JPH07117137B2 - Hydrostatic screw and manufacturing method thereof - Google Patents
Hydrostatic screw and manufacturing method thereofInfo
- Publication number
- JPH07117137B2 JPH07117137B2 JP61115636A JP11563686A JPH07117137B2 JP H07117137 B2 JPH07117137 B2 JP H07117137B2 JP 61115636 A JP61115636 A JP 61115636A JP 11563686 A JP11563686 A JP 11563686A JP H07117137 B2 JPH07117137 B2 JP H07117137B2
- Authority
- JP
- Japan
- Prior art keywords
- screw
- porous body
- hydrostatic
- thread
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Transmission Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体圧で雄ねじと雌ねじ間を非接触で支持す
る静圧ねじに関するものである。Description: TECHNICAL FIELD The present invention relates to a hydrostatic screw for supporting between a male screw and a female screw by fluid pressure in a non-contact manner.
回転を直線運動に変換させるねじ送りの高速・高精度化
を達成させる手段のひとつとして、雄ねじと雌ねじ間の
隙間(以下ねじ隙間と言う)に加圧流体を供給し、流体
圧を介して雄ねじと雌ねじ間を非接触で支持する静圧ね
じがある。As one of the means to achieve high speed and high accuracy of screw feed that converts rotation into linear motion, pressurized fluid is supplied to the clearance between male and female threads (hereinafter referred to as thread clearance), and male thread is fed via fluid pressure. There is a static pressure screw that supports between the female and female threads in a non-contact manner.
この静圧ねじは、流体の供給や回収のため、雌ねじが複
雑な構造となり、設計が容易でないこと、あるいは高精
度な加工を要することなど技術的課題が多い反面、ねじ
送りの高速・高精度化を阻む主原因の摩擦損失を極めて
小さくでき、かつ摩耗を皆無にできるというため、近年
超精密加工、半導体素子、光学素子、電子機器などの高
速・高精度を要求される製造装置への適用が検討されて
いる。This hydrostatic screw has many technical problems such as complicated design of internal thread due to supply and recovery of fluid, which is not easy to design or requires high-precision machining, but high-speed and high-precision screw feed. The friction loss, which is the main cause that prevents the change, can be made extremely small, and the wear can be eliminated altogether. Therefore, it is applied to manufacturing equipment that requires high-speed and high-precision such as ultra-precision machining, semiconductor elements, optical elements, and electronic devices in recent years. Is being considered.
第4図に従来の静圧ねじの構造を断面図で示す。雄ねじ
1は通常の送りねじである。これに対し、雌ねじはねじ
隙間に流体を供給・回収するため、複雑な構造となって
いる。即ち、ケース2とナット3で構成され、ナット3
の円筒外周には流体の供給溝4と回収溝5が雄ねじ1の
ピッチに合せて螺旋状に刻まれ、供給溝4および回収溝
5が供給孔6と回収孔7に導かれ、ねじ隙間8への流体
の供給回収が為される。ケース2には流体供給・回収用
孔21がある。FIG. 4 is a sectional view showing the structure of a conventional hydrostatic screw. The male screw 1 is a normal feed screw. On the other hand, the female screw has a complicated structure because it supplies and recovers the fluid in the screw gap. That is, it is composed of the case 2 and the nut 3, and the nut 3
A fluid supply groove 4 and a recovery groove 5 are spirally engraved on the outer periphery of the cylinder in accordance with the pitch of the male screw 1, and the supply groove 4 and the recovery groove 5 are guided to the supply hole 6 and the recovery hole 7, respectively, and the screw gap 8 is formed. The fluid is supplied to and recovered from the fluid. The case 2 has a fluid supply / recovery hole 21.
第5図は、ねじ部の拡大断面図である。従来の静圧ねじ
は、ねじの山と谷との斜面(以下フランク面と言う)、
即ち左右のフランク面9間のねじ山の角度が60°近辺の
台形ねじが主として用いられる。この理由は、供給溝4
からねじ隙間8に流体を導くための供給孔6を加工する
関係上、フランク面9が傾斜してないと、すなわちねじ
山の角度が垂直であれば、供給孔6の方を傾けて加工せ
ねばならず、加工技術上これが非常に困難で不可能に近
いためである。また、回収孔7は単なる流体の通り道で
あるので、フランク面以外のどこにあってもよく例えば
雌ねじの谷の部分でよく、さほど加工の精密さを要求さ
れないが、供給孔6はフランク面9がねじ山の左右に存
在するため、回収孔7の倍以上の数は加工せねばならな
い。さらに供給孔6はねじ隙間8に供給する流体の量や
流れの均一性に直接影響し静圧ねじの性能を支配するた
め、加工の精密さが要求される。とくに、静圧ねじの小
形化を図る場合、供給孔6も相対的に細くなり、一層精
密加工が困難となり、静圧ねじの小形化が容易でない欠
点がある。FIG. 5 is an enlarged sectional view of the screw portion. The conventional hydrostatic screw has a slope between the ridge and the valley of the screw (hereinafter referred to as a flank),
That is, a trapezoidal screw whose angle of thread between the left and right flanks 9 is around 60 ° is mainly used. The reason for this is the supply groove 4
From the relation that the feed hole 6 for guiding the fluid from the to the screw gap 8 is processed, if the flank surface 9 is not inclined, that is, if the angle of the screw thread is vertical, the supply hole 6 is inclined and processed. This is very difficult and almost impossible due to processing technology. Further, since the recovery hole 7 is merely a passageway for the fluid, it may be located anywhere other than the flank surface, for example, in the valley portion of the female screw, and the machining hole is not required to be so precise, but the supply hole 6 has the flank surface 9. Since it exists on the left and right of the thread, it is necessary to process more than twice the number of recovery holes 7. Further, the supply hole 6 directly influences the amount of fluid supplied to the screw gap 8 and the uniformity of the flow, and controls the performance of the hydrostatic screw, so that precision of processing is required. In particular, in the case of miniaturizing the hydrostatic screw, the supply hole 6 also becomes relatively thin, which makes it more difficult to perform precision machining, and it is not easy to miniaturize the hydrostatic screw.
一方、静圧ねじも静圧軸受と同様の原理に従っており、
雄ねじと雌ねじ、または軸と軸受間の隙間が減少すると
隙間内の流路抵抗が増すため流体圧が上昇し、逆に隙間
が増大すると流体圧が下降するバランスで一定のねじ隙
間や軸受隙間が保たれるように構成される。この隙間変
化による流体圧の上昇や下降の割合が大きいほど雄ねじ
と雌ねじ、または軸と軸受間の剛性が高いことになり、
性能が良いことになる。しかしながら隙間内の流路抵抗
のみでは、この剛性をさほど高められないので、通常は
自成絞り,表面絞り、あるいはオリフイス絞り等の流路
抵抗をさらに付加して、剛性を効率よく高める工夫がさ
れる。但し、静圧ねじにオリフイス絞りを適用すると、
さらに供給孔6の加工が困難となるので、自成絞りや表
面絞りがよく用いられる。On the other hand, hydrostatic screws follow the same principle as hydrostatic bearings,
If the clearance between the male and female threads or the shaft and the bearing decreases, the fluid pressure in the clearance increases and the fluid pressure increases. Conversely, if the clearance increases, the fluid pressure decreases. Configured to be kept. The greater the rate of increase or decrease in fluid pressure due to this gap change, the higher the rigidity between the male and female threads or the shaft and bearing.
The performance will be good. However, since the rigidity cannot be increased so much only by the resistance of the flow path in the gap, it is usual to add a flow resistance such as a self-made diaphragm, a surface diaphragm, or an orifice diaphragm to improve the rigidity efficiently. It However, if an orifice diaphragm is applied to the static pressure screw,
Further, since it becomes difficult to process the supply hole 6, a self-made diaphragm or a surface diaphragm is often used.
第6図は、ねじの送り方向から見た自成絞り形の静圧ね
じのフランク面である。紙面に垂直な方向にらせん状に
緊がっているが、切断面は図示しない。自成絞りは流体
が供給孔6からねじ隙間に至る流路の断面積変化を流路
抵抗とするもので、この場合、供給孔6からフランク面
9を通してねじ隙間に吐出された流体は流路抵抗が最小
となるよう、大半はフランク面9の半径方向に流れる。
このため、流体をフランク面9の円周上の全ての部分に
より均等に供給するには、精密加工を要する供給孔6を
フランク面9上に多数加工せねばならず、静圧ねじの高
価格化を招く最大の欠点となっている。FIG. 6 is a flank surface of a self-drawing type static pressure screw viewed from the screw feeding direction. Although it is helically tight in the direction perpendicular to the paper surface, the cut surface is not shown. The self-made throttle uses the change in the cross-sectional area of the flow path from the supply hole 6 to the screw gap as the flow path resistance. In this case, the fluid discharged from the supply hole 6 through the flank surface 9 to the screw gap is the flow path. Most flows in the radial direction of the flank 9 so that the resistance is minimized.
Therefore, in order to uniformly supply the fluid to all the portions on the circumference of the flank surface 9, a large number of supply holes 6 that require precision machining must be formed on the flank surface 9, which is a high cost of the hydrostatic screw. It is the biggest drawback that leads to
第7図は、表面絞り形のフランク面である。第6図と同
様に切断面を図示しない。表面絞りはフランク面9上に
流路溝10を設け、流路溝10からねじ隙間に至る流路の断
面積変化を流路抵抗とするものである。この場合、流路
溝10はフランク面9の円周方向に設けるので、供給孔6
から吐出された流体は、流路抵抗の小さい流路溝10を流
れた後、フランク面9(ねじ隙間)に達する。このた
め、自成絞りのように多数の供給孔6を加工する必要は
ないが、加工工具の加工位置への入出が容易でないこと
から、雌ねじのフランク面に供給孔と同様に精密さが要
求される流路溝10を形成すること自体が、静圧ねじの高
価格化を招く欠点となっている。これを解決する、フラ
ンク面の流路孔や流路溝を不要とする従来例として、多
孔質体を用いた静圧ねじがある。多孔質絞りは給気効率
が良いので、他の絞り形式に較べて剛性も高くできると
いう利点がある。第8図は、従来の多孔質体を用いた静
圧ねじのひとつの例で、公開特許公報特開昭59−113360
に開示されているものである。図中38はおねじ、39はお
ねじ38に対応した多孔質体製のナットであり、40はナッ
ト39の外周面に気密を保持した外筒であり、41は外筒40
の内周面に気密嵌合し、かつナット39の側面に密接する
側板である。本例は、気体を流路43から周段部42を通し
てナット39に供給し、気体はナット39全面から噴射され
る構成となっている。多孔質体を気体の供給路としてい
るので、フランク面に流路孔や流路溝を設ける必要がな
いという利点がある。しかしながら、気体の供給面積が
大きいために、気体の流量を大きくしないと剛性がとれ
ないという欠点がある。また、フランク面以外にも気体
供給孔がある構造なので、おねじとめねじとの隙間全体
が均一となるように高精度に加工しておかないと、広い
隙間部分から気体が流失するため、非常に大流量の気体
を供給しないかぎり剛性がとれないという欠点がある。FIG. 7 shows a flank surface of a surface-drawing type. The cut surface is not shown as in FIG. The surface restrictor is provided with a flow path groove 10 on the flank surface 9, and the change in the cross-sectional area of the flow path from the flow path groove 10 to the screw gap is used as the flow path resistance. In this case, since the channel groove 10 is provided in the circumferential direction of the flank surface 9, the supply hole 6
The fluid discharged from flows through the flow channel 10 having a small flow resistance and then reaches the flank 9 (screw gap). For this reason, it is not necessary to machine a large number of supply holes 6 unlike the self-drawing, but it is not easy to move the machining tool into and out of the machining position, so that the flank surface of the female screw is required to be as precise as the supply holes. Forming the flow path groove 10 to be formed is a drawback that leads to cost increase of the hydrostatic screw. As a conventional example that solves this problem and does not require the flow passage holes and the flow passage grooves on the flank surface, there is a hydrostatic screw using a porous body. Since the porous throttle has high air supply efficiency, it has an advantage that it can have higher rigidity than other throttle types. FIG. 8 shows an example of a conventional hydrostatic screw using a porous body, which is disclosed in Japanese Patent Laid-Open No. 59-113360.
Are disclosed in. In the figure, 38 is a male thread, 39 is a nut made of a porous material corresponding to the male thread 38, 40 is an outer cylinder that maintains airtightness on the outer peripheral surface of the nut 39, and 41 is an outer cylinder 40.
Is a side plate that is airtightly fitted to the inner peripheral surface of and is in close contact with the side surface of the nut 39. In this example, gas is supplied from the flow path 43 to the nut 39 through the circumferential step portion 42, and the gas is injected from the entire surface of the nut 39. Since the porous body is used as the gas supply path, there is an advantage that it is not necessary to provide a flow path hole or a flow path groove on the flank surface. However, since the gas supply area is large, there is a drawback that the rigidity cannot be obtained unless the gas flow rate is increased. Also, since there is a gas supply hole in addition to the flank surface, unless it is machined with high accuracy so that the entire gap between the male and female threads is uniform, the gas will be washed away from the wide gap, which is extremely dangerous. There is a drawback that the rigidity cannot be obtained unless a large flow rate of gas is supplied.
この、気体の噴出面積が大きいという欠点を改善した例
として、第9図に示すように、気体噴出部の多孔質体面
を目つぶしした静圧ねじがある。本例は、公開特許公報
特開昭60−241566に開示されたものであり、第9図の51
はおねじであり、52は多孔質体で構成されためねじであ
り、56は目つぶしの部分である。このように噴出面積を
小さくしたことから、上記問題点を解決し、気体の供給
量を小さくできるという利点がある。しかしながら、目
つぶしを所定の位置に選択的に形成するという複雑な加
工が必要となるという問題がある。とくに、剛性を高め
るために供給気体の圧力は高い場合が多く、この高い圧
力に対して目つぶし効果を発揮する強固な目つぶし加工
は困難である。さらに、気体の排気がしにくいという問
題がある。多孔質体をおねじにたいする全面に配した構
造となっているため、排気路は、ねじの隙間のみとなっ
ている。そのため、排気抵抗が大きいので、ねじ隙間部
の圧力が上昇し、剛性が低下するという問題がある。As an example of improving the defect that the gas ejection area is large, as shown in FIG. 9, there is a hydrostatic screw in which the porous body surface of the gas ejection portion is crushed. This example is disclosed in Japanese Laid-Open Patent Publication No. 60-241566, and is shown in FIG.
Is a male screw, 52 is a screw because it is made of a porous body, and 56 is a blind portion. Since the ejection area is reduced in this way, there are advantages that the above problems can be solved and the gas supply amount can be reduced. However, there is a problem that a complicated process of selectively forming the blinds at a predetermined position is required. In particular, the pressure of the supplied gas is often high in order to increase the rigidity, and it is difficult to perform a strong crushing process that exhibits a crushing effect against this high pressure. Further, there is a problem that it is difficult to exhaust gas. Since the structure is such that the porous body is arranged over the entire surface of the male screw, the exhaust passage has only the screw gap. Therefore, since the exhaust resistance is large, there is a problem that the pressure in the screw gap portion increases and the rigidity decreases.
本発明は、上記問題点を解決した、小形,高性能で低価
格の静圧ねじを提供することにある。An object of the present invention is to provide a compact, high-performance, low-cost hydrostatic screw that solves the above problems.
本発明による静圧ねじは、フランク面の少なくとも一部
が流体の供給路を有する多孔質体で構成され、前記多孔
質体内に流体を供給するための導通孔が前記多孔質体に
接続されていることを特徴とし、また、本発明による静
圧ねじの製造方法は、多輪筒の内側に少なくとも多孔質
の中空円筒を固着させた管状母材を内側から加工し、フ
ランク面の少なくとも一部が前記多孔質体で構成される
ようにねじ山とねじ谷を形成する工程と、前記管状母材
を外側から加工し、前記多孔質体に達する導通孔を形成
する工程を含むことを特徴とする。In the hydrostatic screw according to the present invention, at least a part of the flank surface is formed of a porous body having a fluid supply path, and a through hole for supplying a fluid into the porous body is connected to the porous body. Further, the method for producing a hydrostatic screw according to the present invention, the tubular base material having at least a porous hollow cylinder fixed to the inside of a multi-wheel cylinder is processed from the inside, and at least a part of the flank surface is processed. A step of forming a screw thread and a thread trough so as to be composed of the porous body, and a step of processing the tubular base material from the outside to form a through hole reaching the porous body. To do.
本発明は、静圧ねじのフランク面に対する流体の供給路
に多孔質体を用いることにより、多孔質体が流路抵抗を
兼ねた作用をする。また多孔質自体が流路になるため、
フランク面に供給孔や流路溝を加工する必要がない。さ
らに、従来、不可能に近かったねじ山の角度が垂直の静
圧ねじや、セラミック製の静圧ねじを容易に実現でき
る。また静圧ねじを小型化できる。According to the present invention, by using the porous body for the fluid supply path to the flank surface of the hydrostatic screw, the porous body also functions as the flow path resistance. Also, since the porous itself becomes the flow path,
It is not necessary to process the supply hole or the flow channel on the flank surface. Further, it is possible to easily realize a hydrostatic screw having a vertical thread angle, which is almost impossible in the past, and a hydrostatic screw made of ceramic. Further, the hydrostatic screw can be downsized.
(実施例1) 第1図(a)は本発明の第1の実施例で、11は多孔質
体、12は供給溝4と多孔質体11間の導通孔である。図中
従来例と同一のものについては同じ番号を用いる。19は
ねじ山の先端部であり、後述する第3図(a)の内輪筒
15の材料で構成され、20はねじの基体であり後述する第
3図(a)の外輪筒16の材料で構成されている。流体は
供給溝4から導通孔12を通り、多孔質体11に至った後、
左右のねじ隙間8に供給される。(Embodiment 1) FIG. 1A is a first embodiment of the present invention, in which 11 is a porous body, and 12 is a conduction hole between the supply groove 4 and the porous body 11. In the figure, the same numbers are used for the same parts as the conventional example. Reference numeral 19 is the tip of the thread, and is the inner ring cylinder of FIG. 3 (a) described later.
It is made of 15 materials, and 20 is a screw base, which is made of the material of the outer ring cylinder 16 of FIG. 3 (a) described later. The fluid passes from the supply groove 4 through the through hole 12 and reaches the porous body 11,
It is supplied to the left and right screw gaps 8.
また、第1図(b)はねじ送りの方向から見た第1図の
静圧ねじのフランク面近傍を模式的に示したものであ
る。紙面に垂直な方向にらせん状に緊がっているがこの
切断面は図示しない。なお、フランク面の後にある導通
孔12を破線で示す。導通孔12はねじ山に対応する位置に
ある。Further, FIG. 1 (b) schematically shows the vicinity of the flank surface of the hydrostatic screw of FIG. 1 viewed from the screw feeding direction. The cut surface is not shown in the drawing although it is helically tightened in the direction perpendicular to the paper surface. Note that the conductive hole 12 behind the flank surface is indicated by a broken line. The through hole 12 is located at a position corresponding to the screw thread.
通常、多孔質体11は連続して連った無数の微小空間によ
り構成されるので、これを通過する流体は断面積変化に
よる流路抵抗と、微小空間の壁面との粘性摩擦による流
路抵抗とを受けることになる。このため、断面積変化が
流路抵抗の主体である自成絞りや表面絞りに比べ優位の
流路抵抗となる。即ち、流体の流量はねじ隙間や軸受隙
間の3乗に、粘性抵抗は流速や流量に比例し、多孔質内
の流路はきわめて細く粘性抵抗を有するので、多孔質絞
りはねじ隙間が大きくなり流速が増せば多孔質内での粘
性抵抗が増大するため流量を増すまいとねじ隙間が小さ
くなり流速が減れば多孔質内での粘性抵抗が減少するた
め流量を減らすまいと作用する。このことは、断面積変
化のみの従来の絞りに較べ、断面積変化に加え粘性抵抗
を有する多孔質絞りは、隙間が増せばより隙間内の圧力
を減少させ、隙間が減れば、より隙間の圧力を増大させ
る効果を生むことになる。これは、静圧ねじの剛性を従
来より高めることになる。Normally, the porous body 11 is composed of innumerable minute spaces that are continuously connected, so that the fluid passing through it has a channel resistance due to a change in cross-sectional area and a channel resistance due to viscous friction with the wall surface of the minute space. Will be received. For this reason, the cross-sectional area change has a dominant flow path resistance compared to the self-made diaphragm and the surface diaphragm, which are the main constituents of the flow path resistance. That is, the flow rate of the fluid is proportional to the cube of the screw clearance and the bearing clearance, and the viscous resistance is proportional to the flow velocity and the flow rate. Since the flow passage in the porous has a very thin viscous resistance, the screw clearance becomes large in the porous throttle. If the flow velocity increases, the viscous resistance in the porous medium increases, so that the flow rate does not increase, and the screw gap decreases, and if the flow velocity decreases, the viscous resistance in the porous medium decreases, so that the flow rate does not decrease. This means that, compared to a conventional throttle with only a change in cross-sectional area, a porous throttle with viscous resistance in addition to a change in cross-sectional area reduces the pressure inside the gap more as the gap increases, and decreases the gap more as the gap decreases. It will have the effect of increasing the pressure. This increases the rigidity of the hydrostatic screw as compared with the conventional one.
このような構造となっているため、本発明の静圧ねじ
は、多孔質体11が流体の供給路と流路抵抗の付加とを兼
ねていることになる。この効果として、自成絞りや表面
絞り形の静圧ねじに不可欠の供給孔や流路溝を精密加工
する必要がなく、加工が容易となるため静圧ねじの低価
格化が可能となる。加えて、従来の静圧ねじは、ねじ山
の左右のフランク面9に供給孔を設ける必要があった
が、本発明の静圧ねじは1本の導通孔12で左右のフラン
ク面9の流体を供給できる。また、この導通孔12は従来
の静圧ねじでも何ら有効利用されてない個所に設けられ
るから、供給孔6を必要としない分だけねじ山を小さく
できることになり、静圧ねじの小形化が可能となる。With such a structure, in the hydrostatic screw of the present invention, the porous body 11 serves both as a fluid supply path and as a flow path resistance addition. As an effect of this, it is not necessary to precisely process the supply hole and the flow path groove which are indispensable for the self-drawing or surface-drawing type static pressure screw, and the processing is facilitated, so that the cost of the static pressure screw can be reduced. In addition, in the conventional hydrostatic screw, it was necessary to provide the supply holes on the left and right flanks 9 of the thread, but the hydrostatic screw of the present invention has one conduction hole 12 for fluid of the left and right flanks 9. Can be supplied. Further, since the conduction hole 12 is provided at a position where the conventional static pressure screw is not effectively used at all, the screw thread can be reduced by the amount that the supply hole 6 is not required, and the static pressure screw can be downsized. Becomes
尚、本発明の静圧ねじは、気体または液体いずれの流体
も適用できること、並びに、気体と液体では粘性が大き
く異なるが、これに合せ適正な流路抵抗を有する多孔質
体11を選択すれば良いことなどは言うまでもない。流体
の適正な流量はねじ隙間と多孔質のポロシテイの比に依
存する。隙間を大にすればポロシテイを大に、隙間を小
にすればポロシテイを小に制御することにより、適正な
設計値にする。ポロシテイは例えば焼結する前の原料の
粒度により調整できる。Incidentally, the hydrostatic screw of the present invention can be applied to any fluid of gas or liquid, and the viscosity is greatly different between gas and liquid, if the porous body 11 having an appropriate flow path resistance is selected to match this Not to mention good things. The proper flow rate of the fluid depends on the ratio between the screw clearance and the porosity of the porous material. If the gap is made large, the porosity is made large, and if the gap is made small, the porosity is made small, so that an appropriate design value is obtained. The porosity can be adjusted by, for example, the particle size of the raw material before sintering.
(実施例2) 第2図は本発明の第2の実施例である。従来の静圧ねじ
はフランク面9が傾斜してないと供給孔を設けるのが不
可能に近いが、本発明の静圧ねじは供給孔を必要としな
いので、第1図に示したねじ山の角度が垂直の静圧ねじ
が容易に実現できる。(Embodiment 2) FIG. 2 shows a second embodiment of the present invention. In the conventional hydrostatic screw, it is almost impossible to provide the feed hole unless the flank 9 is inclined. However, since the hydrostatic screw of the present invention does not require the feed hole, the thread shown in FIG. A hydrostatic screw whose angle is vertical can be easily realized.
一般に、ねじ山が傾斜しているねじは、送り直角方向の
荷重を受けられること、フランク面が送りの案内となる
こと、あるいは、自動求心性があることなど多くの長所
がある反面、工作機械によるねじ山を創成する加工法に
精度上の難点があり、ねじ山に成形した型による加工が
主となるため高精度化にフランク面を形成することが容
易でない、とくに、ねじの半径方向の加工分力が大きく
なるので、ねじの送り精度を定めてしまう雄ねじの加工
において、曲げモーメント成分が作用し雄ねじのたわみ
を誘引し、高精度加工を阻害する。この点、ねじ山の角
度が垂直のねじは、これらの長・短所が丁度逆になって
おり、加工時のたわみが生じ難いので工作機械の親ねじ
などに使用される精密送りねじにはねじ山の角度が垂直
の台形ねじが用いられる理由となっている。本発明の静
圧ねじは、本実施例のようにねじ山の角度を垂直にでき
静圧ねじの主目的であるねじ送りの高精度化を従来に較
べ容易に達成できることになる。ただし本発明の静圧ね
じは特にねじ山の角度を垂直に限る必要はなく自由に選
択できるので広範囲な用途に適用できることは勿論であ
る。Generally, a screw thread with an inclined thread has many advantages such as being able to receive a load in the direction perpendicular to the feed direction, the flank surface serving as a feed guide, and the fact that it has an automatic centripetal property, but it is a machine tool. It is not easy to form a flank surface with high accuracy because the method of creating a screw thread by means of precision has a difficulty in precision, and processing with a mold molded into the screw thread is the main, especially in the radial direction of the screw. Since the processing component force becomes large, in the processing of the male screw that determines the screw feed accuracy, the bending moment component acts to induce the deflection of the male screw, which hinders high-precision machining. In this respect, a screw with a vertical thread angle has exactly the opposite advantages and disadvantages, and it is difficult for deflection to occur during processing.Therefore, a precision feed screw used for machine tool lead screws, etc. This is the reason why a trapezoidal screw with a vertical mountain angle is used. In the hydrostatic screw of the present invention, the angle of the screw thread can be made vertical as in the present embodiment, and higher precision of screw feeding, which is the main purpose of the hydrostatic screw, can be achieved more easily than before. However, since the hydrostatic screw of the present invention does not need to limit the angle of the thread to the vertical and can be freely selected, it can be applied to a wide range of applications.
なお、第1図,第2図では多孔質体11をねじの山と谷の
一部分に設けてあるが、ねじの山と谷との間がすべて多
孔質体であっても差支えない。また導通孔12は多孔質体
11に達していればよく、多孔質体に開けられていなくて
もよい。その他本発明の主旨を逸脱しない範囲内で種々
の変更を加えうることはいうまでもない。In FIGS. 1 and 2, the porous body 11 is provided in a part of the ridges and valleys of the screw, but the gap between the ridges and valleys of the screw may be a porous body. The through hole 12 is a porous body.
It only needs to reach 11 and need not be opened in the porous body. It goes without saying that various changes can be made without departing from the spirit of the present invention.
(実施例3) 第3図(a),(b),(c)は本発明の静圧ねじの製
造法を説明するための、第3の実施例である。第3図
(a)が本発明の静圧ねじのナット部を構成する加工母
材13の製造工程で、14が多孔質中空筒、15が内輪筒、16
が外輪筒である。加工母材13は多孔質中空筒14の内面と
外面に、それぞれ内輪筒15および外輪筒16が同軸上にな
るよう配置し一体とする。一体化は、個別に製作した内
輪筒15、外輪筒16および多孔質中空筒14をはめ合せた
後、熱拡散で結合する方法、内輪筒15と外輪筒16との隙
間に多孔質素材を注入し焼成する方法、あるいは内輪筒
15の外面または外輪筒の内面にプラズマ溶射で多孔質部
を形成した後内輪筒15または外輪筒16をはめ合せ結合す
る方法など種々の方法が適用できる。また、加工母材13
(14のみあるいは14から16まで)には、金属あるいはセ
ラミックなど、多孔質体が存在するものであればいずれ
でも良い。(Embodiment 3) FIGS. 3 (a), (b) and (c) are a third embodiment for explaining a method for manufacturing a hydrostatic screw according to the present invention. FIG. 3 (a) is a manufacturing process of the processed base material 13 constituting the nut portion of the hydrostatic screw of the present invention, in which 14 is a porous hollow cylinder, 15 is an inner ring cylinder, and 16
Is the outer ring cylinder. The processed base material 13 is arranged integrally on the inner surface and the outer surface of the porous hollow cylinder 14 so that the inner ring cylinder 15 and the outer ring cylinder 16 are coaxial with each other. The integration is done by fitting the individually manufactured inner ring cylinder 15, outer ring cylinder 16 and porous hollow cylinder 14 and then joining them by heat diffusion, pouring a porous material into the gap between the inner ring cylinder 15 and the outer ring cylinder 16. Firing method or inner ring cylinder
Various methods such as a method in which a porous portion is formed on the outer surface of 15 or the inner surface of the outer ring cylinder by plasma spraying and then the inner ring cylinder 15 or the outer ring tube 16 is fitted and coupled thereto can be applied. Also, the processed base material 13
Any of (14 or 14 to 16) may be used as long as it has a porous body such as metal or ceramic.
第3図(b)は、このようにして製造した加工母材13
に、公知の切削加工及び研削加工により雌ねじ部17を製
作し切削加工または研削加工によりスパイラル状に流体
の供給溝4、排出溝5を製作し、穴あけにより導通孔1
2、および排出孔7を製作した本発明の静圧ねじのナッ
ト18を示す。第3図(c)は、本発明のナット18を圧入
や焼きばめによりケース2に組み込んだところを示す。
このような製造法をとるため、従来のように多数の精密
な供給孔や流路溝を製作する必要がなく精密加工を要す
るのは、静圧ねじである以上避けられないねじのフラン
ク面のみとなり、加工精度が性能に及ぼす影響を軽減で
き、且つ加工も容易となるため、静圧ねじの高性能化や
低価格化が可能となる。また、従来の静圧ねじは供給孔
や流路溝を精密加工する関係上、ナット18の材質は金属
に限られていたが、加工母材13をセラミックで構成し仮
焼成段階で本発明の静圧ねじの形態を整えた後、通常の
機械加工で本焼成し最後にねじのフランク面のみ高精度
に研削あるいはラッピング加工することが可能となるの
で、セラミック製の静圧ねじが実現できることになる。
セラミックは金属に較べ、高剛性,低加工歪など高精度
加工に適しており、また、塑性変形しないので、加工に
よる多孔質体の目詰りの必配がないこと等、本発明の静
圧ねじを実現する上で有利な材料である。さらに低熱膨
張係数、且つ、軽量であり静圧ねじの主目的である高速
・高精度化にも合致した材料であることは言うまでもな
い。FIG. 3 (b) shows the processed base material 13 thus manufactured.
In addition, the internal thread portion 17 is manufactured by known cutting and grinding, and the fluid supply groove 4 and the discharge groove 5 are spirally manufactured by cutting or grinding, and the through hole 1 is formed by drilling.
2 shows the nut 18 of the hydrostatic screw of the present invention in which the discharge hole 7 and the discharge hole 7 are manufactured. FIG. 3 (c) shows the nut 18 of the present invention assembled in the case 2 by press fitting or shrink fitting.
Due to this manufacturing method, it is not necessary to make many precise supply holes and flow passage grooves as in the past, and precision machining is required only for the flank surface of the screw, which is unavoidable because it is a hydrostatic screw. Therefore, it is possible to reduce the influence of the processing accuracy on the performance and facilitate the processing, so that it is possible to improve the performance and cost of the hydrostatic screw. Further, in the conventional hydrostatic screw, the material of the nut 18 is limited to metal because of the precision machining of the supply hole and the flow path groove, but the machining base material 13 is made of ceramic, and the material of the present invention is used in the calcination stage. After adjusting the form of the hydrostatic screw, it is possible to perform main firing by normal machining and finally grind or lap only the flank surface of the screw with high accuracy, so that a hydrostatic screw made of ceramic can be realized. Become.
Compared to metal, ceramic is suitable for high precision processing such as high rigidity and low processing strain, and because it does not plastically deform, there is no need to clog the porous body due to processing, etc. It is an advantageous material for realizing. Needless to say, the material has a low coefficient of thermal expansion, is lightweight, and is compatible with high speed and high accuracy, which is the main purpose of hydrostatic screws.
なお、第3図の実施例では内輪筒のある場合についで述
べたが、内輪筒がなくても第3図(c)の静圧ねじを製
造することは可能である。In the embodiment shown in FIG. 3, the case where the inner ring cylinder is provided is described, but the hydrostatic screw shown in FIG. 3C can be manufactured without the inner ring tube.
以上説明したように、実施例1および2で示した本発明
の多孔質絞り形の静圧ねじは、従来の自成絞りや表面絞
り形の静圧ねじに不可欠である精密な供給孔や流路溝の
加工を必要としないので、加工が容易となるだけでな
く、ねじ山の角度を選択できるので用途が広範囲とな
る。とくに従来、不可能に近かったねじ山の角度が垂直
であるねじの実現は、静圧ねじの主目的であるねじ送り
の高精度化をさらに進捗させることができる。また、本
発明の静圧ねじは、従来のように1つのねじ山に少なく
とも2個(ねじ山の両側のフランク面に各1個)の供給
孔を設ける必要がなく、各ねじ山に対しても1個(両側
のフランク面に対して1個)導通孔を設ければ良いの
で、容易にねじの小型化ができる。加えて、多孔質絞り
が従来の絞りに比べ流量の自動制御性があり優位である
ので、静圧ねじの高剛性化にも効果がある等、静圧ねじ
の小形高性能化や低価格化に直結する種々な利点があ
る。As described above, the porous throttle type hydrostatic screw of the present invention shown in the first and second embodiments has a precise supply hole and flow which are indispensable for the conventional self-drawn throttle and surface throttle type hydrostatic screw. Since the processing of the groove is not required, not only the processing is easy, but also the angle of the thread can be selected, so that the application is wide range. In particular, the realization of a screw whose thread angle is vertical, which was almost impossible in the past, can further advance the precision of screw feed, which is the main purpose of a hydrostatic screw. Further, the hydrostatic screw of the present invention does not need to have at least two supply holes (one on each flank face of the thread) for each thread as in the prior art, and each thread has a corresponding thread. Since it is only necessary to provide one (one for the flank surfaces on both sides) conduction hole, the size of the screw can be easily reduced. In addition, the porous throttle is superior to the conventional throttle because it has an automatic flow rate controllability, which is effective in increasing the rigidity of the hydrostatic screw. There are various advantages directly connected to.
実施例3に示した本発明の静圧ねじの製造法は、種々な
方法で比較的に容易に多孔質絞り形静圧ねじの加工母材
が得られる利点に加え、セラミック製の静圧ねじを実現
できるので、セラミックの特徴を生かしたねじ送りの高
速・高精度化も可能となる利点がある。The method of manufacturing a hydrostatic screw of the present invention shown in Embodiment 3 has the advantage that a processed base material of a porous drawing hydrostatic screw can be obtained relatively easily by various methods, and also a hydrostatic screw made of a ceramic. Therefore, there is an advantage that high-speed and high-accuracy screw feed can be achieved by taking advantage of the characteristics of ceramics.
従って、超精密な加工あるいは測定精度を求められる装
置における試料や加工・測定工具の精密送り、半導体素
子製造工程における微細パターン転写や検査に用いられ
るXYステージの高速・精密駆動あるいは光や磁気ディス
ク装置における書き込みや読取ヘッドの高速・高精度な
送り位置決め等に用いれば、本発明の静圧ねじの特徴が
生かせることになる。Therefore, precision feeding of samples and processing / measuring tools in equipment that requires ultra-precision machining or measurement accuracy, high-speed / precision drive of XY stages used for fine pattern transfer and inspection in semiconductor device manufacturing processes, or optical or magnetic disk devices When used for high-speed and high-accuracy feed positioning of the writing and reading heads in FIG.
さらに、実施例1及び2では雌ねじのフランク面の一部
が多孔質体で構成される場合を説明したが、雄ねじのフ
ランク面の一部を多孔質体で構成し、雄ねじ側に流体の
導通孔を設けることも可能である。Furthermore, although the case where a part of the flank surface of the internal thread is made of a porous body has been described in Examples 1 and 2, a part of the flank surface of the external thread is made of a porous body so that fluid can flow to the external thread side. It is also possible to provide holes.
なお、実施例1及び実施例2ではフランク面の一部が多
孔質体で構成される例について説明したが、ねじ山の先
端部19まですべて多孔質体で構成してもよい。またその
場合には、第3図(a)で内輪筒15のない二重構造の管
状母材を使用すればよい。In addition, in the first and second embodiments, an example in which a part of the flank surface is made of a porous body has been described, but the tip end portion 19 of the screw thread may be entirely made of a porous body. In that case, a tubular preform having a double structure without the inner ring cylinder 15 in FIG. 3 (a) may be used.
第1図(a)は多孔質絞りを用いた本発明の静圧ねじの
第1の実施例の断面図、第1図(b)は実施例1のフラ
ンク面、第2図は多孔質絞りを用いた本発明の静圧ねじ
の第2の実施例の断面図、第3図は多孔質絞りを用いた
本発明の静圧ねじの製造方法を示した実施例の断面図、
第4図は従来の静圧ねじの構造を示した断面図、第5図
は第4図におけるねじ部の拡大断面図、第6図は従来の
静圧ねじにおける自成絞り形のフランク面、第7図は従
来の静圧ねじにおける面絞り形のフランク面である。第
8図、第9図は従来の多孔質体用いた静圧ねじの構造を
示した断面図である。 1は雄ねじ、2はナットを格納するケース、3はナッ
ト、4は供給溝、5は回収溝、6は供給孔、7は回収
孔、8はねじ隙間、9はフランク面、10は流路溝、11は
多孔質体、12は導通孔、13は加工母材、14は多孔質中空
筒、15は内輪筒、16は外輪筒、17は雌ねじ部、18はナッ
ト、19はねじ山の先端部、20はねじの基体、21はケース
の流体供給・回収用孔、38はおねじ、39はおねじ38に対
応した多孔質体製のナット、40はナット39の外周面に気
密を保持した外筒、41は外筒40の内周面に気密嵌合し、
かつナット39の側面に密接する側板、42は周段部、43は
流路、51はおねじ、52は多孔質体で構成されためねじ、
53は外筒、54は給気筒、55は螺旋状給気溝、56は目つぶ
し、57、58、59は隙間、θはねじ山角度である。FIG. 1 (a) is a sectional view of a first embodiment of the hydrostatic screw of the present invention using a porous restrictor, FIG. 1 (b) is a flank surface of the first embodiment, and FIG. 2 is a porous restrictor. 2 is a sectional view of a hydrostatic screw according to a second embodiment of the present invention, FIG. 3 is a sectional view of an embodiment showing a method for manufacturing a hydrostatic screw according to the present invention using a porous throttle,
FIG. 4 is a sectional view showing the structure of a conventional hydrostatic screw, FIG. 5 is an enlarged sectional view of the screw portion in FIG. 4, and FIG. 6 is a self-drawing flank surface of the conventional hydrostatic screw. FIG. 7 shows a flank surface of a conventional hydrostatic screw, which is a surface drawing type. 8 and 9 are cross-sectional views showing the structure of a conventional hydrostatic screw using a porous body. 1 is a male screw, 2 is a case for storing a nut, 3 is a nut, 4 is a supply groove, 5 is a recovery groove, 6 is a supply hole, 7 is a recovery hole, 8 is a screw gap, 9 is a flank surface, and 10 is a flow path. Grooves, 11 is a porous body, 12 is a through hole, 13 is a processed base material, 14 is a porous hollow cylinder, 15 is an inner ring cylinder, 16 is an outer ring cylinder, 17 is a female screw part, 18 is a nut, 19 is a thread Tip part, 20 is a screw base, 21 is a fluid supply / recovery hole of the case, 38 is an external thread, 39 is a nut made of a porous material corresponding to the external thread 38, and 40 is airtight on the outer peripheral surface of the nut 39. The outer cylinder, 41 is airtightly fitted to the inner peripheral surface of the outer cylinder 40,
And a side plate that is in close contact with the side surface of the nut 39, 42 is a peripheral step portion, 43 is a flow path, 51 is a male screw, and 52 is a screw because it is made of a porous body,
53 is an outer cylinder, 54 is a supply cylinder, 55 is a spiral air supply groove, 56 is a mesh, 57, 58 and 59 are gaps, and θ is a thread angle.
Claims (2)
体部と、ねじの山と谷との間のフランク面の少なくとも
一部が前記非多孔質体から成る基体部に接合した多孔質
体部とで構成され、前記多孔質体部は流体の供給路を有
しており、かつ前記多孔質体部内に流体を供給するため
の前記導通孔が前記多孔質体部に接続されていることを
特徴とする静圧ねじ。1. A base portion made of a non-porous body having fluid passage holes, and a porous body in which at least a part of a flank between threads and valleys of the screw is joined to the base portion made of the non-porous body. A porous body portion, the porous body portion has a fluid supply path, and the conduction hole for supplying a fluid into the porous body portion is connected to the porous body portion. Hydrostatic screw characterized by having
筒を固着させた管状母材を内側から加工し、フランク面
の少なくとも一部が前記多孔質体部で構成されるように
ねじ山とねじ山を形成する工程と、前記管状母材を外側
から加工し前記多孔質体部に達する導通孔を形成する工
程を含むことを特徴とする静圧ねじの製造方法。2. A tubular base material in which at least a porous hollow cylinder is fixed to the inside of an outer ring cylinder is processed from the inside, and a thread is formed so that at least a part of a flank surface is constituted by the porous body portion. A method of manufacturing a hydrostatic screw, comprising: a step of forming a screw thread; and a step of processing the tubular base material from the outside to form a through hole reaching the porous body portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61115636A JPH07117137B2 (en) | 1986-05-20 | 1986-05-20 | Hydrostatic screw and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61115636A JPH07117137B2 (en) | 1986-05-20 | 1986-05-20 | Hydrostatic screw and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62274154A JPS62274154A (en) | 1987-11-28 |
JPH07117137B2 true JPH07117137B2 (en) | 1995-12-18 |
Family
ID=14667546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61115636A Expired - Lifetime JPH07117137B2 (en) | 1986-05-20 | 1986-05-20 | Hydrostatic screw and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07117137B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0173555U (en) * | 1987-11-06 | 1989-05-18 | ||
CN108788878B (en) * | 2018-05-04 | 2019-07-16 | 青岛科技大学 | A nut-driven hydrostatic screw pair |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827424B2 (en) * | 1980-07-02 | 1983-06-09 | 株式会社不二越 | static pressure screw |
JPS59113360A (en) * | 1982-12-17 | 1984-06-30 | Matsushita Electric Ind Co Ltd | Static screw |
-
1986
- 1986-05-20 JP JP61115636A patent/JPH07117137B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62274154A (en) | 1987-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0427363B1 (en) | Static pressure lead screw | |
US11078804B2 (en) | Turbine shroud assembly | |
CA1271978A (en) | Double-conical static pressure-type gas bearing | |
US4732491A (en) | Downhole motor bearing assembly | |
CN102179532B (en) | Ultrahigh-precision aerostatic bearing main shaft system | |
JP2010527799A (en) | Cutting tool capable of rotational drive | |
JP2010527798A (en) | Cutting tools | |
CN102510789A (en) | Blank and tool with cooling channels | |
CN105690046B (en) | Double-arc spline freely-supported mechanism processing tool and its method for fine finishing | |
JPH07117137B2 (en) | Hydrostatic screw and manufacturing method thereof | |
US6692156B1 (en) | Rolling bearing | |
CN207879856U (en) | A kind of non-uniform Distribution variable orifice diameter is radial gas bearing provided | |
EP0736700A2 (en) | Hydrostatic feed screw mechanism and movable body using the same | |
JPH11336767A (en) | Cylindrical roller bearing | |
JP2000346164A (en) | Porous hydrostatic gas screw | |
CN114074263B (en) | Static pressure lead screw | |
JPS63176890A (en) | Annular rotary hydraulic joint | |
WO2022188256A1 (en) | External rotation and inner cooling tool shank | |
JPH071057B2 (en) | Hydrostatic screw | |
JP2000153423A (en) | Multi-shaft screw-shaped machine | |
US4895475A (en) | Assembly of cylinder and shaft with low stress coupling and method of making same | |
JPS61103053A (en) | Feed screw unit | |
JPS58166162A (en) | Screw utilizing static air pressure | |
JPS60241566A (en) | Static pressure screw | |
CN222114360U (en) | Cutter driving device for ultra-precise machining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |