[go: up one dir, main page]

JPH0711969B2 - Metal-halogen secondary battery - Google Patents

Metal-halogen secondary battery

Info

Publication number
JPH0711969B2
JPH0711969B2 JP58049386A JP4938683A JPH0711969B2 JP H0711969 B2 JPH0711969 B2 JP H0711969B2 JP 58049386 A JP58049386 A JP 58049386A JP 4938683 A JP4938683 A JP 4938683A JP H0711969 B2 JPH0711969 B2 JP H0711969B2
Authority
JP
Japan
Prior art keywords
fiber
electrode
battery
halogen
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58049386A
Other languages
Japanese (ja)
Other versions
JPS59173963A (en
Inventor
将慶 島田
康広 飯▲塚▼
鉄夫 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Toyobo Co Ltd
Original Assignee
Meidensha Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Toyobo Co Ltd filed Critical Meidensha Corp
Priority to JP58049386A priority Critical patent/JPH0711969B2/en
Publication of JPS59173963A publication Critical patent/JPS59173963A/en
Publication of JPH0711969B2 publication Critical patent/JPH0711969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属−ハロゲン二次電池に関するものであり、
さらに詳しくは特定の多孔質炭素繊維織布や編地状布帛
等を正極に適用した2次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal-halogen secondary battery,
More specifically, it relates to a secondary battery in which a specific porous carbon fiber woven fabric, knitted fabric or the like is applied to the positive electrode.

[従来の技術] 1973年のエネルギー危機以来エネルギー問題が広く各層
で認識される様になってきた。新しいエネルギー源の開
発と同時に発生したエネルギーを有効に利用するエネル
ギーの変換,貯蔵,輸送,利用を含めたシステムの開発
も重要になってきている。貯蔵を例にとれば、将来電源
構成で大きな比重を占めると予想されている原子力,石
炭火力等の大型発電では一定の出力を保って定常発電す
ることが高い効率を保つ上で必要であり、夜間の余剰電
力を適切に貯蔵して昼間の需要増大時にこれを放出し、
需要の変動に対応させる(ロードレベリング)ことので
きる電力貯蔵技術への要求が強くなってきている。現在
でも主要発電設備年間稼働率は60%を切っており低下が
続いている。電力貯蔵の方法には、実用化されてはいる
が送電によるロスがあり、立地に制約の加わってきてい
る揚水発電の他に、新型2次電池,フライホイール,圧
縮空気,超電導の各種の方法が検討されている。
[Conventional technology] Since the energy crisis of 1973, energy problems have been widely recognized by various layers. At the same time as the development of new energy sources, it is becoming important to develop systems that include the conversion, storage, transportation, and use of energy that effectively uses the energy generated. Taking storage as an example, in large-scale power generation such as nuclear power and coal-fired power, which is expected to occupy a large proportion in the future power supply composition, it is necessary to maintain constant output and perform steady power generation in order to maintain high efficiency. Properly store surplus electricity at night and release it when demand increases during the day,
There is an increasing demand for a power storage technology capable of responding to fluctuations in demand (load leveling). Even now, the annual operating rate of major power generation facilities is below 60% and is continuing to decline. Electric power storage methods have been put into practical use, but there are losses due to power transmission, and in addition to pumped-storage power generation, which places restrictions on locations, various methods such as new secondary batteries, flywheels, compressed air, and superconductivity Is being considered.

[発明が解決しようとする課題] 就中、新型電池による電気化学操作が有力であり、ここ
当分の間輸送を含めた解決システムとして揚水発電に替
る最も実現性の高い方式と考えられている。又新型2次
電池は、太陽光,風力、波力等の自然エネルギーを利用
した発電のバックアップ装置、或いは電気自動車用電池
としても期待が寄せられている。
[Problems to be Solved by the Invention] Above all, electrochemical operation using a new battery is predominant, and is considered to be the most viable method to replace pumped storage power generation as a solution system including transportation for the time being. Further, the new type secondary battery is expected to be used as a backup device for power generation using natural energy such as sunlight, wind power, and wave power, or as a battery for electric vehicles.

上記目的に適用できる2次電池として、鉛蓄電池,ナト
リウム−硫黄電池,リチウム−硫化鉄電池,金属−ハロ
ゲン電池、レドックスフロー形電池等が開発されてい
る。この中でも亜鉛−ハロゲン電池は、液循環型であ
り、電池出力を調整しやすいこと、低温作動水溶液系電
池で保守管理が容易なこと、電池容量を液槽容量にて簡
単に調整できること、両極活物質は資源的に豊富であ
り、かつ安価であること、理論エネルギー密度が高いこ
と、電池反応が簡単なため電池構成が単純で安価な材料
を用いて作れること、等の秀れた特徴をもつため近年急
速に開発が進められている。
Lead storage batteries, sodium-sulfur batteries, lithium-iron sulfide batteries, metal-halogen batteries, redox flow batteries, etc. have been developed as secondary batteries applicable to the above purpose. Among them, the zinc-halogen battery is a liquid circulation type, it is easy to adjust the battery output, maintenance is easy with a low-temperature operating aqueous solution battery, the battery capacity can be easily adjusted with the liquid tank capacity, and both polarities are active. Substances are abundant in resources and inexpensive, have a high theoretical energy density, and have a simple battery reaction so that the battery configuration is simple and can be made from inexpensive materials. Therefore, development has been rapidly advanced in recent years.

しかし金属−ハロゲン電池を実用化するためには、いく
つかの解決しなければならない問題点も存在し、その中
でも放電時正極(ハロゲン極)におけるハロゲンの還元
反応をいかにして、迅速かつ有効に進行させるかが、直
接電池のエネルギー効率に影響するため、重要な技術的
課題となっている。従来正極電極として用いられている
Pt板にかわる安価な例としては、導電性粉末カーボンと
粉末樹脂との混合物が加熱プレス成形した薄板状カーボ
ンプラスチック電極板や炭素焼結板があるが、これらの
電極では放電が進み正極活物質の濃度が下がってくる
と、電位の落ち込みが著しく、電池のエネルギー効率は
低い値にとどまっていた。特に高電流密度放電で著しい
電位の低下が認められた。
However, there are some problems that must be solved in order to put the metal-halogen battery into practical use. Among them, how to reduce the halogen reduction reaction at the positive electrode (halogen electrode) during discharge, quickly and effectively Whether to proceed or not directly affects the energy efficiency of the battery, which is an important technical issue. Conventionally used as a positive electrode
As an inexpensive example to replace the Pt plate, there is a thin carbon plastic electrode plate or carbon sintered plate in which a mixture of electrically conductive powder carbon and powder resin is heat press molded, but discharge progresses at these electrodes and the positive electrode active material When the concentration of the was lowered, the potential dropped remarkably, and the energy efficiency of the battery remained at a low value. In particular, a marked decrease in potential was observed with high current density discharge.

[課題が解決するための手段] 本発明者等は、かかる従来のカーボンプラスチック電極
や炭素焼結板に付随する種々の欠点を改善すべく鋭意研
究の結果本発明に到達した。
[Means for Solving the Problems] The inventors of the present invention have arrived at the present invention as a result of intensive research to improve various drawbacks associated with such conventional carbon plastic electrodes and carbon sintered plates.

即ち、本発明は正極として直径30〜1000Åの範囲の細孔
容積を0.1c.c./g以上有し、かつ単繊維の電気比抵抗が
5×10-2Ω・cm以下である多孔質炭素繊維を含み、繊維
密度が0.1g/c.c.以上の織布や編地状布帛を前記のカー
ボンプラスチック電極板や炭素焼結板等の如き電極基材
の表面に接合したものを用いることを特徴とする金属−
ハロゲン二次電池である。
That is, the present invention provides a porous carbon fiber as a positive electrode, which has a pore volume of 0.1 cc / g or more in the diameter range of 30 to 1000Å and an electric resistivity of a single fiber of 5 × 10 −2 Ω · cm or less. A metal having a fiber density of 0.1 g / cc or more and a woven cloth or knitted cloth bonded to the surface of an electrode substrate such as the carbon plastic electrode plate or the carbon sintered plate. −
It is a halogen secondary battery.

[作用] 前記カーボンプラスチック電極や炭素焼結板におけるハ
ロゲンの還元反応が進まないのは、電極表面が平滑で実
反応表面積が小さいため、ハロゲン濃度が低下するとハ
ロゲンの電極表面への拡散量、吸着量が減少し、いわゆ
る分極が生じるためと考えられる。そこで本発明者ら
は、例えば各種方法でカーボンプラスチック電極の表面
をエッチングして表面積を上げたり、粉状カーボンに替
えて粉末活性炭を用いた電極を試作したが効果は少なか
った。ところが本発明の様に、多孔質炭素繊維よりなる
織布や編地状布帛を例えば前記カーボンプラスチック板
あるいは炭素焼結板よりなる電極基材の表面に接合した
電極を作製し、金属−ハロゲン2次電池に使用し充放電
を行なったところ、ハロゲン濃度が低下しても正極電位
は極めて高く、又電池のエネルギー効率も著しく向上し
た。しかも細孔直径30〜1000Åの細孔容積を0.1c.c./g
以上有し単繊維の比抵抗が5×10-2Ω・cm以下である多
孔質炭素繊維からなり、かつ繊維密度0.1g/c.c.以上の
織布や編地状布帛を用いたとき、電圧,電流効率とも秀
れた値が得られ、高価な白金板に劣らない電極性能を示
すことが分かった。即ち、直径30Åに満たないいわゆる
ミクロポアの分布が主体となると、細孔径が小さいので
ハロゲン化金属塩の水溶液に溶解しているハロゲンの細
孔内拡散係数が小さく、電極反応に有効に働かない。又
細孔径が1000Åを越す細孔が主体となると、多孔質炭素
繊維全体の表面積が小さくなってしまうので好ましくな
い。さらに直径30〜1000Åの範囲の細孔容積が0.1c.c./
gに満たない多孔質炭素繊維からなるシート状物特に不
織布の場合は、単位体積当たりの表面積が小さく本発明
の効果が得られない。
[Operation] The reduction reaction of halogen in the carbon plastic electrode or the carbon sintered plate does not proceed because the surface of the electrode is smooth and the actual reaction surface area is small, so that when the halogen concentration decreases, the amount of halogen diffusion and adsorption to the electrode surface It is considered that the amount decreases and so-called polarization occurs. Therefore, the inventors of the present invention, for example, etched the surface of the carbon plastic electrode by various methods to increase the surface area, or produced an electrode using powdered activated carbon instead of powdered carbon, but the effect was small. However, as in the present invention, an electrode in which a woven cloth or knitted cloth made of porous carbon fibers is bonded to the surface of an electrode base material made of, for example, the carbon plastic plate or the carbon sintered plate is prepared, and metal-halogen 2 When the battery was used for the next battery and charged and discharged, the positive electrode potential was extremely high even when the halogen concentration was lowered, and the energy efficiency of the battery was significantly improved. Moreover, the pore volume of 30 to 1000Å is 0.1cc / g.
When a woven fabric or knitted fabric made of porous carbon fiber having a specific resistance of 5 × 10 −2 Ω · cm or less and having a fiber density of 0.1 g / cc or more is used, voltage, It was found that excellent current efficiency values were obtained and that the electrode performance was comparable to that of expensive platinum plates. That is, when the distribution of so-called micropores having a diameter of less than 30Å becomes the main, the pore diameter is so small that the diffusion coefficient of the halogen dissolved in the aqueous solution of the metal halide salt is too small to effectively work in the electrode reaction. Further, if the pores having a pore diameter of more than 1000Å are mainly used, the surface area of the entire porous carbon fiber becomes small, which is not preferable. Furthermore, the pore volume in the diameter range of 30 to 1000Å is 0.1cc /
In the case of a sheet-like material made of a porous carbon fiber having less than g, especially a nonwoven fabric, the surface area per unit volume is small and the effect of the present invention cannot be obtained.

又単繊維の電気比抵抗は、通常の多孔質炭素繊維の場合
10-1Ω・cm近辺であり、これらの単繊維からなるシート
状物を使用すると、電池の内部抵抗が高くなり、好まし
くない。単繊維比抵抗が5×10-2Ω・cm以下の多孔質炭
素繊維からなるシート状物を使用して極めて電圧効率の
高い電池が得られる。かつ単繊維比抵抗が5×10-2Ω・
cm以下の多孔質炭素繊維シート状物を用いると、電池内
部抵抗の減少と共に電極表面における、ハロゲンの還元
反応速度が上昇し、電極電位が向上するものも見逃せな
い重要な利点であることが分かった。又繊維密度が0.1g
/c.c.に満たない場合は繊維間の接触が少なく、電気抵
抗が増し、電池の内部抵抗の増加につながり、電圧効率
が低下するので好ましくない。さらに繊維密度が0.1g/
c.c.に満たない場合には、電極作製時に繊維の脱落が生
じ易く加工上も問題が生じる。
The electrical resistivity of monofilament is the same as that of ordinary porous carbon fiber.
It is in the vicinity of 10 −1 Ω · cm, and it is not preferable to use a sheet-like material made of these single fibers because the internal resistance of the battery becomes high. A battery with extremely high voltage efficiency can be obtained by using a sheet-like material made of porous carbon fiber having a single fiber specific resistance of 5 × 10 −2 Ω · cm or less. And the specific resistance of single fiber is 5 × 10 -2 Ω ・
It was found that the use of a porous carbon fiber sheet having a size of cm or less increases the reduction reaction rate of halogen on the electrode surface as well as the internal resistance of the battery, increasing the electrode potential is an important advantage that cannot be overlooked. It was Fiber density is 0.1g
If it is less than / cc, there is less contact between fibers, the electrical resistance increases, the internal resistance of the battery increases, and the voltage efficiency decreases, which is not preferable. Furthermore, the fiber density is 0.1 g /
If it is less than cc, fibers are likely to fall off during the production of the electrode, which causes a problem in processing.

本発明で使用する原料繊維としては、炭化可能なもので
あればよいが、炭化のし易さ、多孔性の発達のさせ易
さ、多孔質炭素繊維の強伸度等の点からセルロース系,
アクリル系,フェノール系,石油及び石炭ピッチ系の繊
維が有利に使用できる。
The raw material fiber used in the present invention may be carbonizable as long as it is a cellulosic fiber from the viewpoints of easiness of carbonization, easiness of development of porosity, strength and elongation of porous carbon fiber, and the like.
Acrylic, phenolic, petroleum and coal pitch fibers can be used advantageously.

多孔質炭素繊維からなる織布とは、多孔質炭素単繊維を
複数本集束した多孔質炭素糸が縦・横に交錯してなる布
状物のことである。例えば炭化可能な原料有機物からな
る紡績糸或いは、フィラメント糸を縦・横に交錯して作
った布状物を出発材料としてこれに耐炎化,炭化,多孔
質化を行なって多孔質炭素繊維からなる織布を作ること
もできるし、炭化或いは多孔質化した段階の糸を布状に
織って作ることもできる。織り組織は通常用いられてい
るものであれば何れでもよく、例えば平織,綾織,梨
地,朱子織等を選ぶことができる。
The woven fabric made of porous carbon fibers is a cloth-like product in which porous carbon yarns in which a plurality of porous carbon single fibers are bundled are crossed vertically and horizontally. For example, a spun yarn made of organic material that can be carbonized or a cloth-like product made by crossing filament yarns in the longitudinal and transverse directions is used as a starting material, which is flame-resistant, carbonized, and made porous to be made of porous carbon fiber. It is possible to make a woven cloth, or it is possible to make a cloth by weaving the carbonized or porous yarn. Any woven structure may be used as long as it is commonly used, and for example, plain weave, twill weave, satin weave, satin weave and the like can be selected.

又多孔質炭素繊維からなる編地状の布帛とは、炭化可能
な原料有機物からなる紡績或いはフィラメント糸を丸編
地,経編地とし例えばダブルデンピー、ダブルコード、
ハーフ、ハーフバック、インターロック、ジャガード、
モックローディング、リブ等の組織をもつ布帛を耐炎
化,炭化,多孔質化を行なって得られる原組織を保った
多孔質炭素繊維布帛を意味する。
A knitted fabric made of porous carbon fibers means a spun or filament yarn made of a carbonizable raw material organic material as a circular knitted fabric or a warp knitted fabric, for example, double dampey, double cord,
Half, half back, interlock, jacquard,
It means a porous carbon fiber cloth that maintains the original structure obtained by subjecting a cloth having a structure such as mock loading and ribs to flame resistance, carbonization and porosity.

前記有機質繊維又はシート状物を耐炎化,炭化する方法
は夫々の繊維を構成する有機物に応じて適切な方法を選
択しなければならない。特に耐炎化は公知の様に注意が
必要である。多孔性をもたせる方法としては、最終的に
繊維が細孔直径30〜1000Åの範囲の細孔容積を0.1c.c./
g以上有するものとする方法であればいずれでもよい。
多孔質有機単繊維からなる糸又は布帛を耐炎化,炭化し
て多孔質炭素繊維布帛を得てもよい。又活性炭素繊維を
得る方法として使われる水蒸気,炭酸ガス,酸素による
400〜1000℃の温度での賦活法は最も簡単な方法として
有効である。又特願昭56-114648号に記載されている金
属触媒を用いた賦活法もこの目的には特に有利に使用で
きる。
As a method for flameproofing and carbonizing the above-mentioned organic fibers or sheets, an appropriate method must be selected according to the organic matter constituting each fiber. In particular, it is necessary to pay attention to flame resistance as is well known. As a method of imparting porosity, finally, the fiber has a pore volume in the range of 30 to 1000 Å and a pore volume of 0.1 cc /
Any method may be used as long as it has g or more.
A porous carbon fiber cloth may be obtained by flameproofing and carbonizing a yarn or cloth made of porous organic single fibers. Also, as a method of obtaining activated carbon fiber
The activation method at a temperature of 400 to 1000 ° C is effective as the simplest method. The activation method using a metal catalyst described in Japanese Patent Application No. 56-114648 can also be used particularly advantageously for this purpose.

炭素繊維のエッチングとして前述の様な酸化性ガスによ
る方法を挙げたが、他の方法も湿式,乾式を問わず使用
できるのは勿論である。
As the etching of the carbon fibers, the method using the oxidizing gas as described above is mentioned, but it goes without saying that other methods can be used both wet and dry.

又単繊維の電気比抵抗を5×10-2Ω・cm以下とし、電池
内部抵抗の減少、正極でのハロゲンの酸化還元反応速度
を上げるには、多孔質化を行なった後不活性ガス中1000
℃以上の高温処理を行なってもよいし、逆に不活性ガス
中高温処理を行なった炭素繊維群に多孔質化を施しても
よい。
In order to reduce the internal resistance of the battery and increase the redox reaction rate of halogen at the positive electrode, the electrical resistivity of the single fiber should be 5 × 10 -2 Ω · cm or less. 1000
A high temperature treatment of not less than 0 ° C may be performed, or conversely, a carbon fiber group that has been subjected to a high temperature treatment in an inert gas may be made porous.

本発明における多孔質炭素繊維の細孔直径及び細孔容積
は、直径30〜300Åの範囲は常圧下の液体窒素の沸点に
おける吸着側の窒素ガス吸着等温線を用いてクランスト
ン−インクレー(Cranston-InKIey)の計算法により求
め、直径300〜1000Åの範囲は水銀圧入ポロシメーター
によって測定したものを用い、30〜1000Åの細孔溶液
(以下▲TPV1000 30▼と略す)は両者の和によって算出
したものである。なお窒素吸着における多分子吸着層厚
(t)と相対圧(P/Ps)の関係は t(Å)=4.3[5/ln(Ps/P)]1/3 なるフレンケル−ハルシー(FrenkeI-Halsey)の式を採
用した。
The pore diameter and the pore volume of the porous carbon fiber in the present invention are in the range of diameter 30 to 300 Å using the adsorption side nitrogen gas adsorption isotherm at the boiling point of liquid nitrogen under normal pressure by using Cranston-Incray (Cranston- InKIey) calculation method, the range of diameter 300-1000Å is measured by mercury porosimetry, and the pore solution of 30-1000Å (hereinafter abbreviated as ▲ TPV 1000 30 ▼) is calculated by the sum of both. Is. Note that the relationship between the thickness of the multi-molecular adsorption layer (t) and the relative pressure (P / Ps) in nitrogen adsorption is t (Å) = 4.3 [5 / ln (Ps / P)] 1/3 Frenkel-Halsey ) Was adopted.

又多孔質炭素繊維の電気比抵抗は次の様にして測定し
た。
The electrical resistivity of the porous carbon fiber was measured as follows.

サンプリングした単繊維を適当本数ひき揃え、両端を導
電性接着剤にて固定し、通電して、接着剤間の電圧及び
電流値から繊維の抵抗R(Ω)を求める。又導電性接着
剤間の長さL(cm)を測る。単繊維が屈曲している場合
は、顕微鏡等にて実質繊維長を求める。次に繊維を取り
はずし、顕微鏡にて繊維方法と垂直な方向の断面積の総
計S(cm2)を求め、次式によって繊維方向の電気比抵
抗P(Ω・cm)を算出する。
An appropriate number of sampled monofilaments are lined up, both ends are fixed with a conductive adhesive, electricity is applied, and the resistance R (Ω) of the fiber is determined from the voltage and current values between the adhesives. Also, measure the length L (cm) between the conductive adhesives. When the single fiber is bent, the substantial fiber length is obtained with a microscope or the like. Next, the fibers are removed, and the total cross-sectional area S (cm 2 ) in the direction perpendicular to the fiber method is obtained by a microscope, and the electrical resistivity P (Ω · cm) in the fiber direction is calculated by the following formula.

但し測定は前項と同じ乾燥を行なったものを室温、相対
湿度5%以下の乾燥雰囲気下で行なうものとする。
However, the measurement is carried out by performing the same drying as in the previous section in a dry atmosphere at room temperature and a relative humidity of 5% or less.

以下実施例について本発明をさらに詳しく説明するが、
本発明は実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The invention is not limited to the examples.

[実施例] 比較例1 導電性カーボン粉末を30重量%となる様に、ポリオレフ
ィン系樹脂粉末と均一に混合したものを、樹脂の軟化点
より10℃高めに設定した金型の底に一定厚みになる様に
敷いた後、熱プレスして厚さ1.0mm大きさ10cm角のカー
ボンプラスチックプレートを作製した。このプレートを
陽イオン交換樹脂膜をセパレーターとする流通型電解槽
の一室に設置して正極とし、一方他室には99.99%圧延
亜鉛板を設置して負極とした。この電解槽負極室に臭化
亜鉛濃度3.0mol/l、塩化カリウム濃度4.0mol/lの一定量
の電解液を循環し、一方正極室には臭化亜鉛と塩化カリ
ウムは負極液と同濃度だが、臭素3.0mol/lを含む電解液
を循環させ、40mA/cm2の電流密度で定量流放電を常温に
て行ない、正極電解液中の臭素濃度とルギン毛管を有す
るAg/AgCl電極を参照電極として正極の単極電位を観測
した。結果を第1表に示す。正極に白金板を使用したと
きの結果も合わせ載せる。
[Examples] Comparative Example 1 A mixture of conductive carbon powder and polyolefin resin powder was uniformly mixed so that the amount of the conductive carbon powder was 30% by weight, and a fixed thickness was provided on the bottom of a mold set at 10 ° C higher than the softening point of the resin. Then, it was hot-pressed to prepare a carbon plastic plate having a thickness of 1.0 mm and a size of 10 cm square. This plate was placed in one chamber of a flow-through type electrolytic cell having a cation exchange resin membrane as a separator to serve as a positive electrode, while a 99.99% rolled zinc plate was placed in another chamber to serve as a negative electrode. A certain amount of electrolytic solution of zinc bromide concentration of 3.0 mol / l and potassium chloride concentration of 4.0 mol / l was circulated in the electrolytic cell negative electrode chamber, while zinc bromide and potassium chloride had the same concentration as the negative electrode liquid in the positive electrode chamber. , Circulate an electrolyte solution containing 3.0 mol / l bromine, and carry out a constant flow discharge at a current density of 40 mA / cm 2 at room temperature. The bromine concentration in the positive electrode electrolyte solution and an Ag / AgCl electrode with a Luggin capillary are used as reference electrodes. As a result, the unipolar potential of the positive electrode was observed. The results are shown in Table 1. The result of using a platinum plate for the positive electrode is also shown.

臭素濃度が2.0M/lの値は放電初期に相当し、0.5M/lは放
電末期に相当する。カーボンプラスチック電極は放電末
期における電位の落ち込みが大きいことが分かる。
A bromine concentration of 2.0 M / l corresponds to the initial stage of discharge, and 0.5 M / l corresponds to the final stage of discharge. It can be seen that the carbon plastic electrode has a large potential drop at the end of discharge.

比較例2 単繊維2.0dの再生セルロース繊維よりなる番手の異なる
紡績糸を使った目付の異なる綾織物を数種用意した。又
単糸を2.0dの再生セルロース繊維よりなる番手の異なる
紡績糸を使い両面編地を編成し、目付の異なる数種の編
地状布帛を用意した。
Comparative Example 2 Several kinds of twill fabrics having different basis weights were prepared using spun yarns having different counts and made of regenerated cellulose fibers having a single fiber of 2.0d. Also, double-sided knitted fabrics were knitted using spun yarns composed of 2.0d regenerated cellulose fibers having different counts as single yarns, and several knitted fabrics having different basis weights were prepared.

これら織布及び編地を、第二リン酸アンモニウムの水溶
液に浸漬、絞り後、乾燥することによって、第二リン酸
アンモニウムを繊維重量に対して10%含浸させた後270
℃の不活性ガス気流中で30分加熱し、続いて270℃から8
50℃まで約90分を要して昇温し、さらに水蒸気を40容量
%含むガス流中で30分処理を行ない、目付45〜50g/cm2
となった多孔質炭素繊維織布をA、編地をMとした。又
水蒸気賦活時間を60分として、A、Mと同程度の目付と
なった織布をB、編地をNとした。さらに布帛A、Mを
得たと同一処理を、B、Nを得た原料布帛に施し、得ら
れた多孔質炭素繊維布帛を塩化鉄水溶液に浸漬し、夫々
Feとして4.3、4.7重量%に相当する塩化鉄を含浸させ、
乾燥後、水蒸気を40容量%含む窒素ガス気流中で100℃
より850℃までもたらし、15分保持後、不活性ガス中で
冷却し、1N-HCl液で洗浄後、水洗乾燥して得た目付45〜
50g/cm2の多孔質炭素繊維織布をC、編地をPとした。
以上得られた多孔質炭素繊維布帛A、B、C、M、N、
Pを、前記比較例1で述べた金型の底に敷き、この上に
同じく比較例1で使用したカーボンプラスチック粉末混
合品を均一厚みにしてのせ、熱プレスして厚さ1mm大き
さ10cm角のカーボンプラスチック板の表面に多孔質炭素
繊維布帛が接合された電極(正極)を作製した。
These woven fabrics and knitted fabrics are immersed in an aqueous solution of dibasic ammonium phosphate, squeezed, and dried to impregnate the dibasic ammonium phosphate with 10% of the weight of the fiber, and then 270
Heat in an inert gas stream at 30 ° C for 30 minutes, then from 270 ° C to 8 ° C.
It takes about 90 minutes to raise the temperature to 50 ° C, and then it is treated for 30 minutes in a gas flow containing 40% by volume of steam, with a basis weight of 45 to 50 g / cm 2
The resulting porous carbon fiber woven fabric was designated as A, and the knitted fabric was designated as M. Further, the steam activation time was set to 60 minutes, and the woven fabric having the same basis weight as A and M was set to B, and the knitted fabric was set to N. Further, the same treatments as those for obtaining the fabrics A and M are applied to the raw fabrics for obtaining the B and N, and the obtained porous carbon fiber fabric is dipped in an aqueous solution of iron chloride.
Impregnated with iron chloride equivalent to 4.3 and 4.7 wt% as Fe,
After drying, 100 ° C in a nitrogen gas stream containing 40% by volume of steam
More than 850 ℃, hold for 15 minutes, cooled in an inert gas, washed with 1N-HCl solution, washed with water and dried.
The porous carbon fiber woven fabric of 50 g / cm 2 was designated as C, and the knitted fabric was designated as P.
The porous carbon fiber cloths A, B, C, M, N, obtained as described above,
P was laid on the bottom of the mold described in Comparative Example 1 and the carbon plastic powder mixture used in Comparative Example 1 was also applied to the same to give a uniform thickness, which was hot pressed to a thickness of 1 mm and a size of 10 cm square. An electrode (positive electrode) in which a porous carbon fiber cloth was bonded to the surface of the carbon plastic plate of was produced.

これら本発明になる電極を正極として用いた亜鉛−臭素
電池の放電実験を比較例1と同様に行ない第2表の如き
結果を得た。
A discharge experiment of a zinc-bromine battery using these electrodes according to the present invention as a positive electrode was conducted in the same manner as in Comparative Example 1, and the results shown in Table 2 were obtained.

実施例1 比較例2で得た布帛A、B、C、M、N、Pを、不活性
ガス中、1050℃の熱処理を施し、夫々AH、BH、CH、MH、
NH、PHなる布帛を得た。いずれの布帛も若干の減量と収
縮を示し、相殺し合って密度は殆ど変わらなかった。又
▲TPV3000 30▼については全く変化がなかった。しかし
電気比抵抗は著しい低下を示した。比較例2における布
帛と同様の電池テストを行なった結果を第3表にのせ
る。本発明にかかる電極のうちBH、CH、PH等の布帛を接
合した電極はすでにPt板の性能を上回っていることが分
かる。
Example 1 The fabrics A, B, C, M, N and P obtained in Comparative Example 2 were heat-treated at 1050 ° C. in an inert gas to give AH, BH, CH and MH, respectively.
Fabrics called NH and PH were obtained. All of the fabrics showed some weight loss and shrinkage, which offset each other and the density remained almost unchanged. There was no change in ▲ TPV 3000 30 ▼. However, the electrical resistivity showed a remarkable decrease. Table 3 shows the results of the same battery test as for the cloth in Comparative Example 2. It can be seen that among the electrodes according to the present invention, the electrode to which the cloth such as BH, CH, PH or the like is bonded has already exceeded the performance of the Pt plate.

ここで前記第2表(比較例)と第3表(実施例)を対比
検討すると、次の様に総括することができる。尚対比に
当たっては、細孔容積が本発明の条件を満足しないもの
(布帛A,M,AH,MH)は対象外とした。即ち細孔容積は本
発明の条件を満足するが単繊維比抵抗は本発明の条件を
満足しないもの(布帛B,C,N,P:以下比較例グループとい
う)に対して、細孔容積及び単繊維比抵抗の両方共本発
明条件を満足するもの(布帛BH,CH,NH,PH:以下実施例グ
ループという)ではどの様に改善されているかを検討し
た。
Here, by comparing Table 2 (Comparative Example) with Table 3 (Example), it can be summarized as follows. For comparison, those whose pore volume did not satisfy the conditions of the present invention (fabrics A, M, AH, MH) were excluded. That is, the pore volume satisfies the conditions of the present invention, but the single fiber specific resistance does not satisfy the conditions of the present invention (fabric B, C, N, P: hereinafter referred to as Comparative Example group), It was examined how the single fiber specific resistances satisfying the conditions of the present invention (fabric BH, CH, NH, PH: hereinafter referred to as Example group) were improved.

I.比較例グループ 放電初期の電位平均 放電末期の電位平均 放電初期から放電末期への電位低下率 II.実施例グループ 放電初期の電位平均 放電末期の電位平均 放電初期から放電末期への電位低下率 上記計算結果を対比すれば明らかである様に、放電末期
の電位は本発明のものが優位に高く改善(0.64→0.74)
されており、また初期から末期への電位低下率も本発明
では優位に抑制(18%→10%)されている。従ってこの
様に優れた電極基材を多数組付けて構成される電池は、
エネルギー効率が格段に優れたものとなることが理解さ
れる。
I. Comparative example group Potential average at the beginning of discharge Average potential at end of discharge Rate of potential decrease from the initial stage of discharge to the final stage of discharge II. Example group Potential average at the beginning of discharge Average potential at end of discharge Rate of potential decrease from the initial stage of discharge to the final stage of discharge As is clear from comparison of the above calculation results, the potential at the end of discharge is significantly improved by the invention (0.64 → 0.74).
In addition, the potential reduction rate from the initial stage to the final stage is significantly suppressed (18% → 10%) in the present invention. Therefore, a battery constructed by assembling a number of such excellent electrode base materials is
It is understood that the energy efficiency will be much better.

比較例3 実施例1で用いたと同種の単繊維太さ2.0d、長さ76mmの
再生セルロース繊維を原料とし、130g/m2目付の不織布
をニードルパンチ法で製造し、実施例1と同じ方法で耐
炎剤処理及び耐炎化処理を行なった後、850℃で時間を
変えて水蒸気賦活を行なって、目付60g/m2、43g/m2の二
種の活性炭素繊維不織布S、Tを得た。不織布Sについ
て酢酸マグネシウムの溶液に浸漬し、絞り後乾燥してマ
グネシウムとして3.2重量%に相当する酢酸マグネシウ
ムを添着させ、水蒸気を40容量%含む窒素ガス中で100
℃より850℃までもたらし、10分間保持した後窒素気流
中で冷却して、酸洗浄、水洗を行なって活性炭素繊維不
織布Uを得た。不織布Uの一部を不活性ガス中1050℃の
熱処理を施し、冷却して不織布Uを得た。活性炭素繊維
不織布T、U、UHについて、比較例2と同じ方法で電極
板を作製し、放電実験を行なった。
Comparative Example 3 A non-woven fabric having a weight per unit area of 130 g / m 2 was manufactured by a needle punching method using a regenerated cellulose fiber having the same single fiber thickness of 2.0 d and a length of 76 mm used in Example 1 as a raw material, and the same method as in Example 1 was used. After performing the flameproofing treatment and the flameproofing treatment at 850 ° C., steam activation was performed at 850 ° C. for different times to obtain two types of activated carbon fiber nonwoven fabrics S and T having a basis weight of 60 g / m 2 and 43 g / m 2 . . The nonwoven fabric S is dipped in a solution of magnesium acetate, squeezed and dried to impregnate 3.2% by weight of magnesium acetate corresponding to magnesium acetate, and 100% in a nitrogen gas containing 40% by volume of steam.
C. to 850.degree. C., held for 10 minutes, cooled in a nitrogen stream, washed with acid and washed with water to obtain an activated carbon fiber nonwoven fabric U. A part of the nonwoven fabric U was heat-treated at 1050 ° C. in an inert gas and cooled to obtain a nonwoven fabric U. With respect to the activated carbon fiber nonwoven fabrics T, U, and UH, an electrode plate was produced by the same method as in Comparative Example 2 and a discharge experiment was conducted.

第4表に結果を載せる。カーボンプラスチック電極に比
べて性能は改良されてはいるが電位は低い。又電極作製
時に繊維の脱落が特に多かった。
The results are shown in Table 4. Performance is improved compared to carbon plastic electrodes, but the potential is lower. In addition, the number of fibers dropped off was especially large during the production of the electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深津 鉄夫 滋賀県大津市堅田2丁目1番2号 (56)参考文献 特開 昭59−96662(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Fukatsu 2-1-2 Katata, Otsu City, Shiga Prefecture (56) Reference JP-A-59-96662 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直径30〜1000Åの範囲の細孔容積を0.1c.
c./g以上有し、かつ単繊維の電気比抵抗が5×10-2Ω・
cm以下である多孔質炭素繊維を含み、繊維密度が0.1g/
c.c.以上の織布又は編地状布帛を電極基材表面に接合し
たものをハロゲン極に使用してなる金属−ハロゲン二次
電池。
1. A pore volume in the range of 30 to 1000Å in diameter is 0.1c.
c./g or more and the electric resistivity of the single fiber is 5 × 10 -2 Ω ・
Includes porous carbon fiber that is less than or equal to cm, and has a fiber density of 0.1 g /
A metal-halogen secondary battery in which a woven fabric or knitted fabric of cc or more is bonded to the surface of an electrode base material for a halogen electrode.
JP58049386A 1983-03-23 1983-03-23 Metal-halogen secondary battery Expired - Lifetime JPH0711969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58049386A JPH0711969B2 (en) 1983-03-23 1983-03-23 Metal-halogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58049386A JPH0711969B2 (en) 1983-03-23 1983-03-23 Metal-halogen secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59126985A Division JPS6023963A (en) 1984-06-20 1984-06-20 Metal-halogen secondary battery

Publications (2)

Publication Number Publication Date
JPS59173963A JPS59173963A (en) 1984-10-02
JPH0711969B2 true JPH0711969B2 (en) 1995-02-08

Family

ID=12829578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049386A Expired - Lifetime JPH0711969B2 (en) 1983-03-23 1983-03-23 Metal-halogen secondary battery

Country Status (1)

Country Link
JP (1) JPH0711969B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128450A (en) * 1985-11-29 1987-06-10 Meidensha Electric Mfg Co Ltd End plate electrode of zinc-bromine layer built cell
JPS62128449A (en) * 1985-11-29 1987-06-10 Meidensha Electric Mfg Co Ltd Electrode of zinc-bromine battery
JPS62229661A (en) * 1985-11-29 1987-10-08 Meidensha Electric Mfg Co Ltd Surface-treated electrode by carbon fiber
JPS62211865A (en) * 1986-03-12 1987-09-17 Meidensha Electric Mfg Co Ltd Electrode for zinc-halogen battery
JPH0622133B2 (en) * 1986-05-28 1994-03-23 株式会社明電舎 Positive electrode for metal-halogen batteries
JPS63174278A (en) * 1987-01-13 1988-07-18 Meidensha Electric Mfg Co Ltd Electrode of monopolar type zn-br battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996662A (en) * 1982-11-24 1984-06-04 Meidensha Electric Mfg Co Ltd Plastic electrodes for zinc-bromine batteries

Also Published As

Publication number Publication date
JPS59173963A (en) 1984-10-02

Similar Documents

Publication Publication Date Title
US4496637A (en) Electrode for flowcell
US11728489B2 (en) Three-dimensional current collector for metal secondary battery anode, its preparation and application
CN104716330B (en) A kind of three-dimensional porous collector and its production and use
JP6669784B2 (en) Process for the preparation of carbon felt electrodes for redox flow batteries
JP2920230B2 (en) Redox flow battery
CN107195906A (en) A kind of porous carbon cloth, preparation method and applications
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JPH02281564A (en) Carbon electrode material for electrolytic bath
KR20230040724A (en) Surface-activated carbon fiber electrode, manufacturing method of the same, flexible fibrous supercapacitor comprising the same and manufacturing method of flexible fibrous supercapacitor
CN107785587B (en) Electrode for vanadium redox flow battery with improved functionality and vanadium redox flow battery adopting same
US4505994A (en) Metal-halogen secondary battery
JPH0711969B2 (en) Metal-halogen secondary battery
JPS6023963A (en) Metal-halogen secondary battery
JP2906241B2 (en) Liquid flow type electrolytic cell
JPH0690933B2 (en) Stacked electrolytic cell
KR20190054713A (en) Carbon felt and hybride flow battery adopting the same
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
JPH0624121B2 (en) Metal-halogen secondary battery
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
CN116779829B (en) Organic dual-function composite positive electrode material and preparation method and application thereof
KR102683054B1 (en) Performance improvement technology of carbon fiber-based supercapacitor through carbon fiber in which multidimensional carbon material is interfacially composited
KR102713993B1 (en) Manufacturing method of separator for zinc-bromide battery, separator for zinc-bromide battery manufactured therefrom, and zinc-bromide battery
CN112038645B (en) A kind of preparation method of nitrogen-doped porous carbon electrocatalyst with core-shell structure
KR20190054712A (en) Carbon felt and hybride flow battery adopting the same
JP2003308851A (en) Electrode material and its manufacturing method