JPH07118201A - Purification of 2,6-naphthalene dicarboxylic acid - Google Patents
Purification of 2,6-naphthalene dicarboxylic acidInfo
- Publication number
- JPH07118201A JPH07118201A JP26476293A JP26476293A JPH07118201A JP H07118201 A JPH07118201 A JP H07118201A JP 26476293 A JP26476293 A JP 26476293A JP 26476293 A JP26476293 A JP 26476293A JP H07118201 A JPH07118201 A JP H07118201A
- Authority
- JP
- Japan
- Prior art keywords
- ndca
- water
- acid
- salt
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 238000000746 purification Methods 0.000 title claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000007864 aqueous solution Substances 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000003960 organic solvent Substances 0.000 claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 15
- 238000003916 acid precipitation Methods 0.000 claims description 13
- 239000012046 mixed solvent Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 claims 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 abstract description 27
- 239000013078 crystal Substances 0.000 abstract description 12
- 239000007789 gas Substances 0.000 abstract description 11
- 238000007254 oxidation reaction Methods 0.000 abstract description 9
- 239000003054 catalyst Substances 0.000 abstract description 8
- 239000002904 solvent Substances 0.000 abstract description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 abstract description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 6
- 239000007806 chemical reaction intermediate Substances 0.000 abstract description 4
- 238000004040 coloring Methods 0.000 abstract description 4
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 4
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 4
- 239000011707 mineral Substances 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000002425 crystallisation Methods 0.000 abstract description 3
- 230000008025 crystallization Effects 0.000 abstract description 3
- 239000000543 intermediate Substances 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 2
- 150000002576 ketones Chemical class 0.000 abstract description 2
- 230000002378 acidificating effect Effects 0.000 abstract 3
- WQFZWQFTPVEXQQ-UHFFFAOYSA-N 2-formylnaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=O)C=CC2=C1 WQFZWQFTPVEXQQ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 abstract 1
- 239000008187 granular material Substances 0.000 abstract 1
- 239000011572 manganese Substances 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 11
- 229910052748 manganese Inorganic materials 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- SHFLOIUZUDNHFB-UHFFFAOYSA-N 6-formylnaphthalene-2-carboxylic acid Chemical compound C1=C(C=O)C=CC2=CC(C(=O)O)=CC=C21 SHFLOIUZUDNHFB-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 6
- 229910052794 bromium Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- YGYNBBAUIYTWBF-UHFFFAOYSA-N 2,6-dimethylnaphthalene Chemical compound C1=C(C)C=CC2=CC(C)=CC=C21 YGYNBBAUIYTWBF-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- -1 polyethylene naphthalate Polymers 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- IAUKWGFWINVWKS-UHFFFAOYSA-N 1,2-di(propan-2-yl)naphthalene Chemical compound C1=CC=CC2=C(C(C)C)C(C(C)C)=CC=C21 IAUKWGFWINVWKS-UHFFFAOYSA-N 0.000 description 1
- GWLLTEXUIOFAFE-UHFFFAOYSA-N 2,6-diisopropylnaphthalene Chemical compound C1=C(C(C)C)C=CC2=CC(C(C)C)=CC=C21 GWLLTEXUIOFAFE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- CFQGDIWRTHFZMQ-UHFFFAOYSA-N argon helium Chemical compound [He].[Ar] CFQGDIWRTHFZMQ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】 本発明は、2,6−ナフタレン
ジカルボン酸(以下NDCAと略記する)の精製方法に
関する。本発明の方法は、特に、2,6−ジアルキルナ
フタレン又はその酸化中間体を分子状酸素で酸化するこ
とによって得られた粗NDCAの精製に適する。NDC
Aは耐熱性、機械的強度、寸法安定性に優れたフィルム
や繊維製品を与えることからポリエチレンナフタレ−
ト、ポリアミド等の原料として需要が増加している。TECHNICAL FIELD The present invention relates to a method for purifying 2,6-naphthalenedicarboxylic acid (hereinafter abbreviated as NDCA). The process of the invention is particularly suitable for the purification of crude NDCA obtained by oxidizing 2,6-dialkylnaphthalene or its oxidation intermediate with molecular oxygen. NDC
A is polyethylene naphthalate because it gives films and textiles with excellent heat resistance, mechanical strength and dimensional stability.
Demand is increasing as a raw material for polyamide, polyamide, etc.
【0002】[0002]
【従来の技術】 NDCAは2,6−ジアルキルナフタ
レンを酢酸溶媒中でコバルト及びマンガン触媒と臭素触
媒の存在下、空気酸化することによって製造する方法が
知られている。しかしながらこれらの酸化反応によって
得られる粗NDCA中には微量の重金属、構造不明な着
色物質、臭素誘導体や反応中間体などが混入している。
そこでこの粗NDCAをそのまま原料として使用すると
ポリマ−の性能低下や着色といった弊害が現れる。した
がって、種々のNDCA精製法が検討され提案されてい
る。2. Description of the Related Art It is known that NDCA is produced by subjecting 2,6-dialkylnaphthalene to air oxidation in an acetic acid solvent in the presence of a cobalt and manganese catalyst and a bromine catalyst. However, in the crude NDCA obtained by these oxidation reactions, a trace amount of heavy metals, a coloring substance with an unknown structure, a bromine derivative, a reaction intermediate, and the like are mixed.
Therefore, if this crude NDCA is used as a raw material as it is, there are problems such as deterioration of the performance of the polymer and coloring. Therefore, various NDCA purification methods have been studied and proposed.
【0003】(1)粗NDCAをアルカリ水溶液に溶解
し100〜250℃で1時間熱処理を行い、次いで固体
吸着剤により脱色処理後、炭酸ガス又は亜硫酸ガスを圧
入処理してpHを下げてNDCAをモノアルカリ塩とし
て析出させる方法(特開昭48−49747号公報) (2)粗NDCAのアルカリ水溶液を過マンガン酸アル
カリ等の酸化剤で処理した後、炭酸ガス又は亜硫酸ガス
を吹き込んでNDCAをモノアルカリ塩として分離する
方法(特開昭48−68554号公報) (3)粗NDCAのアルカリ水溶液を220℃以下の温
度でパラジウム、白金、ニッケル、ルテニウム等の金属
触媒の存在下接触水素化処理をした後、炭酸ガス又は亜
硫酸ガスを吹き込んでNDCAをモノアルカリ塩として
分離する方法(特開昭50−160248号公報) (4)粗NDCAを酢酸ナトリウム水溶液に溶解した
後、濃縮晶析してNDCAのモノアルカリ塩を分離する
方法(特開昭50−105639号公報) モノアルカリ塩の晶析による精製のみではNDCAを高
純度に精製することができず、これらの(1)〜(4)
の方法は粗NDCAをアルカリ水溶液に溶解しpH調整
してNDCAのモノアルカリ塩を析出させて精製する方
法と熱処理法又は酸化還元処理法を組み合わせたもので
ある。しかし、これらの方法ではpH6.5〜7.5に
調整してモノアルカリ塩が析出するが、このpH、温度
等の条件により析出する塩の量や組成が一定にならず操
作が煩雑である。さらに、酸化還元処理を行うには新た
な副生物の生成やコスト高になる。(1) Crude NDCA is dissolved in an alkaline aqueous solution and heat-treated at 100 to 250 ° C. for 1 hour, followed by decolorizing treatment with a solid adsorbent, and then carbon dioxide gas or sulfurous acid gas is pressure-treated to lower the pH to form NDCA. Method of Precipitating as Mono-Alkali Salt (JP-A-48-49747) (2) After treating an alkaline aqueous solution of crude NDCA with an oxidizing agent such as alkali permanganate, carbon dioxide gas or sulfurous acid gas is blown in to mono-decompose NDCA. Method of separating as alkaline salt (Japanese Patent Laid-Open No. 48-68554) (3) Catalytic hydrogenation treatment of an alkaline aqueous solution of crude NDCA at a temperature of 220 ° C. or lower in the presence of a metal catalyst such as palladium, platinum, nickel or ruthenium. And then blowing carbon dioxide or sulfur dioxide to separate NDCA as a monoalkali salt (JP-A-50-16 No. 248) (4) A method in which crude NDCA is dissolved in an aqueous sodium acetate solution and then concentrated and crystallized to separate a monoalkali salt of NDCA (JP-A-50-105639). Purification by crystallization of monoalkali salt. It was not possible to purify NDCA to a high degree of purity by using only these (1) to (4).
The above method is a combination of a method of dissolving crude NDCA in an alkaline aqueous solution, adjusting the pH to precipitate a monoalkali salt of NDCA for purification, and a heat treatment method or a redox treatment method. However, in these methods, the pH is adjusted to 6.5 to 7.5 to precipitate the monoalkali salt, but the amount and composition of the precipitated salt are not constant depending on the conditions such as pH and temperature, and the operation is complicated. . Furthermore, the oxidation-reduction treatment results in the production of new by-products and higher costs.
【0004】(5)粗NDCAのアルカリ水溶液に同じ
陽イオンの水溶性塩等を加えるいわゆる塩析によりND
CAジアルカリ塩を単離する方法(特開昭62−212
341号公報)。この方法は塩析のため使用する塩と、
アルカリ塩を酸析して生成する塩とがあり、これらの総
量は非常に多量で、これらの無機塩の処理等の問題があ
り工業的規模の精製法とはなり得ない。 (6)粗NDCAのジアルカリ塩を水溶性有機溶媒を加
えることにより析出させる方法(特開平2−24365
2号公報)。この方法は、回収率が低くコスト高とな
る。 (7) 一方、粗NDCAをジメチルスルホキシド等の
溶媒で再結晶させる方法(特開昭62−230747号
公報)も知られているが、高価な溶媒を多量に使用する
ため回収ロスによるコストが高く、又期待したほど精製
もされず工業的精製法とは言えない。(5) ND by so-called salting out by adding a water-soluble salt of the same cation to an alkaline aqueous solution of crude NDCA
Method for isolating CA dialkali salt (JP-A-62-212
341 publication). This method uses the salt used for salting out,
There is a salt formed by acidifying an alkali salt, the total amount of these is very large, and there are problems such as the treatment of these inorganic salts, so that a purification method on an industrial scale cannot be achieved. (6) Method of precipitating a dialkaline salt of crude NDCA by adding a water-soluble organic solvent (JP-A-2-24365)
No. 2). This method has a low recovery rate and a high cost. (7) On the other hand, a method of recrystallizing crude NDCA with a solvent such as dimethylsulfoxide (JP-A-62-230747) is also known, but the cost due to recovery loss is high because a large amount of expensive solvent is used. Moreover, it is not an industrial purification method because it was not purified as expected.
【0005】[0005]
【発明が解決しようとする課題】上記(1)〜(6)の
方法は、それぞれNDCAのジアルカリ塩又はモノアル
カリ塩として精製するものであり、精製後鉱酸や酸性ガ
スの添加により酸析してNDCAに変換する。この酸析
により析出するNDCAは結晶粒径の非常に微細なもの
を多く含んでおり、従来のアルカリ金属塩を製造しての
精製法では上記の欠点の他に、その微細な結晶のため酸
析した後のNDCA濾過が困難であり、工業的規模の精
製法とするのには大きな問題がある。本発明は、酸析後
の濾過性に優れた簡便、安価しかも効率的なNDCA精
製法を提供しようとするものである。The above methods (1) to (6) are for purifying as dialkaline salt or monoalkali salt of NDCA, respectively. After purification, acid precipitation is carried out by adding mineral acid or acid gas. Convert to NDCA. The NDCA precipitated by this acid precipitation contains a lot of very fine crystal grains, and in the conventional refining method for producing an alkali metal salt, in addition to the above-mentioned drawbacks, acid crystals are generated due to the fine crystals. NDCA filtration after precipitation is difficult, and there is a big problem in making an industrial scale purification method. The present invention is intended to provide a simple, inexpensive and efficient NDCA purification method which is excellent in filterability after acid precipitation.
【0006】[0006]
【課題を解決するための手段】本発明は、2,6−ナフ
タレンジカルボン酸ジアルカリ塩を水と水溶性有機溶媒
との存在下に酸析することを特徴とする、粗NDCA中
の不純物を効率的に除去できるばかりでなく、濾過性の
優れた、結晶粒径の均一で大きな精製NDCAが回収で
きる、2,6−ナフタレンジカルボン酸の精製方法を提
供するものである。DISCLOSURE OF THE INVENTION The present invention is characterized by acidifying 2,6-naphthalenedicarboxylic acid dialkali salt in the presence of water and a water-soluble organic solvent to efficiently remove impurities in crude NDCA. The present invention provides a method for purifying 2,6-naphthalenedicarboxylic acid, which is capable of recovering purified NDCA having a uniform crystal grain size and large size as well as being easily removed.
【0007】2,6−ナフタレンジカルボン酸ジアルカ
リ塩は、粗NDCA、例えば、ジアルキルナフタレンを
酢酸溶媒中触媒としてコバルト、マンガン、臭素を用い
た、空気等による液相酸化反応生成物である粗NDCA
を、アルカリ金属水酸化物や炭酸塩、アンモニア等の水
溶液により中和することにより得られる。本発明の方法
により、酸化反応で得られた粗NDCA中の着色物質及
び反応中間体である2−ホルミル−6−ナフトエ酸や重
金属が効率的に除去され、高純度の精製NDCAを得る
ことができる。2,6-naphthalenedicarboxylic acid dialkali salt is a crude NDCA, for example, a crude NDCA which is a liquid-phase oxidation reaction product by air or the like using cobalt, manganese, and bromine as a catalyst in a dialkylnaphthalene in an acetic acid solvent.
Is obtained by neutralizing with an aqueous solution of an alkali metal hydroxide, a carbonate, ammonia or the like. According to the method of the present invention, the colored substance and the reaction intermediate 2-formyl-6-naphthoic acid and heavy metals in the crude NDCA obtained by the oxidation reaction can be efficiently removed, and a highly purified purified NDCA can be obtained. it can.
【0008】(酸化反応)粗NDCAはジアルキルナフ
タレン、例えば、2,6−ジメチルナフタレンや2,6
−ジイソプロピルナフタレン等又はその酸化中間体を酢
酸溶媒中でコバルト及びマンガン触媒と臭素触媒の存在
下、分子状酸素で酸化することにより得られる。(Oxidation reaction) Crude NDCA is a dialkylnaphthalene such as 2,6-dimethylnaphthalene or 2,6.
-It is obtained by oxidizing diisopropylnaphthalene or the like or an oxidation intermediate thereof with molecular oxygen in the presence of a cobalt and manganese catalyst and a bromine catalyst in an acetic acid solvent.
【0009】酸化反応条件は特に制限されるべきもので
はないが、例えば、次のような条件が用いられる。原料
ジアルキルナフタレン1モルに対してコバルト及びマン
ガンを0.5モル%〜50モル%程度用いる。コバル
ト、マンガン使用モル比は1:99〜99:1の範囲で
使用する。臭素化合物はコバルト1モルに対して1〜1
0モル使用する。溶媒は酢酸又はプロピオン酸を用いそ
の使用量は原料に対して2〜50重量倍である。反応温
度は80〜250℃、好ましくは100〜200℃で反
応時間は通常1〜10時間の範囲内で行う。分子状酸素
としては純酸素の他純酸素を窒素、ヘリウムアルゴンな
どの不活性ガスで任意の濃度に希釈したものでも使用で
きるが一般的には空気で充分である。反応圧力は反応速
度を考慮すると気相中の酸素分圧は絶えず絶対圧で0.
2〜40kg/cm2 となるような圧力が好ましい。反応は
回分式、半連続式どちらでも構わないが一般的には触媒
あたりの収量が多い半連続式が有利である。反応終了後
生成したNDCAは溶媒中スラリ−状であるため、濾別
回収し水又は酸で洗浄後水洗、乾燥する。The oxidation reaction conditions are not particularly limited, but for example, the following conditions are used. About 0.5 mol% to 50 mol% of cobalt and manganese are used with respect to 1 mol of the raw material dialkylnaphthalene. The molar ratio of cobalt and manganese used is 1:99 to 99: 1. Bromine compound is 1 to 1 per mol of cobalt
Use 0 mol. Acetic acid or propionic acid is used as the solvent, and the amount used is 2 to 50 times by weight that of the raw material. The reaction temperature is 80 to 250 ° C., preferably 100 to 200 ° C., and the reaction time is usually 1 to 10 hours. As the molecular oxygen, in addition to pure oxygen, pure oxygen diluted with an inert gas such as nitrogen or helium argon to an arbitrary concentration can be used, but air is generally sufficient. Considering the reaction rate, the reaction pressure is such that the oxygen partial pressure in the gas phase is constantly 0.
The pressure is preferably 2-40 kg / cm 2 . The reaction may be either a batch system or a semi-continuous system, but in general, a semi-continuous system in which the yield per catalyst is large is advantageous. Since the NDCA produced after the reaction is in the form of a slurry in the solvent, it is collected by filtration, washed with water or an acid, washed with water and dried.
【0010】(ジアルカリ塩製造)ジアルカリ塩は、粗
NDCAを中和当量以上のアルカリを溶解した水溶液中
に加え、加熱又は室温で撹拌し溶解させてNDCAジア
ルカリ塩水溶液として製造するのが一般的である。用い
るアルカリとしては水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、炭酸カリウム及びアンモニアを挙
げることができる。その使用量はNDCAに対して1〜
2当量の範囲で用いるが、通常は少過剰となる様にND
CAに対して1.01〜1.50当量程度使用する。ア
ルカリ水溶液の濃度は塩の種類により若干異なりナトリ
ウム、カリウム塩よりもアンモニウム塩の場合は低濃度
にする必要があり0.2〜10重量%程度で用いる。(Production of dialkali salt) The dialkali salt is generally produced as an aqueous solution of NDCA dialkali salt by adding crude NDCA to an aqueous solution in which an alkali having a neutralization equivalent or more is dissolved and heating or stirring at room temperature to dissolve. is there. Examples of the alkali used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and ammonia. The amount used is 1 to NDCA
Used in the range of 2 equivalents, but usually ND
Use about 1.01 to 1.50 equivalents to CA. The concentration of the alkaline aqueous solution is slightly different depending on the type of salt, and it is necessary to lower the concentration of ammonium salt than sodium and potassium salts, and it is used at about 0.2 to 10% by weight.
【0011】ジアルカリ塩とする際の温度は室温でも構
わないが一般には加熱下に行うことが好ましい。ジアル
カリ塩溶解度が向上し釜効率が良くなることや、粗ND
CA中に微量含有するコバルト、マンガンの回収率が向
上する等の理由による。この加熱処理は通常0.5〜5
時間で行い不溶物がある時は濾別して除く。上記のよう
にして得られる水溶液中のNDCAジアルカリ塩の濃度
は、通常0.2〜 15重量%である。The temperature for forming the dialkali salt may be room temperature, but it is generally preferable to perform it under heating. Increased dialkali salt solubility and improved pot efficiency, and rough ND
This is because the recovery rate of cobalt and manganese contained in a small amount in CA is improved. This heat treatment is usually 0.5 to 5
Perform in time and remove any insoluble matter by filtration. The concentration of the NDCA dialkali salt in the aqueous solution obtained as described above is usually 0.2 to 15% by weight.
【0012】NDCAジアルカリ塩は水と有機溶媒との
混合溶媒系による酸析により精製NDCAを容易に得る
ことはできるが、酸析に先立って活性炭処理を行うこと
により、さらに高純度のものを得ることができる。The NDCA dialkali salt can be easily obtained as purified NDCA by acid precipitation with a mixed solvent system of water and an organic solvent, but a higher purity product can be obtained by treatment with activated carbon prior to acid precipitation. be able to.
【0013】(活性炭処理)活性炭処理法は流通式又は
回分式で行う。例えば流通式の場合には粒状の活性炭を
カラムに充填しアップフロ−又はダウンフロ−でNDC
Aジアルカリ塩水溶液を流通させる。処理温度は室温〜
60℃で行うが通常は室温で充分である。回分式の場合
には水溶液中のNDCAジアルカリ塩に対して1〜10
重量%程度の粉末活性炭を加え1〜5時間撹拌下処理す
る。活性炭処理は強塩基で処理するよりも中性付近のほ
うが処理効果が大きい。NDCAジアルカリ塩水溶液の
pHは、1.5当量のアルカリを用いた場合、通常、1
2以上になるので、NDCAが析出しない程度に酸を加
えてpH8〜10の範囲に処理液のpHを調整すること
が好ましい。活性炭種には特に制限は無くどんな種類の
ものでも使用できる。(Activated carbon treatment) The activated carbon treatment method is a flow type or a batch type. For example, in the case of the flow type, granular activated carbon is packed in a column and NDC is used by up-flow or down-flow.
Circulate the dialkaline salt aqueous solution. Processing temperature is room temperature ~
It is carried out at 60 ° C., but room temperature is usually sufficient. In the case of the batch method, 1 to 10 with respect to the NDCA dialkali salt in the aqueous solution.
Powdered activated carbon of about wt% is added, and the mixture is treated with stirring for 1 to 5 hours. The activated carbon treatment is more effective near neutral than by treatment with a strong base. The pH of the NDCA dialkali salt aqueous solution is usually 1 when 1.5 equivalent of alkali is used.
Since it is 2 or more, it is preferable to adjust the pH of the treatment liquid within the range of pH 8 to 10 by adding an acid to the extent that NDCA does not precipitate. There is no particular limitation on the type of activated carbon, and any type can be used.
【0014】(酸析操作)NDCAジアルカリ塩の酸析
は水と水溶性有機溶媒との存在下に行う。通常は、ND
CAジアルカリ塩水溶液に水溶性有機溶媒を混合して行
う。水溶性有機溶媒としては水に対する溶解度の大きな
ものが好ましく、具体的には20℃における水への溶解
度が100g/100g・H2O以上の有機溶媒、例え
ば、メタノ−ル、エタノ−ル、2−プロパノ−ル等のア
ルコ−ル類、アセトン、メチルエチルケトン等のケトン
類、その他ジメチルスルホキシド、アセトニトリル等を
用いることができる。これらの有機溶媒は単独で用いて
も、又は混合して用いても良い。(Acidation operation) Acidification of the NDCA dialkali salt is carried out in the presence of water and a water-soluble organic solvent. Usually ND
It is performed by mixing a water-soluble organic solvent with the CA dialkaline salt aqueous solution. As the water-soluble organic solvent, one having a high solubility in water is preferable, and specifically, an organic solvent having a solubility in water at 20 ° C. of 100 g / 100 g · H 2 O or more, for example, methanol, ethanol, 2 -Alcohols such as propanol, ketones such as acetone and methyl ethyl ketone, and dimethyl sulfoxide, acetonitrile and the like can be used. These organic solvents may be used alone or in combination.
【0015】水溶液中のNDCAジアルカリ塩の濃度
は、通常0.2〜 15重量%であるが、ジナトリウム
塩の場合であれば2〜10重量%の水溶液濃度にするの
が好ましい。有機溶媒の量はNDCAジアルカリ塩が析
出しない量を添加するが、その量はNDCAジアルカリ
塩の水溶液中での濃度及び塩の種類により異なるが、水
溶液中の水100gに対し50g〜200g程度用い
る。使用する有機溶媒の量が少なすぎると本発明の効果
が充分に現れない。The concentration of the NDCA dialkali salt in the aqueous solution is usually 0.2 to 15% by weight, but in the case of the disodium salt, the concentration of the aqueous solution is preferably 2 to 10% by weight. Although the amount of the organic solvent is such that the NDCA dialkali salt does not precipitate, the amount varies depending on the concentration of the NDCA dialkali salt in the aqueous solution and the type of salt, but is used in an amount of about 50 to 200 g per 100 g of water in the aqueous solution. If the amount of the organic solvent used is too small, the effects of the present invention will not be fully exhibited.
【0016】このようにしてNDCAジアルカリ塩を有
機溶媒と水の混合溶媒に溶解させておき、撹拌下、酸を
加え酸析してNDCAの結晶を得る。酸は塩酸、硫酸等
の鉱酸や亜硫酸ガス等の酸性ガスを用いるが通常は硫酸
等の鉱酸を水で希釈して使用する。希釈濃度は任意であ
り本発明の効果にはほとんど問題ないが、通常は、例え
ば、硫酸であれば1〜50重量%程度のものを使用す
る。酸の添加は反応液のpHが2付近になるまで加え
る。添加速度は添加量にもよるが、通常は0.01〜1
0時間で、酸添加後も攪拌を3〜30分間そのまま続け
る。酸析の温度は室温から有機溶媒の沸点程度で行う
が、加圧下沸点以上の高温で行うこともできる。生成し
たNDCAの結晶は、濾別後、十分水洗し乾燥する。得
られるNDCAの結晶粒径は、通常、1〜50μmとな
る。In this way, the NDCA dialkali salt is dissolved in a mixed solvent of an organic solvent and water, an acid is added with stirring and acid precipitation is performed to obtain NDCA crystals. As the acid, a mineral acid such as hydrochloric acid or sulfuric acid or an acid gas such as sulfurous acid gas is used, but usually a mineral acid such as sulfuric acid is diluted with water before use. Although the dilution concentration is arbitrary and there is almost no problem with the effect of the present invention, normally, for example, sulfuric acid having a concentration of about 1 to 50% by weight is used. The acid is added until the pH of the reaction solution becomes around 2. The addition rate depends on the addition amount, but is usually 0.01 to 1
At 0 hours, stirring is continued for 3-30 minutes after acid addition. The temperature of the acid precipitation is from room temperature to the boiling point of the organic solvent, but it can be carried out at a high temperature above the boiling point under pressure. The NDCA crystals thus formed are filtered off, washed thoroughly with water and dried. The crystal grain size of the obtained NDCA is usually 1 to 50 μm.
【0017】[0017]
【発明の効果】本発明によればNDCAジアルカリ塩を
酸析することにより粗NDCA中の着色物質、重金属、
および反応中間体である2−ホルミル−6−ナフトエ酸
を効率的に除去できるばかりでなく、濾過性の優れた、
結晶粒径の均一で大きな精製NDCAが回収できる。INDUSTRIAL APPLICABILITY According to the present invention, coloring substances, heavy metals, and the like in crude NDCA can be obtained by acidifying NDCA dialkali salts.
In addition to efficiently removing 2-formyl-6-naphthoic acid, which is a reaction intermediate, and having excellent filterability,
A large purified NDCA having a uniform crystal grain size can be recovered.
【0018】[0018]
【実施例】以下に実施例及び比較例を挙げ本発明をより
具体的に説明する。尚、NDCA純度及び2−ホルミル
−6−ナフトエ酸含有量は高速液体クロマトグラフィ−
で、色相は40%メチルアミン水溶液10mlに試料1
gを溶解し10mmの石英セルを用いて400nm、5
00nmの波長の吸光度(以下ODと略記する)を測定
する方法により測定した。又、色相の改善を下記の式に
て色相改善率として表した。EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples. The NDCA purity and 2-formyl-6-naphthoic acid content were measured by high performance liquid chromatography.
Then, the hue is sample 1 in 10 ml of 40% methylamine aqueous solution.
g was melted and 400 nm was used by using a 10 mm quartz cell.
It was measured by a method of measuring the absorbance at a wavelength of 00 nm (hereinafter abbreviated as OD). Further, the hue improvement was expressed as a hue improvement rate by the following formula.
【0019】[0019]
【数1】 [Equation 1]
【0020】臭素元素の定量は蛍光X線、Co及びMn
の定量は原子吸光により行った。粒径分布はレ−ザ−式
粒径分布測定装置(Leeds & Northrup社:Microtrac )
を使用した。Quantitative determination of elemental bromine was carried out by fluorescent X-ray, Co and Mn.
Was determined by atomic absorption. Laser type particle size distribution measuring device (Leeds & Northrup: Microtrac)
It was used.
【0021】[0021]
【参考例】還流冷却器、ガス導入管、原料送液ポンプ、
背圧調整器及び誘導撹拌機を備えた500ml容量のチ
タン製オートクレーブに、酢酸150g、酢酸コバルト
・四水和物0.125g、酢酸マンガン・四水和物0.
123g、臭化カリウム0.074gを仕込み、窒素置
換し、系内の圧力が30kg/cm2Gとなるように調整し
た。反応器内の温度が200℃になるまで加熱し、空気
を1.5Nl/min 及び窒素を3.6Nl/min で吹き
込み、内圧が30kg/cm2Gに保たれるように反応系を調
整した。系内が安定したところで2,6−ジメチルナフ
タレン15.61g、2,6−ジイソプロピルナフタレ
ン0.021g及び酢酸200gの混合物を2.5時間
で連続供給し、コンデンサーから酢酸と水の混合物を約
80g/時間の割合で回収した。原料の供給終了後、系
内を200℃、30kg/cm2Gに保ったまま1時間以上上
記の混合ガスの供給を続けた。反応終了後、室温まで冷
却し、析出した固形物を濾過して回収し、酢酸洗浄、熱
水洗浄、蒸留水洗浄した後、乾燥して粗NDCA19.
79gを得た。[Reference example] reflux condenser, gas introduction pipe, raw material feed pump,
In a 500 ml titanium autoclave equipped with a back pressure regulator and an induction stirrer, acetic acid 150 g, cobalt acetate tetrahydrate 0.125 g, manganese acetate tetrahydrate 0.
123 g and 0.074 g of potassium bromide were charged, the atmosphere was replaced with nitrogen, and the pressure inside the system was adjusted to 30 kg / cm 2 G. The reactor was heated to a temperature of 200 ° C., air was blown at 1.5 Nl / min and nitrogen at 3.6 Nl / min, and the reaction system was adjusted so that the internal pressure was maintained at 30 kg / cm 2 G. . When the system became stable, a mixture of 15.61 g of 2,6-dimethylnaphthalene, 0.021 g of 2,6-diisopropylnaphthalene and 200 g of acetic acid was continuously supplied for 2.5 hours, and a mixture of acetic acid and water was discharged from the condenser to about 80 g. / Hour. After the supply of the raw materials was completed, the supply of the above mixed gas was continued for 1 hour or more while keeping the system at 200 ° C. and 30 kg / cm 2 G. After completion of the reaction, the mixture was cooled to room temperature, the precipitated solid was collected by filtration, washed with acetic acid, washed with hot water, washed with distilled water, and then dried to obtain crude NDCA19.
79 g were obtained.
【0022】この粗NDCAは純度99.5%であり、
ODは400nmが0.883、500nmが0.11
3であり、NDCA中のCo含有量は6ppm、Mn含
有量は36ppmであった。2−ホルミル−6−ナフト
エ酸は500ppm、臭素元素含有量は200ppmで
あった。The crude NDCA has a purity of 99.5%,
OD is 0.883 at 400 nm and 0.11 at 500 nm
3, the Co content in NDCA was 6 ppm, and the Mn content was 36 ppm. The content of 2-formyl-6-naphthoic acid was 500 ppm, and the content of elemental bromine was 200 ppm.
【0023】[0023]
【実施例1】還流冷却器、滴下ロ−ト、撹拌機、温度計
を備えた500ml4つ口フラスコに参考例得た粗ND
CA4.15g(19.2mmol)を取り、水酸化ナ
トリウム1.55g(38.8mmol)を水100g
に溶解させた水酸化ナトリウム水溶液を加え、1時間加
熱還流を行い、冷却後不溶物を濾別してNDCAジナト
リウム塩水溶液を得た。このNDCAジナトリウム塩水
溶液に撹拌下アセトン100gを加えた後、室温(22
℃)で、18.2wt%硫酸水溶液12gを2分間かけ
て添加した。添加終了後5分間撹拌を続けて酸析した
後、析出したNDCA結晶を濾過し少量の水で洗浄、乾
燥して精製NDCA4.11g(回収率99.0%)を
得た。得られたNDCAの最小粒径は3.13μmであ
り、濾過は容易であった。Example 1 A 500 ml four-necked flask equipped with a reflux condenser, a dropping funnel, a stirrer, and a thermometer was used as a reference example.
4.15 g (19.2 mmol) of CA was taken, and 1.55 g (38.8 mmol) of sodium hydroxide was added to 100 g of water.
An aqueous solution of sodium hydroxide dissolved in was added, and the mixture was heated under reflux for 1 hour. After cooling, the insoluble matter was filtered off to obtain an aqueous solution of NDCA disodium salt. After adding 100 g of acetone to this NDCA disodium salt aqueous solution with stirring, the mixture was stirred at room temperature (22
C.), 12 g of a 18.2 wt% sulfuric acid aqueous solution was added over 2 minutes. After completion of the addition, the mixture was stirred for 5 minutes for acid precipitation, and the precipitated NDCA crystals were filtered, washed with a small amount of water, and dried to obtain 4.11 g of purified NDCA (recovery rate 99.0%). The minimum particle size of the obtained NDCA was 3.13 μm, and the filtration was easy.
【0024】得られたNDCAの純度は100%であ
り、ODは400nmが0.417(色相改善率53
%)500nmが0.031(色相改善率73%)であ
り、2−ホルミル−6−ナフトエ酸は30ppm、C
o、Mnは共に1ppm以下であった。臭素元素含有量
は100ppmであった。The obtained NDCA had a purity of 100% and an OD of 0.417 at 400 nm (hue improvement rate 53
%) 500 nm is 0.031 (hue improvement rate 73%), 2-formyl-6-naphthoic acid is 30 ppm, C
Both o and Mn were 1 ppm or less. The elemental bromine content was 100 ppm.
【0025】[0025]
【実施例2】実施例1において、アセトン100gに代
えてメタノ−ル100gを用い、酸析温度を50℃にし
た他は実施例1と同様の操作を行った。その結果NDC
A4.08g(回収率98.3%)が得られ、又得られ
たNDCAの最小粒径は2.21μmであり、濾過は容
易であった。Example 2 The same operation as in Example 1 was carried out except that 100 g of methanol was used instead of 100 g of acetone and the acid precipitation temperature was 50 ° C. As a result NDC
A 4.08 g (recovery rate 98.3%) was obtained, and the minimum particle size of the obtained NDCA was 2.21 μm, and filtration was easy.
【0026】得られたNDCAの純度は100%であ
り、ODは400nmが0.437(色相改善率51
%)500nmが0.040(色相改善率65%)、2
−ホルミル−6−ナフトエ酸は20ppm、Co、Mn
は共に1ppm以下であった。臭素元素含有量は120
ppmであった。The obtained NDCA had a purity of 100% and an OD of 0.437 at 0.437 (hue improvement rate 51
%) 500 nm is 0.040 (hue improvement rate 65%), 2
-Formyl-6-naphthoic acid is 20ppm, Co, Mn
Was less than 1 ppm. Bromine element content is 120
It was ppm.
【0027】[0027]
【実施例3】実施例1において、アセトン100gに代
えて2−プロパノ−ル100gを加え、酸析温度を70
℃にした他は実施例1と同様の操作を行った。その結果
NDCA4.10g(回収率98.8%)が得られ、又
得られたNDCAの最小粒径は2.21μmであり、濾
過は容易であった。Example 3 In Example 1, 100 g of 2-propanol was added in place of 100 g of acetone, and the acid precipitation temperature was 70%.
The same operation as in Example 1 was performed except that the temperature was changed to ° C. As a result, 4.10 g of NDCA (recovery rate: 98.8%) was obtained, the minimum particle size of the obtained NDCA was 2.21 μm, and filtration was easy.
【0028】得られたNDCAの純度は100%であ
り、ODは400nmが0.405(色相改善率54
%)500nmが0.032(色相改善率72%)、2
−ホルミル−6−ナフトエ酸は35ppm、Co、Mn
は共に1ppm以下であった。臭素元素含有量は100
ppmであった。The obtained NDCA had a purity of 100% and an OD of 0.405 at 400 nm (hue improvement rate 54
%) 500 nm is 0.032 (hue improvement rate 72%), 2
-Formyl-6-naphthoic acid is 35 ppm, Co, Mn
Was less than 1 ppm. Bromine element content is 100
It was ppm.
【0029】[0029]
【比較例1】実施例1において、アセトン100gに代
えて水を100g追加して加えた他は、実施例1と同様
の操作で酸析を行った。その結果NDCA4.10g
(回収率98.8%)が得られたが、NDCAの最小粒
径は0.15μm以下であり、濾過は時間がかかり困難
であった。Comparative Example 1 Acid precipitation was carried out in the same manner as in Example 1 except that 100 g of water was additionally added instead of 100 g of acetone. As a result, NDCA 4.10 g
Although the recovery rate was 98.8%, the minimum particle size of NDCA was 0.15 μm or less, and filtration was time-consuming and difficult.
【0030】得られたNDCAの純度は99.6%であ
り、ODは400nmが0.883、500nmが0.
113と全く変化なく改善はされなかった。2−ホルミ
ル−6−ナフトエ酸は480ppm、Co、Mnは共に
1ppm以下であった。臭素元素含有量は180ppm
であった。The purity of the obtained NDCA was 99.6%, the OD was 0.883 at 400 nm, and the OD was 500 at 500 nm.
There was no change at 113 and no improvement was made. 2-Formyl-6-naphthoic acid was 480 ppm, and Co and Mn were both 1 ppm or less. Elemental bromine content is 180ppm
Met.
【0031】[0031]
【実施例4】実施例1において、得られた粗NDCAジ
ナトリウム塩水溶液を18.2wt%硫酸水溶液を用い
てpH9に調製した後、これに活性炭(白鷺A:武田薬
品製)0.15gを加え、60℃、2時間撹拌後、活性
炭を濾過した濾液のNDCAジナトリウム塩水溶液を用
いた他は実施例1と同様に酸析を行った。その結果ND
CA3.97g(回収率95.7%)が得られ、又得ら
れたNDCAの最小粒径は3.13μmであり、濾過は
容易であった。Example 4 In Example 1, the obtained crude NDCA disodium salt aqueous solution was adjusted to pH 9 using an 18.2 wt% sulfuric acid aqueous solution, and then 0.15 g of activated carbon (Shirasagi A: Takeda Yakuhin) was added thereto. In addition, after stirring at 60 ° C. for 2 hours, acid precipitation was carried out in the same manner as in Example 1 except that an aqueous solution of NDCA disodium salt in a filtrate obtained by filtering activated carbon was used. As a result ND
CA 3.97 g (recovery rate 95.7%) was obtained, and the minimum particle size of the obtained NDCA was 3.13 μm, and filtration was easy.
【0032】得られたNDCAの純度は100%であ
り、ODは400nmが0.328(色相改善率63
%)、500nmが0.018(色相改善率84%)で
あり、2−ホルミル−6−ナフトエ酸は5ppm以下C
o、Mnは共に1ppm以下であった。臭素元素含有率
は90ppmであった。The obtained NDCA had a purity of 100% and an OD of 0.328 at 400 nm (hue improvement rate 63
%), 500 nm is 0.018 (hue improvement rate 84%), and 2-formyl-6-naphthoic acid is 5 ppm or less C
Both o and Mn were 1 ppm or less. The elemental bromine content was 90 ppm.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 白崎 美和 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 (72)発明者 坂田 智也 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Miwa Shirasaki 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute (72) Tomoya Sakata Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture 8-3-1, Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute
Claims (3)
カリ塩を水と水溶性有機溶媒との存在下に酸析すること
を特徴とする2,6−ナフタレンジカルボン酸の精製方
法。1. A method for purifying 2,6-naphthalenedicarboxylic acid, which comprises subjecting a dialkali salt of 2,6-naphthalenedicarboxylic acid to acid precipitation in the presence of water and a water-soluble organic solvent.
ルカリ塩水溶液を活性炭による吸着処理をした後、水溶
性有機溶媒の存在下に該塩を酸析することを特徴とする
2,6−ナフタレンジカルボン酸の精製方法。2. A 2,6-naphthalenedicarboxylic acid which is characterized by adsorbing an aqueous solution of a dialkaline salt of 2,6-naphthalenedicarboxylic acid with activated carbon and then acidifying the salt in the presence of a water-soluble organic solvent. Acid purification method.
カリ塩の水と水溶性有機溶媒との混合溶媒溶液に酸を添
加して2,6−ナフタレンジカルボン酸を析出させるこ
とを特徴とする2,6−ナフタレンジカルボン酸の精製
方法。3. An acid is added to a mixed solvent solution of 2,6-naphthalenedicarboxylic acid dialkali salt in water and a water-soluble organic solvent to precipitate 2,6-naphthalenedicarboxylic acid. -A method for purifying naphthalenedicarboxylic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26476293A JPH07118201A (en) | 1993-10-22 | 1993-10-22 | Purification of 2,6-naphthalene dicarboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26476293A JPH07118201A (en) | 1993-10-22 | 1993-10-22 | Purification of 2,6-naphthalene dicarboxylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07118201A true JPH07118201A (en) | 1995-05-09 |
Family
ID=17407841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26476293A Pending JPH07118201A (en) | 1993-10-22 | 1993-10-22 | Purification of 2,6-naphthalene dicarboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07118201A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001016066A3 (en) * | 1999-08-30 | 2001-09-27 | Shell Oil Co | Closely linking a nda process with a pen process |
KR100544954B1 (en) * | 2002-08-01 | 2006-01-24 | 에스케이케미칼주식회사 | Method for Purifying 2,6-naphthalene Dicarboxylic Acid |
JP2007169238A (en) * | 2005-12-26 | 2007-07-05 | Teijin Ltd | Method for purifying 6,6'-(ethylenedioxy)di-2-naphthoic acid |
KR100792104B1 (en) * | 2005-12-12 | 2008-01-04 | 주식회사 효성 | Purification method of crude naphthalene dicarboxylic acid using microorganism and 2,6-naphthalenedicarboxylic acid in crystalline state obtained by the method |
KR100971353B1 (en) * | 2003-12-31 | 2010-07-20 | 주식회사 효성 | Method for preparing high purity 2, 6-naphthalenedicarboxylic acid using β-cyclodextrin and aldehyde dehydrogenase |
JP2010168324A (en) * | 2009-01-26 | 2010-08-05 | Ueno Fine Chem Ind Ltd | Method for producing 2,6-naphthalene dicarboxylic acid |
CN109694316A (en) * | 2017-10-20 | 2019-04-30 | 中国石油化工股份有限公司 | The process for separation and purification of 2,6- naphthalenedicarboxylic acid |
CN109694314A (en) * | 2017-10-20 | 2019-04-30 | 中国石油化工股份有限公司 | The method of separating-purifying 2,6- naphthalenedicarboxylic acid |
CN112679341A (en) * | 2019-10-18 | 2021-04-20 | 中国石油化工股份有限公司 | Separation and purification method of 2, 6-naphthalenedicarboxylic acid |
CN113620799A (en) * | 2020-05-08 | 2021-11-09 | 中国石油化工股份有限公司 | Process for producing 2, 6-naphthalenedicarboxylic acid |
CN114478226A (en) * | 2020-10-27 | 2022-05-13 | 中国石油化工股份有限公司 | Method for preparing 2, 6-naphthalene dicarboxylic acid |
-
1993
- 1993-10-22 JP JP26476293A patent/JPH07118201A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001016066A3 (en) * | 1999-08-30 | 2001-09-27 | Shell Oil Co | Closely linking a nda process with a pen process |
KR100544954B1 (en) * | 2002-08-01 | 2006-01-24 | 에스케이케미칼주식회사 | Method for Purifying 2,6-naphthalene Dicarboxylic Acid |
KR100971353B1 (en) * | 2003-12-31 | 2010-07-20 | 주식회사 효성 | Method for preparing high purity 2, 6-naphthalenedicarboxylic acid using β-cyclodextrin and aldehyde dehydrogenase |
KR100792104B1 (en) * | 2005-12-12 | 2008-01-04 | 주식회사 효성 | Purification method of crude naphthalene dicarboxylic acid using microorganism and 2,6-naphthalenedicarboxylic acid in crystalline state obtained by the method |
JP2007169238A (en) * | 2005-12-26 | 2007-07-05 | Teijin Ltd | Method for purifying 6,6'-(ethylenedioxy)di-2-naphthoic acid |
JP2010168324A (en) * | 2009-01-26 | 2010-08-05 | Ueno Fine Chem Ind Ltd | Method for producing 2,6-naphthalene dicarboxylic acid |
CN109694316A (en) * | 2017-10-20 | 2019-04-30 | 中国石油化工股份有限公司 | The process for separation and purification of 2,6- naphthalenedicarboxylic acid |
CN109694314A (en) * | 2017-10-20 | 2019-04-30 | 中国石油化工股份有限公司 | The method of separating-purifying 2,6- naphthalenedicarboxylic acid |
CN112679341A (en) * | 2019-10-18 | 2021-04-20 | 中国石油化工股份有限公司 | Separation and purification method of 2, 6-naphthalenedicarboxylic acid |
CN113620799A (en) * | 2020-05-08 | 2021-11-09 | 中国石油化工股份有限公司 | Process for producing 2, 6-naphthalenedicarboxylic acid |
CN113620799B (en) * | 2020-05-08 | 2024-01-05 | 中国石油化工股份有限公司 | Process for preparing 2,6-naphthalene dicarboxylic acid |
CN114478226A (en) * | 2020-10-27 | 2022-05-13 | 中国石油化工股份有限公司 | Method for preparing 2, 6-naphthalene dicarboxylic acid |
CN114478226B (en) * | 2020-10-27 | 2024-08-30 | 中国石油化工股份有限公司 | Method for preparing 2, 6-naphthalene dicarboxylic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3390169B2 (en) | Method for producing 2,6-naphthalenedicarboxylic acid | |
JPH08325197A (en) | Production of terephthalic acid | |
US4933491A (en) | Method for purifying a crude naphthalene dicarboxylic acid | |
JPH07118201A (en) | Purification of 2,6-naphthalene dicarboxylic acid | |
JP2874223B2 (en) | Method for producing high-purity 2,6-naphthalene dicarboxylic acid | |
JPH054381B2 (en) | ||
JPH07118200A (en) | Production of naphthalenedicarboxylic acid | |
JP2940155B2 (en) | Method for purifying 4,4'-biphenyldicarboxylic acid | |
JPS62230747A (en) | Purification of 2,6-naphthalenedicarboxylic acid | |
JPH0733705A (en) | Purification of 2,6-naphtalenedicarboxylic acid | |
JPH0531535B2 (en) | ||
JP5652008B2 (en) | Method for producing o-tolidine sulfone | |
JPH07238051A (en) | Production of naphthalene-dicarboxylic acid of high purity | |
JP2917462B2 (en) | Method for purifying 4,4'-diphenyldicarboxylic acid | |
JP4626031B2 (en) | Method for producing high purity pyromellitic acid and high purity pyromellitic anhydride | |
JPH07173100A (en) | Production of high-purity 2,6-naphthalene-dicarboxylic acid | |
JPH09263566A (en) | Purification method of crude benzenedicarboxylic acid, catalyst used for purification and production method thereof | |
JP3232765B2 (en) | Method for producing high-purity terephthalic acid | |
JP3757989B2 (en) | Method for purifying naphthalenedicarboxylic acid | |
US4317924A (en) | Process for producing purified terephthalic acid | |
JPH0717903A (en) | Production of high-purity terephthalic acid | |
JP2000297059A (en) | Production of 2,6-naphthalenedicarboxylic acid | |
JP3629733B2 (en) | Preparation method of terephthalic acid water slurry | |
JP2989698B2 (en) | Allantoin purification method | |
JP3348462B2 (en) | Method for producing high-purity terephthalic acid |