JPH0711564B2 - Superconducting device - Google Patents
Superconducting deviceInfo
- Publication number
- JPH0711564B2 JPH0711564B2 JP4126641A JP12664192A JPH0711564B2 JP H0711564 B2 JPH0711564 B2 JP H0711564B2 JP 4126641 A JP4126641 A JP 4126641A JP 12664192 A JP12664192 A JP 12664192A JP H0711564 B2 JPH0711564 B2 JP H0711564B2
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- inner tank
- radiation shield
- cooling stage
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は超伝導装置、とくに超伝
導量子干渉装置SQUIDを用いて微弱な磁場を計測す
ることに適した超伝導装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device, and more particularly to a superconducting device suitable for measuring a weak magnetic field using a superconducting quantum interference device SQUID.
【0002】[0002]
【従来の技術】冷凍機を装備した従来のSQUIDシス
テムは、文献「ディー.エス.ブチャナン他著、アドバ
ンセス イン クライオジェニック エンジニアリン
グ、第33巻、97頁から106頁、プレナム プレス
社、1988年発行(D.S.Buchanan et
al.,Advances in Cryogeni
cEngineering,Vol.33,PP97−
106,Plenum1988)」に示されている。こ
こでは、ギホード・マクマホン・サイクルとジュール・
トムソン膨張回路を組み合わせた冷凍機の4Kステージ
に超伝導素子を熱的に結合して冷却している。2. Description of the Related Art A conventional SQUID system equipped with a refrigerator is described in the document "DS Buchanan et al., Advances In Cryogenic Engineering, Vol. 33, pp. 97-106, Plenum Press, 1988 ( D.S. Buchanan et
al. , Advances in Cryogeni
cEngineering, Vol. 33, PP97-
106, Plenum 1988) ". Here, the Gihoed McMahon Cycle and Jules
The superconducting element is thermally coupled to the 4K stage of the refrigerator combined with the Thomson expansion circuit to cool it.
【0003】[0003]
【発明が解決しようとする課題】このシステムでは冷凍
機の発生する機械振動がかなり大きな磁気ノイズをもた
らす。このノイズの周波数は1ないし数10Hzの低周
波領域にあり、とくに生体磁気計測にとって不都合であ
る。また、複合した冷凍サイクルを採用したため、装置
が大型かつ複雑化し、圧縮機からの圧力配管の数も3系
統と多い。本発明はこのような問題点を克服するために
なされたもので、小型コンパクトな冷凍機を用い、かつ
このことによって生じる磁気ノイズの生成を極力抑えた
超伝導装置を得ることを目的とする。In this system, the mechanical vibration generated by the refrigerator causes a considerable amount of magnetic noise. The frequency of this noise is in the low frequency region of 1 to several tens Hz, which is particularly inconvenient for biomagnetic measurement. Further, since the combined refrigeration cycle is adopted, the device becomes large and complicated, and the number of pressure pipes from the compressor is as large as three. The present invention has been made to overcome such problems, and an object of the present invention is to obtain a superconducting device that uses a small and compact refrigerator and suppresses the generation of magnetic noise caused thereby.
【0004】[0004]
【課題を解決するための手段】本発明は上記した目的を
達成するために、少なくとも、第1及び第2の冷却ステ
ージを有し、一部に高比熱磁性体を充填した蓄冷器を内
蔵する二段のシリンダー、及びこのシリンダーと圧力配
管で連結された圧縮機とを有する小型冷凍機と、上記シ
リンダーが挿入され、かつ液体冷却剤を貯蔵する内槽
と、上記内槽の内側または外側に、上記シリンダーの第
2の冷却ステージから離れて装着された超伝導素子と、
上記シリンダーの第1の冷却ステージと熱的に結合した
上記内槽の一部に接続され、かつ上記内槽を囲む輻射シ
ールドと、上記輻射シールドから間隔をおいて設置さ
れ、かつ上記輻射シールドを囲む外槽と、上記シリンダ
ーと上記内槽を結合する防振機構と、上記シリンダーの
第2の冷却ステージで液化されるガスの導入口と、を含
めた。In order to achieve the above-mentioned object, the present invention has a built-in regenerator having at least first and second cooling stages, a part of which is filled with a high specific heat magnetic material. A small refrigerator having a two-stage cylinder, and a compressor connected to this cylinder by a pressure pipe, an inner tank into which the cylinder is inserted and which stores a liquid coolant, and an inside or outside of the inner tank. A superconducting element mounted away from the second cooling stage of the cylinder,
A radiation shield that is connected to a part of the inner tank that is thermally coupled to the first cooling stage of the cylinder and that surrounds the inner tank; and a radiation shield that is installed at a distance from the radiation shield and that includes the radiation shield. An enclosing outer tank, a vibration isolation mechanism for connecting the cylinder and the inner tank, and an inlet for gas liquefied in the second cooling stage of the cylinder were included.
【0005】更に、上記超伝導素子を装着する素子搭載
部近傍の上記内槽と、上記外槽との間に中間部が上記輻
射シールドに接触するような関係で配置された断熱性の
支持体を備えることにより効果が高められる。Further, a heat insulating support disposed between the inner tank near the element mounting portion for mounting the superconducting element and the outer tank in such a manner that an intermediate portion contacts the radiation shield. The effect is enhanced by including.
【0006】また、上記目的は、少なくとも、第1及び
第2の冷却ステージを有し、一部に高比熱磁性体を充填
した蓄冷器を内蔵する二段のシリンダー、及びこのシリ
ンダーと圧力配管で連結された圧縮機とを有する小型冷
凍機と、上記シリンダーの外表面の一部または全てを覆
う磁気遮蔽部材と、上記磁気遮蔽部材及びシリンダーが
挿入され、かつ液体冷却剤を貯蔵する内槽と、上記内槽
の内側または外側に装着された超伝導素子と、上記シリ
ンダーの第1の冷却ステージと熱的に結合した上記内槽
の一部に接続され、かつ上記内槽を囲む輻射シールド
と、上記輻射シールドから間隔をおいて設置され、かつ
上記輻射シールドを囲む外槽と、上記シリンダーと上記
内槽を結合する防振機構と、上記シリンダーの第2の冷
却ステージで液化されるガスの導入口と、を含むように
しても達成される。Further, the above object is to provide a two-stage cylinder which has at least first and second cooling stages and which has a built-in regenerator partially filled with a high specific heat magnetic material, and a cylinder and pressure piping. A small refrigerator having a connected compressor, a magnetic shield member covering a part or all of the outer surface of the cylinder, an inner tank in which the magnetic shield member and the cylinder are inserted, and which stores a liquid coolant. A superconducting element mounted inside or outside the inner tank, and a radiation shield connected to a part of the inner tank thermally coupled to the first cooling stage of the cylinder and surrounding the inner tank; An outer tank that is installed at a distance from the radiation shield and surrounds the radiation shield, a vibration isolation mechanism that connects the cylinder and the inner tank, and is liquefied by the second cooling stage of the cylinder. An inlet of the gas that, also include a is achieved.
【0007】[0007]
【作用】このような構成ではジュール・トムソン膨張回
路が無くともギホード・マクマホン・サイクルのみで第
2冷却ステージでヘリウムを液化することができる。ま
た圧縮機とつながる圧力配管の数は多くとも2本であ
る。可動部のあるシリンダーと超伝導素子を搭載する内
槽との間にはガスの層が介在し機械的接続が絶たれると
ともに、シリンダーの取り付け部は防振機構を介して内
槽とつながっている。したがって、蓄冷器の往復動に伴
う機械的振動は減衰しながら内槽に伝播する。また、蓄
冷器に含まれる磁性体による磁気ノイズは蓄冷器と超伝
導素子間の距離を離して減らしている。更に、内槽の素
子搭載部近傍を外槽から直接支持すると振動は低減し、
かつその固有振動数も高くなる。更に、磁性体を含む蓄
冷器の周囲に磁気遮蔽部材を置くことにより、蓄冷器の
往復動に伴う磁気的影響は遮断される。With this structure, helium can be liquefied in the second cooling stage only by the Gihod-McMahon cycle without the Joule-Thomson expansion circuit. The number of pressure pipes connected to the compressor is at most two. A gas layer is interposed between the cylinder with moving parts and the inner tank in which the superconducting element is mounted, and the mechanical connection is cut off, and the mounting part of the cylinder is connected to the inner tank via a vibration isolation mechanism. . Therefore, the mechanical vibration accompanying the reciprocating motion of the regenerator propagates to the inner tank while being attenuated. Further, the magnetic noise due to the magnetic substance contained in the regenerator is reduced by separating the distance between the regenerator and the superconducting element. Furthermore, if the element mounting area of the inner tank is directly supported from the outer tank, vibration will be reduced,
And its natural frequency also becomes high. Further, by placing a magnetic shielding member around the regenerator containing a magnetic material, the magnetic influence due to the reciprocating motion of the regenerator is blocked.
【0008】[0008]
【実施例】以下、本発明の実施例を図1によって説明す
る。1はギホード・マクマホン・サイクルを用いた小型
冷凍機の蓄冷器で二段のピストン形状をしており、第1
段に銅網2a、及び鉛球2b、第2段にエルビウム・ニ
ッケル化合物などに代表される磁性体3の球が充填され
ている。蓄冷器1はシリンダー4に収められ、別置きの
圧縮機5から圧力配管6を経て供給される高圧のヘリウ
ムガスで駆動される。ガスの圧縮、膨張及び往復動のタ
イミングはバルブ7で制御され、第1の冷却ステージ8
及び第2の冷却ステージ9で寒冷を発生する。鉛球を第
2段の蓄冷器に使ってきた従来の小型冷凍機では第2の
冷却ステージの到達温度はおよそ絶対温度7Kであった
が、極低温で比熱の大きい磁性体を用いることによりヘ
リウムの液化温度5.2K以下を実現できることが近年
明らかになった。シリンダー4はガラス繊維強化樹脂や
セラミックスでできた内槽10に挿入されているが、両
者は室温雰囲気にあるゴム、ベローズ、ばねなどで構成
される振動吸収部11により結合されている。シリンダ
ー4と内槽10の作る空間にはガス導入口12よりヘリ
ウムガス13が導かれ第2の冷却ステージ9において一
部液化し、底部に液体ヘリウム14として貯まる。内槽
8の底部には熱伝導性の素子搭載部15を設け、ここに
熱的接触を保って超伝導量子干渉素子SQUIDや磁束
検出コイルなどの素子16を取り付ける。素子16から
リード線17は、いったん液体ヘリウム温度のレベルに
接触した後シール端子18から引き出される。リード線
17はノイズを減らすためより線としステンレス鋼や銅
ニッケル合金の管に挿入されている。内槽10の低温側
は輻射シールド19で囲まれ、その一端は第1の冷却ス
テージ8に対応する内槽10の壁に熱的な接触を保って
固定されている。輻射シールド19は熱伝導性が良くな
くてはならないが、ノイズを減らすために銅箔を短冊状
にしたり、底部は素線が絶縁された銅網にするなどの工
夫がなされている。更に、スリットを付けてアルミニウ
ムを蒸着したポリエステル箔とポリエステル繊維製網を
重ねた多層断熱材20で囲み、ガラス繊維強化樹脂など
で形成した外槽21の中に納め、内部を真空にしてあ
る。22は外槽21の支持部材である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 is a regenerator of a small refrigerator using a Gifode McMahon cycle, which has a two-stage piston shape.
The steps are filled with a copper net 2a and lead balls 2b, and the second step is filled with balls of a magnetic material 3 represented by an erbium-nickel compound. The regenerator 1 is housed in a cylinder 4 and is driven by high-pressure helium gas supplied from a separately installed compressor 5 via a pressure pipe 6. The timing of gas compression, expansion, and reciprocation is controlled by the valve 7, and the first cooling stage 8
And cold is generated in the second cooling stage 9. In the conventional small refrigerator in which lead balls were used for the second-stage regenerator, the temperature reached by the second cooling stage was about 7K in absolute temperature, but by using a magnetic substance with a large specific heat at extremely low temperature, It has recently become clear that a liquefaction temperature of 5.2K or less can be realized. The cylinder 4 is inserted into an inner tank 10 made of glass fiber reinforced resin or ceramics, but both are connected by a vibration absorbing portion 11 composed of rubber, bellows, springs or the like in a room temperature atmosphere. Helium gas 13 is introduced into the space formed by the cylinder 4 and the inner tank 10 from the gas inlet 12 and is partially liquefied in the second cooling stage 9 and stored as liquid helium 14 at the bottom. A thermally conductive element mounting portion 15 is provided at the bottom of the inner tank 8, and an element 16 such as a superconducting quantum interference device SQUID or a magnetic flux detection coil is attached to the thermally conductive device mounting portion 15 while keeping thermal contact therewith. The lead wire 17 from the element 16 is pulled out from the seal terminal 18 after once contacting with the liquid helium temperature level. The lead wire 17 is inserted as a twisted wire into a tube of stainless steel or copper-nickel alloy to reduce noise. The low temperature side of the inner tank 10 is surrounded by a radiation shield 19, and one end thereof is fixed to the wall of the inner tank 10 corresponding to the first cooling stage 8 while keeping thermal contact. The radiation shield 19 must have good thermal conductivity, but in order to reduce noise, a strip of copper foil is used, and the bottom part is made of a copper net with insulated wires. Further, it is surrounded by a multilayer heat insulating material 20 in which a polyester foil having slits and aluminum vapor-deposited thereon and a polyester fiber net are stacked, and is enclosed in an outer tank 21 formed of glass fiber reinforced resin or the like, and the inside is evacuated. Reference numeral 22 is a support member for the outer tank 21.
【0009】素子16は1個又は複数個からなり、シリ
ンダー4の底部より30cm以上離してある。こうする
ことにより、直径2cm、長さ5cmの磁性体3がスト
ローク1cmで動いたとき素子16に及ぼす磁場変動幅
は外部磁場の大きさと同じ程度になる。The element 16 is composed of one or a plurality of elements and is separated from the bottom of the cylinder 4 by 30 cm or more. By doing so, the magnetic field fluctuation width exerted on the element 16 when the magnetic body 3 having a diameter of 2 cm and a length of 5 cm moves with a stroke of 1 cm becomes approximately the same as the magnitude of the external magnetic field.
【0010】輻射シールド19は熱伝導性の良い絶縁物
がいいが、高純度のアルミナや炭化珪素などのセラミッ
クスでもよい。第1の冷却ステージと内槽10の間の熱
伝達はヘリウムガス13の熱伝導もしくは熱対流によ
る。シリンダー4と内槽10の間は冷却ステージの部分
を除き多孔質の充填体23を挿入し余計な熱対流を抑え
てもよい。更に、装置全体を傾斜させて使えるよう内槽
10の下部の直径を部分的に細めたくびれ24を設け液
体ヘリウム14が溢れ出ることのないようにすることも
できる。The radiation shield 19 is preferably an insulator having good thermal conductivity, but may be a ceramic such as high-purity alumina or silicon carbide. The heat transfer between the first cooling stage and the inner tank 10 is by heat conduction or convection of the helium gas 13. A porous filler 23 may be inserted between the cylinder 4 and the inner tank 10 except for the cooling stage to suppress unnecessary heat convection. Further, it is possible to provide a constriction 24 in which the diameter of the lower portion of the inner tank 10 is partially reduced so that the entire apparatus can be used by inclining it so that the liquid helium 14 does not overflow.
【0011】図2は本発明の他の実施例を示す。図1と
同一部分は同一符号で表す。内槽10の下側にベローズ
30を挿入し、素子搭載部15の近傍の内槽10と輻射
シールド19、輻射シールド19と外槽21の間に支持
体31を配置している。支持体31は低熱伝導かつ高強
度の繊維強化樹脂が好ましい。このようにすれば素子搭
載部15を外槽21から直接支持し、かつベローズ30
により内槽10の上部からの振動を遮断できるので、機
械振動に伴うノイズを低減できる。また、支持が図1の
実施例のような片持ち構造でないので固有振動数が高く
なり、生体磁気の計測には好都合である。FIG. 2 shows another embodiment of the present invention. The same parts as those in FIG. 1 are represented by the same reference numerals. A bellows 30 is inserted below the inner tank 10, and a support 31 is arranged between the inner tank 10 and the radiation shield 19 near the element mounting portion 15 and between the radiation shield 19 and the outer tank 21. The support 31 is preferably a fiber-reinforced resin having low thermal conductivity and high strength. In this way, the element mounting portion 15 is directly supported from the outer tank 21, and the bellows 30
As a result, the vibration from the upper part of the inner tank 10 can be blocked, so that the noise accompanying the mechanical vibration can be reduced. Further, since the support is not a cantilever structure as in the embodiment of FIG. 1, the natural frequency is high, which is convenient for measuring biomagnetism.
【0012】本発明の他の実施例を図3に示す。図1と
同一名称の部分は同一符号で表す。図1との相違点はシ
リンダー4の外側に高透磁率金属もしくはイットリウム
・バリウム・ストロンチウム・銅酸化物の高温超伝導体
からなる磁気遮蔽部材33を配置したことである。磁気
遮蔽部材33はシリンダー4に取り付けてもよいが、振
動の影響を減らすには磁気遮蔽部材33を内槽10に固
定したほうがよい。この構造によれば、磁性体3の往復
動の影響を大きく低減でき、素子16とシリンダー4間
の距離も短くできるという利点がある。Another embodiment of the present invention is shown in FIG. Portions having the same names as those in FIG. 1 are represented by the same symbols. The difference from FIG. 1 is that a magnetic shielding member 33 made of a high-permeability metal or a high temperature superconductor of yttrium / barium / strontium / copper oxide is arranged outside the cylinder 4. The magnetic shielding member 33 may be attached to the cylinder 4, but it is better to fix the magnetic shielding member 33 to the inner tank 10 in order to reduce the influence of vibration. This structure has an advantage that the influence of the reciprocating motion of the magnetic body 3 can be greatly reduced and the distance between the element 16 and the cylinder 4 can be shortened.
【0013】図4は本発明の更に他の実施例である。こ
れが図3と異なるのは素子搭載部15がその軸方向が内
槽10の軸に対して45度になるように取り付けられて
いる点である。このようにすれば、素子搭載部15の軸
を重力に対してほぼ垂直の状態から水平の状態まで変化
させても内槽の液体ヘリウム14の状態に悪い影響を及
ぼさない。FIG. 4 shows still another embodiment of the present invention. This differs from FIG. 3 in that the element mounting portion 15 is attached so that its axial direction is 45 degrees with respect to the axis of the inner tank 10. By doing so, even if the axis of the element mounting portion 15 is changed from a state almost vertical to the gravity state to a horizontal state, the state of the liquid helium 14 in the inner tank is not adversely affected.
【0014】[0014]
【発明の効果】以上述べた如く、本発明による超伝導装
置はジュール・トムソン膨張回路を持たない小型冷凍機
を備えているので、小型コンパクトで信頼性が高い。ま
た、小型冷凍機の可動部分と超伝導素子の部分との間は
振動が伝わり難い構造としたため機械的振動に伴う磁気
ノイズが少ない。さらに、蓄冷器のなかの磁性体の動き
によって生ずる磁気ノイズも磁気遮蔽部材の採用により
極力小さく抑えられるので、高感度の冷凍機一体型超伝
導装置が得られ、産業上大きな効果がある。As described above, since the superconducting device according to the present invention is equipped with the small refrigerator without the Joule-Thomson expansion circuit, it is compact and highly reliable. Further, since the vibration is hard to be transmitted between the movable part of the small refrigerator and the superconducting element, magnetic noise due to mechanical vibration is small. Further, the magnetic noise generated by the movement of the magnetic material in the regenerator can be suppressed as small as possible by the use of the magnetic shielding member, so that a highly sensitive refrigerator-integrated superconducting device can be obtained, which has a great industrial effect.
【図1】本発明の一実施例を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.
【図2】本発明の他の実施例を示す縦断面図。FIG. 2 is a vertical sectional view showing another embodiment of the present invention.
【図3】本発明の更に他の実施例を示す縦断面図。FIG. 3 is a vertical sectional view showing still another embodiment of the present invention.
【図4】本発明の更に他の実施例を示す縦断面図。FIG. 4 is a vertical sectional view showing still another embodiment of the present invention.
1 蓄冷器 3 磁性体 4 シリンダー 8 第1の冷却ステージ 9 第2の冷却ステージ 10 内槽 14 液体ヘリウム 16 素子 19 輻射シールド 21 外槽 31 支持体 33 磁気遮蔽部材 1 Regenerator 3 Magnetic Material 4 Cylinder 8 First Cooling Stage 9 Second Cooling Stage 10 Inner Tank 14 Liquid Helium 16 Element 19 Radiation Shield 21 Outer Tank 31 Support 33 Magnetic Shielding Member
フロントページの続き (56)参考文献 特開 平2−298765(JP,A) 特開 平4−37031(JP,A) 特開 平1−170880(JP,A) 特開 平2−81486(JP,A) 特開 平2−302680(JP,A) 特開 昭62−185383(JP,A)Continuation of front page (56) Reference JP-A-2-298765 (JP, A) JP-A-4-37031 (JP, A) JP-A-1-170880 (JP, A) JP-A-2-81486 (JP , A) JP-A-2-302680 (JP, A) JP-A-62-185383 (JP, A)
Claims (3)
を有し、一部に高比熱磁性体を充填した蓄冷器を内蔵す
る二段のシリンダー、及びこのシリンダーと圧力配管で
連結された圧縮機とを有する小型冷凍機と、 上記シリンダーが挿入され、かつ液体冷却剤を貯蔵する
内槽と、 上記内槽の内側または外側に、上記シリンダーの第2の
冷却ステージから離れて装着された超伝導素子と、 上記シリンダーの第1の冷却ステージと熱的に結合した
上記内槽の一部に接続され、かつ上記内槽を囲む輻射シ
ールドと、 上記輻射シールドから間隔をおいて設置され、かつ上記
輻射シールドを囲む外槽と、 上記シリンダーと上記内槽を結合する防振機構と、 上記シリンダーの第2の冷却ステージで液化されるガス
の導入口と、を含むことを特徴とする超伝導装置。1. A two-stage cylinder having at least a first and a second cooling stage and containing a regenerator partially filled with a high specific heat magnetic material, and a compression connected to the cylinder by a pressure pipe. A small refrigerator having a machine, an inner tank into which the cylinder is inserted and which stores a liquid coolant, and an ultra-cooler mounted inside or outside the inner tank, apart from the second cooling stage of the cylinder. A conductive element, a radiation shield connected to a part of the inner tank thermally coupled to the first cooling stage of the cylinder, and surrounding the inner tank; and a radiation shield provided at a distance from the radiation shield, and An outer tank surrounding the radiation shield, an anti-vibration mechanism connecting the cylinder and the inner tank, and an inlet for gas liquefied in the second cooling stage of the cylinder. Electrical apparatus.
間に中間部が輻射シールドに接触するように配置された
断熱性の支持体とを備えたことを特徴とする超伝導装
置。2. The superconducting device according to claim 1, wherein the intermediate portion is arranged between the inner tank and the outer tank near the element mounting portion for mounting the superconducting element so that the intermediate portion contacts the radiation shield. And a heat insulating support.
を有し、一部に高比熱磁性体を充填した蓄冷器を内蔵す
る二段のシリンダー、及びこのシリンダーと圧力配管で
連結された圧縮機とを有する小型冷凍機と、 上記シリンダーの外表面の一部または全てを覆う磁気遮
蔽部材と、 上記磁気遮蔽部材及びシリンダーが挿入され、かつ液体
冷却剤を貯蔵する内槽と、 上記内槽の内側または外側に装着された超伝導素子と、 上記シリンダーの第1の冷却ステージと熱的に結合した
上記内槽の一部に接続され、かつ上記内槽を囲む輻射シ
ールドと、 上記輻射シールドから間隔をおいて設置され、かつ上記
輻射シールドを囲む外槽と、 上記シリンダーと上記内槽を結合する防振機構と、 上記シリンダーの第2の冷却ステージで液化されるガス
の導入口と、を含むことを特徴とする超伝導装置。3. A two-stage cylinder having at least first and second cooling stages, a regenerator having a high specific heat magnetic material partially filled therein, and a compression connected to the cylinder by a pressure pipe. A small refrigerator having a machine, a magnetic shield member covering a part or all of the outer surface of the cylinder, an inner tank into which the magnetic shield member and the cylinder are inserted, and which stores a liquid coolant, the inner tank And a radiation shield connected to a part of the inner tank thermally coupled to the first cooling stage of the cylinder and surrounding the inner tank, and the radiation shield. An outer tank surrounding the radiation shield, spaced apart from the outer tank, a vibration isolation mechanism for connecting the cylinder and the inner tank, and introduction of gas liquefied in the second cooling stage of the cylinder. A superconducting device comprising: a mouth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4126641A JPH0711564B2 (en) | 1992-04-21 | 1992-04-21 | Superconducting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4126641A JPH0711564B2 (en) | 1992-04-21 | 1992-04-21 | Superconducting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05297092A JPH05297092A (en) | 1993-11-12 |
JPH0711564B2 true JPH0711564B2 (en) | 1995-02-08 |
Family
ID=14940233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4126641A Expired - Lifetime JPH0711564B2 (en) | 1992-04-21 | 1992-04-21 | Superconducting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0711564B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3655425B2 (en) * | 1997-04-18 | 2005-06-02 | 株式会社東芝 | Biomagnetic field measurement device |
US6332324B1 (en) * | 1998-06-12 | 2001-12-25 | Hitachi, Ltd. | Cryostat and magnetism measurement apparatus using the cryostat |
JP2005057076A (en) * | 2003-08-05 | 2005-03-03 | Sumitomo Heavy Ind Ltd | Cooling apparatus |
JP2006041259A (en) * | 2004-07-28 | 2006-02-09 | Sumitomo Heavy Ind Ltd | Cooling system |
JP4803518B2 (en) * | 2006-04-06 | 2011-10-26 | 独立行政法人産業技術総合研究所 | Sample cooling device |
US8307665B2 (en) | 2006-04-06 | 2012-11-13 | National Institute Of Advanced Industrial Science And Technology | Sample cooling apparatus |
JP6951889B2 (en) * | 2017-07-07 | 2021-10-20 | 住友重機械工業株式会社 | Magnetic shield structure of cryogenic refrigerators and cryogenic refrigerators |
-
1992
- 1992-04-21 JP JP4126641A patent/JPH0711564B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05297092A (en) | 1993-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5934082A (en) | Indirect cooling system for an electrical device | |
JPH0629635Y2 (en) | Cryostat | |
US5442928A (en) | Hybrid cooling system for a superconducting magnet | |
JPH09187440A (en) | Open type magnetic resonance imaging magnet | |
JP2006046897A (en) | Cryostat configuration | |
JP2008111666A (en) | Cryogenic cooler | |
JP2758786B2 (en) | Superconducting magnet | |
CN102117690A (en) | Low-temperature super-conducting magnet system | |
US7131276B2 (en) | Pulse tube refrigerator | |
US6164077A (en) | Thermal link device for a cryogenic machine | |
JP3901217B2 (en) | Vibration isolation cryogenic equipment | |
JPH0878737A (en) | Superconductive magnet | |
JPH0711564B2 (en) | Superconducting device | |
US20230263445A1 (en) | Magnetocardiography measuring apparatus | |
US5991647A (en) | Thermally shielded superconductor current lead | |
US20090188260A1 (en) | Cryogenic container with built-in refrigerator | |
US7500366B2 (en) | Refrigerator with magnetic shield | |
WO2003036190A1 (en) | A pulse tube refrigerator with an insulating sleeve | |
JP2004235653A (en) | Superconductive magnet | |
JPH0950910A (en) | Superconducting coil cooling device | |
JPH0640341Y2 (en) | Seismic bellows for vacuum members | |
JP3122539B2 (en) | Superconducting magnet | |
JPH01262605A (en) | Superconductive magnet device | |
JP2910560B2 (en) | Cryogenic equipment | |
JPH04115506A (en) | Superconducting device |