication of JPH03272449A publication Critical patent/JPH03272449A/en
Publication of JPH07119737B2 publication Critical patent/JPH07119737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、測定対象溶質の定電位電解反応によって生
じるイオン濃度から対象溶質濃度を求める濃度測定装置
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a concentration measuring device for obtaining a target solute concentration from an ion concentration generated by a potentiostatic electrolysis reaction of a solute to be measured.

(従来の技術) イオンセンサによる溶媒中の特定溶質の濃度測定には、
従来、次のような装置が用いられている。
(Prior Art) To measure the concentration of a specific solute in a solvent with an ion sensor,
Conventionally, the following devices have been used.

1)溶質が電解質の場合 溶質の熱的な電離平衡反応によって生じるイオン濃度の
検出を特徴とする濃度測定装置。
1) When the solute is an electrolyte A concentration measuring device characterized by detecting the ion concentration generated by the thermal ionization equilibrium reaction of the solute.

上記イオン濃度は溶媒に溶けた溶質濃度に比例するか
ら、イオン濃度を測定すれば、対象溶質の濃度がわかる
のを測定原理としている。
Since the ion concentration is proportional to the concentration of solute dissolved in the solvent, the principle of measurement is that the concentration of the target solute can be known by measuring the ion concentration.

2)溶質が非電解質の場合 非電解質から電解質を生成する物、例えば、酵素や微生
物等がイオン感応部またはその近傍に固定されたイオン
検出部もつ濃度測定装置 非電解質から電解質を生成する物、例えば、酵素や微生
物等をイオン感応部またはその近傍に固定されている
と、非電解質の溶質に比例した電解質が生成され、この
生成された電解質の濃度に比例したイオンが熱的な電離
平衡反応によって生じ、イオン濃度測定から間接的に非
電解質の濃度が測定されている。
2) When the solute is a non-electrolyte A substance that produces an electrolyte from a non-electrolyte, for example, a concentration measuring device that has an ion detection unit fixed to or near the ion sensitive unit such as an enzyme or a microorganism that produces an electrolyte from a non-electrolyte, For example, when an enzyme or microorganism is immobilized in or near the ion-sensing part, an electrolyte proportional to the solute of the non-electrolyte is generated, and the ion proportional to the concentration of the generated electrolyte causes a thermal ionization equilibrium reaction. And the concentration of the non-electrolyte is indirectly measured by the ion concentration measurement.

(発明が解決しようとする課題) 上記の濃度測定装置は、溶質の一部が熱的に電離平衡反
応して生じるイオン濃度を測定の原理にしている。した
がって、溶質濃度の測定下限は溶質の電離度を支配する
電離定数に左右され、電離定数の小さい溶質の濃度の測
定は困難になる。
(Problems to be Solved by the Invention) The above-described concentration measuring device is based on the principle of measurement of the ion concentration generated by the thermal ionization equilibrium reaction of a part of the solute. Therefore, the lower limit of measurement of the solute concentration depends on the ionization constant that governs the ionization degree of the solute, and it becomes difficult to measure the concentration of the solute having a small ionization constant.

本願の第一の発明は、電離平衡定数の小さい溶質の濃度
測定が困難である上記の欠点を改善することを課題とし
て為したものであり、第二の発明は非電解質の濃度測定
における濃度検出感度の改善を為したものである。
The first invention of the present application is made to solve the above-mentioned drawbacks in which the concentration measurement of a solute having a small ionization equilibrium constant is difficult, and the second invention is the concentration detection in the concentration measurement of a non-electrolyte. This is an improvement in sensitivity.

(課題を解決するための手段) (一) 第一の発明の要点は、作用電極(1)とイオン
感応性電解効果型トランジスタ(以降ISFETと略称す
る)(2)のイオン感応部(3)とが近接して構成され
ることにある。
(Means for Solving the Problems) (1) The gist of the first invention is that the working electrode (1) and the ion sensitive field effect transistor (hereinafter abbreviated as ISFET) (2) ion sensitive part (3). And are configured in close proximity.

(二) 第二の発明の要点は、作用電極(1)またはIS
FET(2)のイオン感応部(3)の少なくとも何れかの
表面またはその近傍に、少なくともその何れかに、非電
解質から電解質を生成する物(11)、例えば、酵素や微
生物等の固定された作用電極(1)とISFET(2)のイ
オン感応部(3)とが近接して構成されることにある。
(2) The gist of the second invention is that the working electrode (1) or IS
A substance (11) that produces an electrolyte from a non-electrolyte, such as an enzyme or a microorganism, is immobilized on at least one surface of at least one of the ion-sensitive parts (3) of the FET (2) or in the vicinity thereof. The working electrode (1) and the ion sensitive part (3) of the ISFET (2) are arranged close to each other.

(発明の作用) 本願の第一の発明は、測定対象溶質の定電位電解によっ
て、測定対象溶質濃度に比例して生じるイオン濃度のIS
FETによる検出値から対象溶質の濃度が測定される。
(Operation of the Invention) The first invention of the present application is the IS of the ion concentration generated in proportion to the concentration of the solute to be measured by potentiostatic electrolysis of the solute to be measured.
The concentration of the target solute is measured from the detection value by the FET.

第二の発明は、測定対象の非電解質の溶質から生成され
る電解質の定電位電解によって、測定対象溶質濃度に比
例して、生じるイオン濃度のISFETによる検出値から対
象溶質の濃度が測定される。
The second invention is the constant potential electrolysis of the electrolyte generated from the solute of the non-electrolyte to be measured, the concentration of the target solute is measured from the detected value by the ISFET of the ion concentration generated in proportion to the concentration of the solute to be measured. .

(実施例) (第一発明の実施例) 図面の第1図は第一発明の実施例を示す溶質濃度測定装
置の回路である。第2図および第3図は、作用電極
(1)および対向電極(4)とISFET(2)が絶縁物
(5)で固定された溶質濃度検出部(14)の図である。
第4図および第5図は、作用電極(1)がISFET(2)
のイオン感応部3に近接して作り付けられ、対向電極
(4)がISFET(2)の装着されている絶縁基板(6)
の裏面に作り付けられて一体化された溶質濃度検出部
(14)の図である。
(Embodiment) (Embodiment of the first invention) FIG. 1 is a circuit diagram of a solute concentration measuring apparatus showing an embodiment of the first invention. 2 and 3 are views of a solute concentration detection unit (14) in which the working electrode (1), the counter electrode (4) and the ISFET (2) are fixed by an insulator (5).
4 and 5, the working electrode (1) has an ISFET (2).
Insulating substrate (6) that is built in close to the ion sensitive part 3 and has the counter electrode (4) mounted with ISFET (2)
FIG. 4 is a view of a solute concentration detection unit (14) built and integrated on the back surface of the.

第1図において、第一発明の実施例の測定回路系につい
て説明する。
Referring to FIG. 1, a measuring circuit system according to an embodiment of the first invention will be described.

比較電極(12)は作用電極(1)と溶媒(13)との界面
間の電圧を正確に測定するための電極である。
The reference electrode (12) is an electrode for accurately measuring the voltage across the interface between the working electrode (1) and the solvent (13).

測定対象溶質の電解に必要な電圧は、作用電極(1)と
対向電極(4)に印加される。設定電圧(15)で設定さ
れる作用電極(1)と比較電極(12)との電位差は、増
幅器(16)によって常に、測定対象の溶質が選択的に電
解される一定の電圧に制御される。
The voltage required for electrolysis of the solute to be measured is applied to the working electrode (1) and the counter electrode (4). The potential difference between the working electrode (1) and the reference electrode (12) set by the set voltage (15) is constantly controlled by the amplifier (16) to a constant voltage at which the solute to be measured is selectively electrolyzed. .

設定電圧(17)で設定されたISFET(2)のドレーン
(8)・ソース(9)間の電圧は増幅器(18)によって
常に一定に制御されている。
The voltage between the drain (8) and the source (9) of the ISFET (2) set by the set voltage (17) is constantly controlled by the amplifier (18).

作用電極(1)に触れた測定対象溶質は電解され、イオ
ンが生じる。このイオンに選択的に感応し濃度に応じて
ISFET(2)のイオン感応部(3)に設けたイオン選択
膜(7)と溶媒(13)との界面間に電圧が生じる。この
界面電圧とソース(9)の電圧との和の電圧がイオン選
択膜(7)とソース(9)との間に印加される。この電
圧によってチャンネル(10)に電子が誘引され、このチ
ャンネル(10)の抵抗が変化し、ドレーン(8)からソ
ース(9)へ流れる電流が変化する。この電流の変化は
測定対象の溶質の濃度に対応した出力電圧(19)となっ
て出力される。
The solute to be measured touching the working electrode (1) is electrolyzed to generate ions. Selectively responds to this ion, depending on the concentration
A voltage is generated between the interface between the ion selective membrane (7) provided in the ion sensitive part (3) of the ISFET (2) and the solvent (13). The sum of the interface voltage and the voltage of the source (9) is applied between the ion selective membrane (7) and the source (9). This voltage attracts electrons to the channel (10), changes the resistance of the channel (10), and changes the current flowing from the drain (8) to the source (9). This change in current is output as an output voltage (19) corresponding to the concentration of the solute to be measured.

第一発明による過酸化水素の濃度測定結果を第6図に示
す。第6図は水溶液中の過酸化水素の濃度変化に対する
濃度測定装置の出力電圧変化である。
The result of measuring the concentration of hydrogen peroxide according to the first invention is shown in FIG. FIG. 6 shows changes in the output voltage of the concentration measuring device with respect to changes in the concentration of hydrogen peroxide in the aqueous solution.

第1図を用いて、過酸化水素の濃度測定実施例の測定回
路系を説明する。
The measurement circuit system of the embodiment for measuring the concentration of hydrogen peroxide will be described with reference to FIG.

第1図において、溶媒(13)として脱イオン水を使用
し、室内雰囲気との平衡がとれた後に、これに過酸化水
素溶液を滴下して濃度測定装置の出力電圧(19)の変化
を調べた。
In Fig. 1, deionized water was used as the solvent (13), and after equilibration with the room atmosphere, a hydrogen peroxide solution was added dropwise to this to examine the change in the output voltage (19) of the concentration measuring device. It was

この溶質濃度検出に使用された溶質濃度検出部(14)の
構造は第2図および第3図に示す構造である。作用電極
(1)と対向電極(4)に、それぞれ、白金線を使用
し、ISFETと共にシリコン樹脂で固定された。
The solute concentration detecting section (14) used for the solute concentration detection has the structure shown in FIGS. 2 and 3. Platinum wires were used for the working electrode (1) and the counter electrode (4), and they were fixed together with ISFET with a silicone resin.

比較電極(12)として銀塩化銀電極(Ag/AgCl)を使用
した。過酸化水素の電解のために、比較電極(12)に対
して作用電極(1)が0.7Vになるように設定電圧(15)
で設定された。
A silver / silver chloride electrode (Ag / AgCl) was used as a reference electrode (12). Due to the electrolysis of hydrogen peroxide, the set voltage (15) is set so that the working electrode (1) becomes 0.7V with respect to the reference electrode (12).
Set in.

電解で生じるイオン検出のためのISFET(2)のドレー
ン(8)・ソース(9)間の電圧は設定電圧(17)によ
って1vに設定された。
The voltage between the drain (8) and the source (9) of the ISFET (2) for detecting ions generated by electrolysis was set to 1v by the set voltage (17).

第6図において、実線は本発明による測定電圧である。
破線は、作用電極(1)と対向電極(4)に電圧を印加
しない開放状態、即ち、従来のISFET(2)のみによる
濃度測定電圧である。
In FIG. 6, the solid line is the measured voltage according to the present invention.
The broken line is the open state in which no voltage is applied to the working electrode (1) and the counter electrode (4), that is, the concentration measurement voltage by only the conventional ISFET (2).

脱イオン水が過酸化水素の最初の滴下によって12ppbの
過酸化水素水溶液に変化したとき、本発明による濃度測
定装置の出力電圧(19)は10mV変化する。これに対し
て、作用電極(1)と対向電極(4)に電圧を印加しな
い開放状態(従来のISFET(2)のみによる検出状態)
では、脱イオン水が12000ppbの過酸化水素の濃度に達し
たとき、はじめて、10mvの出力電圧変化が得られた。
When the deionized water is changed to a 12 ppb aqueous solution of hydrogen peroxide by the first drop of hydrogen peroxide, the output voltage (19) of the concentration measuring device according to the present invention changes by 10 mV. On the other hand, an open state in which no voltage is applied to the working electrode (1) and the counter electrode (4) (detection state by the conventional ISFET (2) only)
Then, when the deionized water reached a hydrogen peroxide concentration of 12000 ppb, an output voltage change of 10 mv was obtained for the first time.

この結果から本発明の濃度測定装置による過酸化水素の
検出は従来のISFETのみによる検出濃度の下限の1000分
の1まで可能である。即ち、1000倍の測定感度が得られ
た。
From this result, it is possible to detect hydrogen peroxide by the concentration measuring device of the present invention up to 1/1000 of the lower limit of the concentration detected by the conventional ISFET alone. That is, the measurement sensitivity of 1000 times was obtained.

(第二発明の実施例) 第7図、第8図、第9図、第10図、第11図、第12図は、
第二発明の実施例である、非電解質の溶質濃度検出部
(14)の図である。
(Embodiment of the Second Invention) FIGS. 7, 8, 9, 10, 11 and 12 are
FIG. 7 is a diagram of a solute concentration detection unit (14) for a non-electrolyte, which is an embodiment of the second invention.

第7図、第8図、第9図、第10図は、作用電極(1)の
表面とイオン感応部(3)の近傍に非電解質から電解質
を生成する物(11)、例えば、酵素や微生物等の固定化
された膜が被覆されている非電解質の溶質濃度検出部
(14)の図である。
FIGS. 7, 8, 9, and 10 show substances (11), such as enzymes, which produce an electrolyte from a non-electrolyte near the surface of the working electrode (1) and the ion sensitive part (3). FIG. 3 is a view of a solute concentration detection unit (14) of a non-electrolyte coated with a film on which microorganisms and the like are immobilized.

第11図、第12図は、イオン感応部(3)の表面とその近
傍に非電解質から電解質を生成する物(11)、例えば、
酵素や微生物等の固定化された膜が被覆されている非電
解質の溶質濃度検出部(14)の図である。
FIG. 11 and FIG. 12 show a substance (11) that produces an electrolyte from a non-electrolyte on the surface of the ion sensitive part (3) and its vicinity, for example,
FIG. 3 is a diagram of a non-electrolyte solute concentration detection unit (14) covered with a film on which an enzyme, a microorganism, or the like is immobilized.

第二発明による非電解質の濃度の測定実施例としてグル
コースの濃度測定結果を第13図に示す。
As a working example of the measurement of the concentration of the non-electrolyte according to the second invention, the measurement result of the concentration of glucose is shown in FIG.

第13図は、溶媒(13)の脱イオン水にグルコース水溶液
を滴下した時の水槽中のグルコース濃度と濃度測定装置
の出力電圧である。
FIG. 13 shows the glucose concentration in the water tank and the output voltage of the concentration measuring device when the glucose aqueous solution was dropped into the deionized water of the solvent (13).

第1図を用いて、グルコースの濃度測定実施例の測定回
路系を説明する。
The measurement circuit system of the embodiment for measuring the concentration of glucose will be described with reference to FIG.

溶媒(13)、比較電極(12)、電解電圧は、第一発明に
よる過酸化水素の濃度測定実施例と同一である。
The solvent (13), the reference electrode (12), and the electrolysis voltage are the same as in the hydrogen peroxide concentration measurement example of the first invention.

溶質濃度の検出部(14)は第11図、第12図の構造であ
る。非電解質から電解質を生成する物(11)として、非
電解質のグルコースから電解質を生成するために作用電
極(1)またはイオン感応部(3)の近傍にグルコース
オキシダーゼを固定した。
The solute concentration detector (14) has the structure shown in FIGS. 11 and 12. As a substance (11) for producing an electrolyte from a non-electrolyte, glucose oxidase was immobilized in the vicinity of the working electrode (1) or the ion sensitive part (3) to produce an electrolyte from non-electrolyte glucose.

水溶液中のグルコースがグルコースオキシダーゼに触れ
るとこの触媒作用によってグルコースはグルコン酸と過
酸化水素に分解される。この過酸化水素の濃度はグルコ
ースの濃度に比例し、第一発明による過酸化水素の濃度
測定実施例と同様に、0.7Vの電圧が印加された作用電極
(1)に過酸化水素が触れると電気分解され、水素イオ
ンが生じる。この水素イオン濃度はグルコースの濃度に
比例し、水素イオン濃度のISFET(2)による検出値か
らグルコースの濃度が測定される。
When glucose in aqueous solution comes into contact with glucose oxidase, this catalytic action decomposes glucose into gluconic acid and hydrogen peroxide. The concentration of hydrogen peroxide is proportional to the concentration of glucose, and when hydrogen peroxide contacts the working electrode (1) to which a voltage of 0.7 V is applied, as in the hydrogen peroxide concentration measuring example according to the first invention. It is electrolyzed to generate hydrogen ions. This hydrogen ion concentration is proportional to the glucose concentration, and the glucose concentration is measured from the detection value of the hydrogen ion concentration by ISFET (2).

グルコースオキシダーゼの触媒作用で生じるイオン濃度
をISFETで検出するにはイオン濃度が小さくグルコース
濃度の測定が困難であったが、第二の発明により、第13
図のように高感度でその測定が可能になった。
Although it was difficult to measure the glucose concentration by detecting the ion concentration produced by the catalytic action of glucose oxidase by ISFET, the second invention
As shown in the figure, the measurement became possible with high sensitivity.

(発明の効果) 本願の第一の発明は、溶質の電離度を支配する電離定数
に左右されなく、電離定数の小さい溶質の低濃度測定限
界の下限を著しく下げることが可能になる。
(Effect of the Invention) The first invention of the present application does not depend on the ionization constant that governs the ionization degree of the solute, and can significantly lower the lower limit of the low concentration measurement limit of the solute having a small ionization constant.

第二の発明は、測定対象の非電解質の溶質から生成され
た電解質の定電位電解によって、測定対象溶質濃度に比
例して生じるイオン濃度のISFETによる検出値から測定
される対象溶質の低濃度測定限界の下限を下げることが
可能になる。
The second invention is a low concentration measurement of the target solute measured by the ISFET detection value of the ion concentration generated in proportion to the concentration of the measurement target solute by the constant potential electrolysis of the electrolyte generated from the solute of the non-electrolyte measurement target. It becomes possible to lower the lower limit of the limit.

【図面の簡単な説明】[Brief description of drawings]

第1図は溶質濃度測定装置の回路図 第2図は電解質の溶質濃度検出部の正面図 第3図は電解質の溶質濃度検出部の2−2′断面図 第4図は電解質の溶質濃度検出部の正面図 第5図は電解質の溶質濃度検出部の4−4′断面図 第6図は過酸化水素の濃度測定結果 第7図は非電解質の溶質濃度検出部の正面図 第8図は非電解質の溶質濃度検出部の7−7′断面図 第9図は非電解質の溶質濃度検出部の正面図 第10図は非電解質の溶質濃度検出部の9−9′断面図 第11図は非電解質の溶質濃度検出部の正面図 第12図は非電解質の溶質濃度検出部の11−11′断面図 第13図はグルコースの濃度測定結果 1は作用電極、2はISFET、3はイオン感応部、4は対
向電極、5は絶縁物、6は絶縁基板、7はイオン選択
膜、8はドレーン、9はソース、10はチャンネル、11は
非電解質から電解質を生成する物、すなわち、酵素また
は微生物の固定化膜、12は比較電極、13は溶媒、14は溶
質濃度検出部、15は電解電圧設定用電圧、16は増幅器、
17はドレーン・ソース電圧設定用電圧、18は増幅器、19
は出力電圧
FIG. 1 is a circuit diagram of a solute concentration measuring device. FIG. 2 is a front view of a solute concentration detecting portion of an electrolyte. FIG. 3 is a sectional view taken along line 2-2 ′ of a solute concentration detecting portion of an electrolyte. Fig. 5 is a sectional view of the solute concentration detector of the electrolyte, taken along line 4-4 '. Fig. 6 is the result of hydrogen peroxide concentration measurement. Fig. 7 is a front view of the solute concentration detector of the non-electrolyte Fig. 8 7-7 'cross section of non-electrolyte solute concentration detector Fig. 9 is a front view of non-electrolyte solute concentration detector Fig. 10 is cross-sectional view of non-electrolyte solute concentration detector 9-9' Fig. 11 Front view of solute concentration detector of non-electrolyte Fig. 12 is cross-sectional view of solute concentration detector of non-electrolyte 11-11 'Fig. 13 is glucose concentration measurement result 1 working electrode, 2 ISFET, 3 ion sensitive And 4 are counter electrodes, 5 is an insulator, 6 is an insulating substrate, 7 is an ion selective film, 8 is a drain, 9 is a source, and 10 is a channel. , 11 is a substance that produces an electrolyte from a non-electrolyte, that is, an immobilized membrane of an enzyme or a microorganism, 12 is a reference electrode, 13 is a solvent, 14 is a solute concentration detection unit, 15 is a voltage for setting an electrolytic voltage, 16 is an amplifier ,
17 is a drain / source voltage setting voltage, 18 is an amplifier, 19
Is the output voltage

フロントページの続き (72)発明者 月東 充 愛知県名古屋市中川区山王1丁目5番地25 号Front Page Continuation (72) Inventor Mitsuru Tsutohi 1-5-5 Sanno 1-5, Nakagawa-ku, Nagoya, Aichi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】作用電極(1)と対向電極(4)と有し、
作用電極(1)とイオン感応性電界効果型トランジスタ
(2)のイオン感応部(3)とが近接したことを特徴と
する溶質濃度測定装置。
1. A working electrode (1) and a counter electrode (4),
A solute concentration measuring device characterized in that a working electrode (1) and an ion sensitive part (3) of an ion sensitive field effect transistor (2) are close to each other.
【請求項2】作用電極(1)と対向電極(4)とを有
し、作用電極(1)またはイオン感応性電界効果型トラ
ンジスタ(2)のイオン感応部(3)の少なくとも何れ
かの表面またはその近傍に、非電解質から電解質を生成
する物(11)、すなわち、酵素や微生物の固定された作
用電極(1)とイオン感応性電界効果型トランジスタ
(2)のイオン感応部(3)とが近接したのを特徴とす
る溶質濃度測定装置。
2. A surface of a working electrode (1) or at least one of an ion-sensitive part (3) of an ion-sensitive field effect transistor (2) having a working electrode (1) and a counter electrode (4). Or in the vicinity thereof, a substance (11) that produces an electrolyte from a non-electrolyte, that is, a working electrode (1) to which an enzyme or a microorganism is immobilized and an ion-sensitive part (3) of an ion-sensitive field effect transistor (2). A solute concentration measuring device characterized by being close to each other.
JP2072994A 1990-03-22 1990-03-22 Solute concentration measuring device Expired - Fee Related JPH07119737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072994A JPH07119737B2 (en) 1990-03-22 1990-03-22 Solute concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072994A JPH07119737B2 (en) 1990-03-22 1990-03-22 Solute concentration measuring device

Publications (2)

Publication Number Publication Date
JPH03272449A JPH03272449A (en) 1991-12-04
JPH07119737B2 true JPH07119737B2 (en) 1995-12-20

Family

ID=13505477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072994A Expired - Fee Related JPH07119737B2 (en) 1990-03-22 1990-03-22 Solute concentration measuring device

Country Status (1)

Country Link
JP (1) JPH07119737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238715B2 (en) 2003-12-15 2009-03-18 富士ゼロックス株式会社 Electrochemical measurement electrode
JP4238716B2 (en) 2003-12-15 2009-03-18 富士ゼロックス株式会社 Electrode for electrochemical measurement and manufacturing method thereof

Also Published As

Publication number Publication date
JPH03272449A (en) 1991-12-04

Similar Documents

Publication Publication Date Title
US4571292A (en) Apparatus for electrochemical measurements
KR960004971B1 (en) Biosensor with ion-sensitive field-effect transistor
Sohn et al. ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers
Asif et al. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET
JPH05503580A (en) Polarographic chemical sensor with external reference electrode
CN105116028B (en) Lactic biological sensor of graphene modified and preparation method thereof
Vasjari et al. Amino acid determination using screen-printed electrochemical sensors
US20030205465A1 (en) Chloramine amperometric sensor
EP0345347B1 (en) Fet electrode
CN113588753A (en) Ion selective electrode current detection method
JPH0731154B2 (en) Device for measuring the concentration of a substance in a solution
Kuramitz et al. Electrochemical sensing of avidin–biotin interaction using redox markers
US20070000778A1 (en) Multi-parameter sensor with readout circuit
Alonso-Lomillo et al. CYP450 biosensors based on gold chips for antiepileptic drugs determination
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
JPH07119737B2 (en) Solute concentration measuring device
Cui et al. Differential Thick‐Film Amperometric Glucose Sensor with an Enzyme‐Immobilized Nitrocellulose Membrane
Shi et al. Electrochemical behavior and determination of guanosine-5′-monophosphate on a ionic liquid modified carbon electrode
Hendrikse et al. The EMOSFET as a potentiometric transducer in an oxygen sensor
NL8600872A (en) FIELD EFFECT TRANSISTOR, EQUIPPED WITH A MEMBRANE COVERED BY THE GATE ISOLATOR.
JPS61176846A (en) Ion sensor body
RU2731411C1 (en) Biosensor with high sensitivity factor
Van den Vlekkert Ion-sensitive field effect transistors
JPH0718835B2 (en) Ion concentration measurement method
KR20240054658A (en) Test solution concentration sensor, method for manufacturing the same, and test solution concentration sensing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees