JPH07114747A - Optical recording medium and its recording method - Google Patents
Optical recording medium and its recording methodInfo
- Publication number
- JPH07114747A JPH07114747A JP5260020A JP26002093A JPH07114747A JP H07114747 A JPH07114747 A JP H07114747A JP 5260020 A JP5260020 A JP 5260020A JP 26002093 A JP26002093 A JP 26002093A JP H07114747 A JPH07114747 A JP H07114747A
- Authority
- JP
- Japan
- Prior art keywords
- optical recording
- recording
- optical
- light
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title claims description 20
- 239000010410 layer Substances 0.000 claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 56
- 239000011229 interlayer Substances 0.000 claims abstract description 20
- 230000031700 light absorption Effects 0.000 claims abstract description 16
- 238000010030 laminating Methods 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000005281 excited state Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005283 ground state Effects 0.000 description 3
- 150000008371 chromenes Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000007699 photoisomerization reaction Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Optical Record Carriers And Manufacture Thereof (AREA)
- Optical Recording Or Reproduction (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光記録媒体及びその記
録方法に関するものであり、特に高密度記録が可能な光
記録媒体及びその記録方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium and a recording method thereof, and more particularly to an optical recording medium capable of high density recording and a recording method thereof.
【0002】[0002]
【従来の技術】近年、高品位画像記録や、コンピュータ
で使用するデータ量の増大等から、より大容量の記録技
術の開発が強く望まれており、種々の新しい記録技術が
研究されている。なかでも、フォトンモード型光記録
は、光化学反応によって情報が記録されるので、光の有
する波長・偏光等の自由度を生かして、光磁気記録や相
変化型記録のようなヒートモード型の光記録よりも、高
密度記録が可能になると考えられている。2. Description of the Related Art In recent years, there has been a strong demand for the development of a recording technology having a larger capacity due to high-quality image recording and an increase in the amount of data used in a computer, and various new recording technologies have been studied. Among them, in photon mode optical recording, information is recorded by a photochemical reaction, so the degree of freedom of the wavelength and polarization of light is used to take advantage of heat mode optical recording such as magneto-optical recording and phase change recording. It is considered that high-density recording can be performed rather than recording.
【0003】フォトンモード型光記録における高密度記
録の方法としては、例えば特開昭61−203450号
に開示されたような、相異なる光吸収領域を有する複数
のフォトクロミック材料を積層し、これらのフォトクロ
ミック材料に対応する波長の光を照射することによっ
て、記録・再生を行う波長多重記録技術が知られてい
る。As a method for high density recording in photon mode type optical recording, a plurality of photochromic materials having different light absorption regions as disclosed in, for example, Japanese Patent Laid-Open No. 61-203450 are laminated, and these photochromic materials are laminated. A wavelength multiplex recording technique is known in which recording / reproduction is performed by irradiating light with a wavelength corresponding to a material.
【0004】図2は、このような波長多重記録における
各フォトクロミック材料の異なる光吸収領域を示す図で
ある。図2に示すように、A,B,C,D,Eの異なる
吸収ピークを有するフォトクロミック材料を光記録層中
に含有させ、各吸収ピークに対応する波長λA,λB,λC,
λD,λE の光を照射することによって、各フォトクロミ
ック材料を独立に反応させ、各フォトクロミック材料の
吸光度(反射率)を変化させて記録を行う。また再生の
際には、各波長の光を用いて反射率変化を検出する。FIG. 2 is a diagram showing different light absorption regions of each photochromic material in such wavelength multiplexing recording. As shown in FIG. 2, a photochromic material having different absorption peaks of A, B, C, D, and E is contained in the optical recording layer, and wavelengths λ A, λ B, λ C, corresponding to the respective absorption peaks are contained .
By irradiating with light of λ D and λ E , each photochromic material reacts independently, and the absorbance (reflectance) of each photochromic material is changed to perform recording. Further, at the time of reproduction, the change in reflectance is detected using light of each wavelength.
【0005】従って、このような従来の波長多重記録に
おいては、n種のフォトクロミック材料を用いることに
よってn多重記録すなわちn倍の高密度化が可能にな
る。しかしながら、光記録に使用可能な波長域が400
〜900nm程度であることを考慮すれば、n倍の高密
度化のためにはn種の吸収バンドが異なるフォトクロミ
ック材料が必要となり、さらにそれらに対応するn個の
波長のレーザー光源が必要となり、高密度化に限界があ
った。このような従来の波長多重記録では、実用的に
は、n=5程度までの多重記録が限界であった。Therefore, in such conventional wavelength multiplex recording, by using n kinds of photochromic materials, n multiplex recording, that is, n times higher density can be achieved. However, the wavelength range that can be used for optical recording is 400
Considering that it is about 900 nm, n kinds of photochromic materials having different absorption bands are required for increasing the density by n times, and further, laser light sources of n wavelengths corresponding to them are required. There was a limit to high density. In such conventional wavelength multiplex recording, practically, the maximum limit was the multiplex recording up to about n = 5.
【0006】他の高密度光記録の方法としては、3次元
光メモリ技術が知られている。この3次元光メモリ技術
は、例えば、光学連合シンポジウム京都´92講演予稿
集第39頁に開示されている。3次元メモリでは、光の
強度に対して何らかの形で非線形的に反応して光学特性
変化が生じるような材料が使用される。As another high-density optical recording method, a three-dimensional optical memory technique is known. This three-dimensional optical memory technology is disclosed in, for example, the proceedings of the Kyoto 1992 Symposium on Optical Coalition, page 39. In a three-dimensional memory, a material is used that reacts with the intensity of light in a non-linear manner in some way to cause a change in optical characteristics.
【0007】図4は、このような3次元メモリの光記録
媒体の記録層の構造を示す断面図である。図4を参照し
て、光学記録層1においては記録レーザー3の焦点部3
aの部分において記録マーク部2が形成される。このよ
うな光記録媒体においては、光強度に対して非線形的に
反応する光学記録材料が用いられているので、焦点部3
a以外の非焦点部ではデフォーカスにより光強度が低
く、反応が進行せず記録マーク部が形成されない。FIG. 4 is a sectional view showing the structure of the recording layer of the optical recording medium of such a three-dimensional memory. Referring to FIG. 4, in the optical recording layer 1, the focus portion 3 of the recording laser 3 is provided.
The recording mark portion 2 is formed in the portion a. In such an optical recording medium, an optical recording material that reacts non-linearly with the light intensity is used, so that the focal portion 3
In non-focus areas other than a, the light intensity is low due to defocusing, the reaction does not proceed and the recording mark area is not formed.
【0008】しかしながら、図3に示すように、記録レ
ーザー3の焦点部3aの領域Iに近い非焦点部IIの部分
においても光強度は比較的強いので、焦点部の領域Iの
部分程ではなくとも、反応が進行する。従って、3次元
メモリの深さ方向におけるクロストークを避けるために
は、記録マーク部を形成する層の層間ピッチLP を記録
光ビームスポットの焦点深度よりも充分に大きくする必
要がある。焦点深度の値は、通常数μmであるので、層
間ピッチLP は10μm以上であることが好ましい。上
述の講演予稿集に開示された技術では、層間ピッチLP
を30μmとしている。従って、このような3次元メモ
リにおいては記録層の層間ピッチLP を充分に大きくと
る必要が生じ、深さ方向において記録密度を高めること
ができないという問題がある。例えば、光学記録層の全
体の厚みを100μm程度としても、層間ピッチLP を
30μmとすると、深さ方向に形成できる記録マーク部
の層は4つとなり、2次元型の光メモリに比べ記録密度
を4倍に向上できるにすぎない。However, as shown in FIG. 3, since the light intensity is relatively high even in the non-focus portion II near the area I of the focus portion 3a of the recording laser 3, the light intensity is not as great as in the area I of the focus portion. With that, the reaction proceeds. Therefore, in order to avoid crosstalk in the depth direction of the three-dimensional memory, it is necessary to make the interlayer pitch L P of the layer forming the recording mark portion sufficiently larger than the focal depth of the recording light beam spot. Since the value of the depth of focus is usually several μm, the interlayer pitch L P is preferably 10 μm or more. In the technique disclosed in the above-mentioned lecture proceedings, the interlayer pitch L P
Is 30 μm. Therefore, such a sufficiently large it becomes necessary to take inter-pitch L P of the recording layer in the three-dimensional memory, it is impossible to increase the recording density in the depth direction. For example, even if the total thickness of the optical recording layer is about 100 μm, if the interlayer pitch L P is 30 μm, there are four recording mark layer layers that can be formed in the depth direction, and the recording density is higher than that of a two-dimensional optical memory. It can only be quadrupled.
【0009】本発明の目的は、このような従来の問題点
を解消し、従来より高密度の記録が可能な光記録媒体及
びその記録方法を提供することにある。An object of the present invention is to provide an optical recording medium and a recording method therefor, which solves the above-mentioned conventional problems and enables higher density recording than ever.
【0010】[0010]
【課題を解決するための手段】本発明の光記録媒体は、
光吸収領域が異なり、かつ記録光照射に対し光非線形的
に反応する複数の材料を含む光学記録層を、その材料の
種類数を超えて積層して構成されており、同種の材料を
含む光学記録層がそれらの層間距離が記録光ビームスポ
ットの焦点深度よりも大きくなるように積層されている
ことを特徴としている。The optical recording medium of the present invention comprises:
An optical recording layer that is composed of a plurality of optical recording layers that have different light absorption regions and that responds to recording light irradiation in a non-linear manner, and that includes more than one type of material. It is characterized in that the recording layers are laminated such that the interlayer distance between them is larger than the focal depth of the recording light beam spot.
【0011】本発明の記録方法は、上記光記録媒体に情
報を記録する方法であり、上記光記録媒体の光学記録層
に、各材料の光吸収領域に対応した波長の記録用ビーム
光を集光して照射し、光学記録層の積層数に応じた多重
度で情報を記録することを特徴としている。The recording method of the present invention is a method of recording information on the above-mentioned optical recording medium, and recording beam light having a wavelength corresponding to the light absorption region of each material is collected on the optical recording layer of the above-mentioned optical recording medium. It is characterized by irradiating with light and recording information with a multiplicity according to the number of laminated optical recording layers.
【0012】従って、本発明において、光学記録材料と
してn種の材料を用いる場合には、光学記録層の積層数
はn+1層以上になり、本発明の記録方法ではn+1以
上の多重度で情報が記録される。Therefore, in the present invention, when n kinds of materials are used as the optical recording material, the number of laminated optical recording layers is n + 1 layers or more, and in the recording method of the present invention, information is recorded at a multiplicity of n + 1 or more. Will be recorded.
【0013】[0013]
【作用】本発明の光記録媒体では、光吸収領域が異なり
かつ記録光照射によって光非線形的に反応を起こす複数
の材料を含む光学記録層が、その材料の種類数を超えて
積層して構成されており、かつ同種の材料を含む光学記
録層はそれらの層間距離が記録光ビームスポットの焦点
深度よりも大きくなるように積層されているので、同一
記録材料間でのクロストークを充分低い値に押さえるこ
とができ、その結果材料の種類数を超えた多重記録が可
能になり、従来よりも大幅な高密度記録が可能になる。In the optical recording medium of the present invention, the optical recording layer is formed by laminating more than the number of kinds of the materials, the optical recording layers having different light absorption regions and containing a plurality of materials that cause a photo-nonlinear reaction by irradiation of the recording light. In addition, since the optical recording layers containing the same kind of material are laminated so that the interlayer distance between them is larger than the focal depth of the recording light beam spot, the crosstalk between the same recording materials is sufficiently low. As a result, it is possible to perform multiplex recording that exceeds the number of types of materials, and it is possible to achieve higher density recording than in the past.
【0014】[0014]
【実施例】図1は、本発明に従う一実施例の光記録媒体
の構造を示す断面図である。図1を参照して、この光記
録媒体の記録層10は、光吸収領域が異なる3種類の光
学記録材料A,B,Cをそれぞれ含有させた光学記録層
を積層することにより構成されている。材料Aを含む光
学記録層11、材料Bを含む光学記録層12及び材料C
を含む光学記録層13を、この順序で繰り返し積層し、
全体として13層の光学記録層から構成している。材料
Aを含む光学記録層11に対しては波長λAの光を照射
し、材料Bを含む光学記録層12には波長λB の光を照
射し、材料Cを含む光学記録層13には波長λC の光を
照射して記録を行う。この場合、図1に示されるよう
に、1つの光学記録層の上層及び下層には、異なる光吸
収領域を有する光学記録層が配置されているので、1つ
の光学記録層への記録によりその上層及び下層の光学記
録層にクロストークを生じさせることはない。1 is a sectional view showing the structure of an optical recording medium according to an embodiment of the present invention. Referring to FIG. 1, a recording layer 10 of this optical recording medium is formed by laminating optical recording layers containing three kinds of optical recording materials A, B and C having different light absorption regions. . Optical recording layer 11 containing material A, optical recording layer 12 containing material B, and material C
The optical recording layer 13 containing is repeatedly laminated in this order,
It is composed of 13 optical recording layers as a whole. The optical recording layer 11 containing the material A is irradiated with light of wavelength λ A , the optical recording layer 12 containing the material B is irradiated with light of wavelength λ B , and the optical recording layer 13 containing the material C is irradiated. Recording is performed by irradiating light of wavelength λ C. In this case, as shown in FIG. 1, since the optical recording layers having different light absorption regions are arranged in the upper layer and the lower layer of one optical recording layer, the recording of one optical recording layer results in the upper layer. Also, crosstalk does not occur in the lower optical recording layer.
【0015】また、同種の光学記録層の層間ピッチLP
は、記録光ビームスポットの焦点深度よりも大きくなる
ように構成されている。本発明で用いられる光学記録層
の記録材料は記録光照射に対し光非線形的に反応する材
料であるので、同種の光学記録層の層間距離LP を記録
光ビームスポットの焦点深度よりも大きくすることによ
り、1つの光学記録層に対する記録光が他の同種の光学
記録層に対し反応を引き起こすことはない。このような
同種の光学記録層の層間距離LP は、好ましくは記録光
ビームスポットの焦点深度の3倍以上の距離となるよう
に設定される。Further, the interlayer pitch L P of the same kind of optical recording layers
Is configured to be larger than the depth of focus of the recording light beam spot. Recording material of the optical recording layer used in the present invention since it is a material that reacts optical nonlinear manner with respect to the recording beam exposure, larger than the focal depth of the recording light beam spot of the interlayer distance L P of the same kind of the optical recording layer As a result, the recording light for one optical recording layer does not cause a reaction with another optical recording layer of the same kind. The interlayer distance L P of such optical recording layers of the same kind is preferably set to be a distance three times or more the depth of focus of the recording light beam spot.
【0016】図1に示す実施例では、光吸収領域が異な
る3種の光学記録材料を用い、多重度13の光記録媒体
としており、従来の波長多重記録に比べ、記録密度を飛
躍的に高めることができる。また本発明に従い、同種の
光学記録層の層間距離を記録ビームスポットの焦点深度
よりも大きくしておけば、異種の光学記録層の層間距離
は焦点深度よりも大きくする必要がないので、従来の3
次元メモリよりも高密度な記録を実現することができ
る。In the embodiment shown in FIG. 1, three kinds of optical recording materials having different light absorption regions are used and an optical recording medium having a multiplicity of 13 is used. The recording density is remarkably increased as compared with the conventional wavelength multiplexing recording. be able to. Further, according to the present invention, if the interlayer distance of the same kind of optical recording layer is made larger than the focal depth of the recording beam spot, the interlayer distance of different kinds of optical recording layers does not need to be larger than the focal depth. Three
It is possible to realize higher density recording than the dimensional memory.
【0017】本発明の光記録媒体は、図1に示す実施例
のように3種の光学記録層を積層したA/B/C/A/
B/C/……という構造に限定されるものではなく、種
々の変更が可能である。例えば、同種の光学記録層の層
間距離LP が比較的短くても良いならば、異種の材料
A,Bを用いてA/B/A/B/……/A/Bのような
構成としてもよい。また同種の光学記録層の層間距離L
P を長くする必要があるならば、4種以上の材料を用い
て、A/B/C/D/A/B/C/D……という構造と
してもよい。また、同種の光学記録層の層間距離LP の
調整は、各光学記録層の厚みを変えることにより調整し
てもよい。The optical recording medium of the present invention comprises A / B / C / A / in which three kinds of optical recording layers are laminated as in the embodiment shown in FIG.
The structure is not limited to B / C / ..., but various modifications are possible. For example, if the interlayer distance L P of the same kind of the optical recording layer may be relatively short, different materials A, a configuration such as A / B / A / B / ...... / A / B with B Good. In addition, the interlayer distance L of the same kind of optical recording layer
If it is necessary to lengthen P , four or more kinds of materials may be used to form a structure of A / B / C / D / A / B / C / D .... Further, the adjustment of the interlayer distance L P of the same type of optical recording layer may be performed by changing the thickness of each optical recording layer.
【0018】また、本発明においては各光学記録層の積
層の順序を常に同じにする必要はなく、クロストークの
発生のし易さ等に応じて各光学記録層の積層順序を変更
することも可能である、例えば、材料A,Cが同一材料
記録層間でのクロストークを発生し易く、材料Bがクロ
ストークを発生しにくいならば、A/B/C/B/A/
B/C/B/A……のように、材料Aの光学記録層及び
材料Cの光学記録層の層間距離を長くし、材料Bの光学
記録層の層間距離を短くなるように積層させてもよい。In the present invention, it is not always necessary to make the order of laminating the optical recording layers the same, and the order of laminating the optical recording layers may be changed depending on the ease of occurrence of crosstalk. It is possible, for example, if the materials A and C easily cause crosstalk between recording layers of the same material and the material B hardly causes crosstalk, A / B / C / B / A /
B / C / B / A ... By increasing the interlayer distance between the optical recording layer of the material A and the optical recording layer of the material C and shortening the interlayer distance of the optical recording layer of the material B. Good.
【0019】以下、本発明において用いられる、記録光
照射に対し光非線形的に反応する光学記録材料について
説明する。フォトンモードで反応する光非線形性には、
2種類のタイプのものが存在する。第1のタイプの光非
線形性は、図5に示すような、2光子過程による非線形
性である。このような2光子過程においては、基底状態
Gにある分子Aが、まずフォトンhν1 を吸収して、中
間状態E1 に励起される(過程)。次に、この中間励
起状態のE1 の寿命の間に、さらに別のフォトンhν2
を吸収できれば、さらに励起されて励起状態E2 に遷移
する(過程)。この励起状態E2 から、分子構造の変
化が起こり、A´の分子構造となる。E 1 の励起状態に
おいて分子がその寿命内にフォトンを吸収しなければ、
再び基底状態Gへ戻る(過程)。従って、フォトン密
度が低いと、すなわち光強度が低いと、ほとんどの分子
が→の過程を通って反応は進行しない。またフォト
ン密度が高いと、すなわち光強度が高いと、→の過
程が増え、反応が進行する。この中間状態E1 は、実状
態であり、従って、フォトンhν1 に対応する通常の弱
い光による測定で、分子Aは吸収を示す。中間励起状態
E1 としては、電子励起状態でもよいし、分子構造が一
部変化した状態でもよい。なお、フォトンhν1 とhν
2 は別の波長光でもよいし、同一波長光でもよい。The recording light used in the present invention will be described below.
On the optical recording material that responds to the irradiation in an optical nonlinear manner
explain. The optical nonlinearity that reacts in the photon mode is
There are two types. First type of light
The linearity is a non-linearity due to the two-photon process as shown in FIG.
It is sex. In such a two-photon process, the ground state
The molecule A in G is the photon hν1Absorbs, inside
State E1Is excited by (process). Next, this intermediate encouragement
Upright E1Another photon hν during the lifetime of2
Is excited, the excited state E is further excited.2Transition to
Do (process). This excited state E2Changes the molecular structure
Is converted into a molecular structure of A ′. E 1To the excited state of
If the molecule does not absorb photons within its lifetime,
Return to the ground state G again (process). Therefore, photon density
At low degrees, ie low light intensity, most molecules
The reaction does not proceed through the process of →. Photo again
If the light density is high, that is, if the light intensity is high, the →
The number increases and the reaction proceeds. This intermediate state E1Is the actual situation
And therefore the photon hν1Normal weak corresponding to
Molecule A exhibits absorption as measured by bright light. Intermediate excited state
E1May be in an electronically excited state or have a molecular structure
It may be in a partially changed state. The photon hν1And hν
2May have different wavelengths or may have the same wavelength.
【0020】上記のような光非線形性を示す光学記録材
料の例としては、次式に示すようなクロメン誘導体があ
る。An example of the optical recording material exhibiting the above-mentioned optical non-linearity is a chromene derivative represented by the following formula.
【0021】[0021]
【化1】 [Chemical 1]
【0022】上記クロメン誘導体の分子は、(1)と
(2)の間に、(2)の3員環が開いた状態が、熱的に
不安定な中間状態として存在し、可視光照射により2光
子的に(1)→(2)へと光異性化が進行する。この分
子に、適当な修飾基をつけることにより、吸収スペクト
ルを変化させることができ、従って光吸収領域の異なる
光非線形的に反応する材料を得ることができる。In the molecule of the above chromene derivative, the state in which the three-membered ring of (2) is opened exists between (1) and (2) as a thermally unstable intermediate state, and is exposed to visible light. Photoisomerization proceeds from (1) to (2) in a two-photon manner. By attaching an appropriate modifying group to this molecule, it is possible to change the absorption spectrum and thus obtain a material that reacts in an optically non-linear manner with different light absorption regions.
【0023】次に、第2のタイプの光非線形性について
説明する。図6は、この第2のタイプの非線形性のエネ
ルギー準位図を示している。図6に示されるように、中
間状態E1 は実状態として存在せず、仮想状態としての
み存在する。従って、この分子Aは、第1のタイプと異
なり、1個のフォトンに対して吸収を示さず、2個のフ
ォトンが同時に来た時にのみ吸収して、基底状態Gから
励起状態E2 に遷移する(過程,)。この励起状態
E2 の状態で、分子構造の変化が生じ、分子A´とな
る。このタイプの光非線形性の発現メカニズムは、光高
調波発生のメカニズムに類似している。このような第2
のタイプの非線形性においても、第1のタイプの非線形
性と同様に、弱い光強度では反応が進行せず、強い光強
度においてのみ反応が進行する。この第2のタイプの場
合、材料の光吸収領域は、見かけ上用いる光の波長帯で
はなく、それよりも短い波長帯に存在することになる。Next, the second type of optical nonlinearity will be described. FIG. 6 shows the energy level diagram for this second type of non-linearity. As shown in FIG. 6, the intermediate state E 1 does not exist as a real state but exists only as a virtual state. Therefore, unlike the first type, this molecule A does not show absorption for one photon and absorbs only when two photons come at the same time, and transitions from the ground state G to the excited state E 2 . Do (process,). In this excited state E 2 , the molecular structure is changed to form a molecule A ′. The mechanism of manifestation of this type of optical nonlinearity is similar to the mechanism of optical harmonic generation. Such a second
As for the first type of non-linearity, as in the first type of non-linearity, the reaction does not proceed with a weak light intensity, but only with a strong light intensity. In the case of this second type, the light absorption region of the material is not in the wavelength band of light used apparently, but in a wavelength band shorter than that.
【0024】上記の第2のタイプの光非線形性を示す材
料として、次式に示すようなスピロピラン系分子があ
る。As a material exhibiting the above-mentioned second type of optical nonlinearity, there is a spiropyran-based molecule represented by the following formula.
【0025】[0025]
【化2】 [Chemical 2]
【0026】上記分子は、(1)の状態では可視域(4
00〜800nm)に吸収を有しないので、例えばYA
GレーザーのSHG波である波長532nmのレーザー
を弱いパワーで照射しても反応が起こらない。しかしな
がら、同じレーザーを強いパワーで照射すると、光非線
形的にフォトクロミック反応が生じ、(2)の状態に変
化する。In the state of (1), the molecule has a visible region (4
Since it has no absorption in (00 to 800 nm), for example, YA
The reaction does not occur even if the laser having the wavelength of 532 nm, which is the SHG wave of the G laser, is irradiated with weak power. However, when the same laser is irradiated with a strong power, a photochromic reaction occurs in an optical nonlinear manner, and the state changes to (2).
【0027】この分子においても適当な分子修飾を行う
ことにより吸収スペクトルを変化させることができ、従
って光吸収領域の異なる光非線形的に反応する材料を得
ることができる。なお、ある種のスピロピラン系化合物
で光照射時に発生する熱の作用で非線形的に反応が進行
するものが知られているが、これは光学的な非線形性で
はなく、本発明の対象外である。Even in this molecule, the absorption spectrum can be changed by appropriately modifying the molecule, and therefore, a material which reacts in an optical non-linear manner with different light absorption regions can be obtained. Incidentally, it is known that a certain type of spiropyran-based compound causes a reaction to progress non-linearly by the action of heat generated during light irradiation, but this is not an optical non-linearity and is outside the scope of the present invention. .
【0028】[0028]
【発明の効果】本発明の光記録媒体では、光吸収領域が
異なり、かつ記録光照射に対し光非線形的に反応する複
数の光学記録層が積層して構成されている。このため従
来の光記録媒体に比べ、多重度を著しく高めることがで
き、高密度記録が可能となる。また、同種の光学記録層
の層間距離が記録光ビームスポットの焦点深度よりも大
きくなるように積層されているので、同種の光学記録層
間においてクロストークを生じることなく高密度記録が
可能となり、大容量の光記録媒体とすることができる。In the optical recording medium of the present invention, a plurality of optical recording layers, which have different light absorption regions and respond to the irradiation of recording light in an optical non-linear manner, are laminated. Therefore, the multiplicity can be remarkably increased as compared with the conventional optical recording medium, and high density recording can be performed. In addition, since the optical recording layers of the same kind are laminated so that the interlayer distance is larger than the depth of focus of the recording light beam spot, high density recording is possible without causing crosstalk between the optical recording layers of the same type. It can be used as a high capacity optical recording medium.
【図1】本発明に従う一実施例の光記録媒体を示す断面
図。FIG. 1 is a cross-sectional view showing an optical recording medium of an embodiment according to the present invention.
【図2】従来の波長多重記録を説明するための吸収スペ
クトル図。FIG. 2 is an absorption spectrum diagram for explaining conventional wavelength multiplexing recording.
【図3】記録光ビームスポットの焦点部近傍における影
響を説明するための模式図。FIG. 3 is a schematic diagram for explaining an influence of a recording light beam spot in the vicinity of a focal portion.
【図4】従来の3次元メモリの光記録媒体を示す断面
図。FIG. 4 is a sectional view showing an optical recording medium of a conventional three-dimensional memory.
【図5】第1のタイプの光非線形性を説明するためのエ
ネルギー準位図。FIG. 5 is an energy level diagram for explaining the first type of optical nonlinearity.
【図6】第2のタイプの光非線形性を説明するためのエ
ネルギー準位図。FIG. 6 is an energy level diagram for explaining a second type of optical nonlinearity.
10…光記録媒体 11…材料Aの光学記録層 12…材料Bの光学記録層 13…材料Cの光学記録層 LP …同種の光学記録層の層間距離DESCRIPTION OF SYMBOLS 10 ... Optical recording medium 11 ... Optical recording layer of material A 12 ... Optical recording layer of material B 13 ... Optical recording layer of material C LP ... Interlayer distance between optical recording layers of the same kind
Claims (2)
対し光非線形的に反応する複数の材料を含む光学記録層
を、その材料の種類数を超えて積層して構成されてお
り、 同種の材料を含む光学記録層はそれらの層間距離が記録
光ビームスポットの焦点深度よりも大きくなるように積
層されていることを特徴とする光記録媒体。1. An optical recording layer comprising a plurality of materials having different light absorption regions and reacting to the irradiation of recording light in an optical non-linear manner is formed by laminating in excess of the number of kinds of the materials. An optical recording medium comprising: the optical recording layer containing the material described above, wherein the interlayer distance between them is larger than the depth of focus of the recording light beam spot.
層に、前記各材料の光吸収領域に対応した波長の記録ビ
ーム光を集光して照射し、前記光学記録層の積層数に応
じた多重度で情報を記録することを特徴とする記録方
法。2. The optical recording layer of the optical recording medium according to claim 1, wherein recording beam light having a wavelength corresponding to a light absorption region of each material is condensed and irradiated, and the number of stacked optical recording layers is increased. A recording method characterized in that information is recorded at a multiplicity according to.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5260020A JPH07114747A (en) | 1993-10-18 | 1993-10-18 | Optical recording medium and its recording method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5260020A JPH07114747A (en) | 1993-10-18 | 1993-10-18 | Optical recording medium and its recording method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07114747A true JPH07114747A (en) | 1995-05-02 |
Family
ID=17342198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5260020A Pending JPH07114747A (en) | 1993-10-18 | 1993-10-18 | Optical recording medium and its recording method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07114747A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100506553B1 (en) * | 1998-05-15 | 2005-08-05 | 마츠시타 덴끼 산교 가부시키가이샤 | Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus |
JP2006048832A (en) * | 2004-08-04 | 2006-02-16 | Ricoh Co Ltd | Optical information recording and reproducing method |
WO2006062036A1 (en) * | 2004-12-06 | 2006-06-15 | Nec Corporation | Optical information recording medium, optical information recording/reproducing device and optical information recording medium manufacturing method |
JP2006164450A (en) * | 2004-12-09 | 2006-06-22 | Sony Corp | System and device for optical recording and reproduction |
-
1993
- 1993-10-18 JP JP5260020A patent/JPH07114747A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100506553B1 (en) * | 1998-05-15 | 2005-08-05 | 마츠시타 덴끼 산교 가부시키가이샤 | Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus |
JP2006048832A (en) * | 2004-08-04 | 2006-02-16 | Ricoh Co Ltd | Optical information recording and reproducing method |
WO2006062036A1 (en) * | 2004-12-06 | 2006-06-15 | Nec Corporation | Optical information recording medium, optical information recording/reproducing device and optical information recording medium manufacturing method |
JP2006164450A (en) * | 2004-12-09 | 2006-06-22 | Sony Corp | System and device for optical recording and reproduction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
McLeod et al. | Microholographic multilayer optical disk data storage | |
Walker et al. | Terabyte recorded in two-photon 3D disk | |
US20100119957A1 (en) | Volume holographic data recording media | |
US6280904B1 (en) | Photo-chemical generation of stable fluorescent derivatives of rhodamine B | |
US7436750B2 (en) | Optical storage with ultra high storage capacity | |
EP2243783B1 (en) | Bisporphyrin conjugates as two photon absorption materials | |
US7551537B2 (en) | Method and apparatus for making master optical disk | |
CN101030408A (en) | Optical disc recording apparatus, controlling method of the same, and optical disc | |
KR20060036914A (en) | An information recording medium and its manufacturing method, and a recording / reproducing method, an optical information recording / reproducing apparatus | |
US7964333B1 (en) | FRET-based two photon three dimensional optical data storage | |
JPH07114747A (en) | Optical recording medium and its recording method | |
JP5104532B2 (en) | Optical information recording medium and two-photon absorption material | |
JP2013524398A (en) | Reversible recording medium by optical recording of information and reversible recording method on such medium | |
DE60317827D1 (en) | DOUBLE-LAYERED OPTICAL RECORDING MEDIUM AND THE USE OF SUCH MEDIUM | |
JP4136713B2 (en) | Multilayer recording medium and multilayer recording system | |
JP4199731B2 (en) | Optical recording medium, optical information processing apparatus, and optical recording / reproducing method | |
US7139233B2 (en) | Optical information processing device and recording medium | |
JP4498056B2 (en) | Optical information recording medium and optical information recording / reproducing method | |
WO2000005624A1 (en) | Increasing writing efficiency in 3d optical data storage system | |
RU2017237C1 (en) | Method for multiple-layer optical recording of binary information | |
JP5047651B2 (en) | Two-photon absorption materials and their applications | |
JP2004109871A (en) | Optical recording type laminated waveguide hologram medium, hologram recording method and hologram reproducing method | |
US7608384B1 (en) | Two-photon fluorescent ternary optical data storage | |
WO1988009549A1 (en) | Optical data storage method and materials therefor | |
JPH07320301A (en) | Optical recording medium and reproducing method thereof |