[go: up one dir, main page]

JPH07112945A - How to convert carbon dioxide - Google Patents

How to convert carbon dioxide

Info

Publication number
JPH07112945A
JPH07112945A JP5258779A JP25877993A JPH07112945A JP H07112945 A JPH07112945 A JP H07112945A JP 5258779 A JP5258779 A JP 5258779A JP 25877993 A JP25877993 A JP 25877993A JP H07112945 A JPH07112945 A JP H07112945A
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
cuprous oxide
reaction
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5258779A
Other languages
Japanese (ja)
Inventor
Yasuhiro Masaki
康浩 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5258779A priority Critical patent/JPH07112945A/en
Publication of JPH07112945A publication Critical patent/JPH07112945A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【目的】 太陽光にエネルギー分布の高い可視光に応答
する触媒を使用し、二酸化炭素を高選択的にメタノール
あるいは蟻酸に変換する方法。 【構成】 触媒として酸化第一銅を使用する。この触媒
は担体に担持してもよく、また貴金属触媒 (ルテニウ
ム、パラジウム) を併用してもよい。光還元を水中で行
うとメタノールが、アセトニトリル中に行うと蟻酸がそ
れぞれ選択的に生成する。
(57) [Summary] [Purpose] A method of highly selectively converting carbon dioxide into methanol or formic acid by using a catalyst that responds to visible light having a high energy distribution to sunlight. [Constitution] Cuprous oxide is used as a catalyst. This catalyst may be supported on a carrier, or a noble metal catalyst (ruthenium, palladium) may be used in combination. When photoreduction is carried out in water, methanol is selectively produced, and when it is carried out in acetonitrile, formic acid is selectively produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素の変換方法
に関する。さらに詳しくは、二酸化炭素を触媒存在下で
の光還元反応によりメタノール、蟻酸などの有用化合物
に変換する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for converting carbon dioxide. More specifically, it relates to a method for converting carbon dioxide into useful compounds such as methanol and formic acid by a photoreduction reaction in the presence of a catalyst.

【0002】[0002]

【従来の技術】大気中の二酸化炭素濃度増大による地球
の温暖化が、現在大きな環境問題となっていることは周
知の通りである。従って、二酸化炭素を消費して化学合
成に有効利用することは、原料が安価であると言う経済
的側面や、資源を消費しないという資源保護の側面だけ
でなく、地球温暖化防止対策として非常に望ましいこと
である。
2. Description of the Related Art It is well known that global warming due to an increase in carbon dioxide concentration in the atmosphere is currently a major environmental problem. Therefore, consuming carbon dioxide and effectively utilizing it for chemical synthesis is not only an economical aspect that raw materials are cheap and a resource protection aspect that does not consume resources, but it is also very useful as a measure to prevent global warming. It is desirable.

【0003】二酸化炭素を変換する方法は、熱エネル
ギーを用いる接触水素化反応、電気エネルギーを用い
る電気化学的反応、光エネルギーを用いる光化学反応
に分類できる。
The method of converting carbon dioxide can be classified into a catalytic hydrogenation reaction using thermal energy, an electrochemical reaction using electric energy, and a photochemical reaction using light energy.

【0004】熱エネルギーや電気エネルギーによる二酸
化炭素の変換は、その反応エネルギーを獲得するために
化石燃料等のエネルギーを要すると共に、その際に二酸
化炭素の二次的排出を伴うので好ましくない。一方、光
エネルギーによる二酸化炭素の変換は、無尽蔵でクリー
ンな太陽エネルギーをそのまま化学物質の変換に利用す
ることから、経済性と環境保全の両面からその重要性は
極めて大きい。
The conversion of carbon dioxide by heat energy or electric energy is not preferable because energy of fossil fuel or the like is required to obtain the reaction energy and, at that time, secondary emission of carbon dioxide is involved. On the other hand, the conversion of carbon dioxide by light energy is extremely important from the standpoint of both economic efficiency and environmental protection, since inexhaustible and clean solar energy is directly used for conversion of chemical substances.

【0005】二酸化炭素から有用物質への変換反応とし
ては、例えば、次に示す種々の還元反応が可能である
が、(1) 式で表される一電子還元プロセスより、 (2)〜
(6) 式で表される多電子還元プロセスの方が熱力学的に
は有利である。
As the conversion reaction from carbon dioxide to a useful substance, for example, the following various reduction reactions are possible, but from the one-electron reduction process represented by the formula (1),
The multi-electron reduction process represented by equation (6) is thermodynamically advantageous.

【0006】 酸化還元電位(vs. NHE) CO2 + e- → CO2 - E0=−2.0 V ‥‥ (1) CO2 + 2H+ + 2e- → HCOOH E0=−0.61V ‥‥ (2) CO2 + 2H+ + 2e- → CO + H2O E0=−0.52V ‥‥ (3) CO2 + 4H+ + 2e -→ HCHO + H2O E0=−0.48V ‥‥ (4) CO2 + 6H+ + 2e- → CH3OH + H2O E0=−0.38V ‥‥ (5) CO2 + 8H+ + 2e- → CH4 + 2H2O E0=−0.24V ‥‥ (6) 光によって多電子還元プロセスを行うには、半導体触媒
を用いて、酸化還元電位を光化学的に発生させ、二酸化
炭素への多電子注入を行うことが有利であることが知ら
れている。
[0006] The redox potential (vs. NHE) CO 2 + e - → CO 2 - E 0 = -2.0 V ‥‥ (1) CO 2 + 2H + + 2e - → HCOOH E 0 = -0.61V ‥‥ ( 2) CO 2 + 2H + + 2e - → CO + H 2 OE 0 = -0.52V ‥‥ (3) CO 2 + 4H + + 2e - → HCHO + H 2 OE 0 = -0.48V ‥‥ (4) CO 2 + 6H + + 2e - → CH 3 OH + H 2 OE 0 = -0.38V ‥‥ (5) CO 2 + 8H + + 2e - → CH 4 + 2H 2 OE 0 = -0.24V ‥‥ (6 In order to carry out the multi-electron reduction process by light, it is known that it is advantageous to use a semiconductor catalyst to photochemically generate a redox potential and perform multi-electron injection into carbon dioxide.

【0007】半導体触媒を用いた二酸化炭素の光還元
は、酸化チタン、チタン酸ストロンチウム、炭化硅素等
の触媒を用いて行われてきた[K. Honda 等, Nature, Vo
l. 277, 637, (1979) 、および特開平4−122453号公
報] 。しかし、いずれの触媒についても、光励起には紫
外光が必要であり、可視光領域に多くのエネルギー分布
を持つ太陽光を有効に利用するには満足できるものでは
なかった。また光還元反応において、生成物の反応選択
性が低いという問題点も抱えている。
Photoreduction of carbon dioxide using a semiconductor catalyst has been carried out using a catalyst such as titanium oxide, strontium titanate, and silicon carbide [K. Honda et al., Nature, Vo.
l. 277, 637, (1979), and JP-A-4-122453. However, any of the catalysts requires ultraviolet light for photoexcitation, and is not satisfactory for effectively utilizing sunlight having a large energy distribution in the visible light region. Further, in the photoreduction reaction, there is a problem that the reaction selectivity of the product is low.

【0008】半導体触媒を用いた可視光による二酸化炭
素の還元反応では、硫化カドミウムを触媒とする方法が
試みられている[B.R. Eggins等, J. Chem. Soc., Chem.
Commun., 1123 (1988)]。この場合、反応生成物はグリ
コール酸、酢酸、蟻酸、ホルマリン等の混合物になるの
で、反応生成物を分離する必要があるだけでなく、触媒
に用いたカドミウムが溶出する恐れがあり、安全性にも
問題があった。
In the reduction reaction of carbon dioxide by visible light using a semiconductor catalyst, a method using cadmium sulfide as a catalyst has been tried [BR Eggins et al., J. Chem. Soc., Chem.
Commun., 1123 (1988)]. In this case, the reaction product will be a mixture of glycolic acid, acetic acid, formic acid, formalin, etc., so not only the reaction product needs to be separated, but also the cadmium used in the catalyst may elute, which may increase safety. Also had a problem.

【0009】金属錯体を用いる二酸化炭素の光還元反応
においても可視光の利用が可能であり、Ru(bipy)3 2+ (b
ipy =ビピリジル) を光増感剤とする系が多く報告され
ている [例えば、J.L. Grant等, J. Chem. Soc., Dalto
n Trans., 2105 (1987) 、および H. Ishida等, Chem.
Lett., 1035 (1987)] 。しかし、金属錯体系では、電子
リレーや助触媒の存在が必要であり、反応生成物は専ら
一酸化炭素や蟻酸のような低還元物であり、メタノール
のような高還元生成物を与えた例は極めて少ない。加え
て、金属錯体自身の分解に基づく反応活性の低下も指摘
されている。
Visible light can also be used in the photoreduction reaction of carbon dioxide using a metal complex, and Ru (bipy) 3 2+ (b
Many systems using ipy = bipyridyl) as photosensitizers have been reported [eg, JL Grant et al., J. Chem. Soc., Dalto
n Trans., 2105 (1987), and H. Ishida et al., Chem.
Lett., 1035 (1987)]. However, in the metal complex system, the presence of an electron relay and a co-catalyst is required, and the reaction product is a low reduction product such as carbon monoxide or formic acid, and a high reduction product such as methanol is given. Is extremely small. In addition, reduction in reaction activity due to decomposition of the metal complex itself has been pointed out.

【0010】[0010]

【発明が解決しようとする課題】二酸化炭素の変換は、
地球温暖化防止対策の一つとして重要である。従って、
その変換のエネルギーを無尽蔵でクリーンな太陽光から
賄い、二酸化炭素を有用なメタノールや蟻酸等に還元す
ることは、変換に際して新たなエネルギー消費を伴わな
いこと、生成物が化学品の中間原料であること、特にメ
タノールは自動車用燃料として使用可能なこと、等か
ら、二酸化炭素の軽減に極めて有効な手段と考えられ
る。
[Problems to be Solved by the Invention] The conversion of carbon dioxide is
It is important as one of the measures to prevent global warming. Therefore,
Exhausting the energy of the conversion from inexhaustible and clean sunlight and reducing carbon dioxide to useful methanol, formic acid, etc. does not involve new energy consumption during conversion, and the product is an intermediate raw material for chemicals. In particular, since methanol can be used as a fuel for automobiles, it is considered to be an extremely effective means for reducing carbon dioxide.

【0011】本発明の目的は、以上の点を考慮して、太
陽光にエネルギー分布の高い可視光に応答する触媒を使
用し、二酸化炭素を高選択的にメタノールあるいは蟻酸
に変換する方法を提供することである。
In consideration of the above points, an object of the present invention is to provide a method for highly selectively converting carbon dioxide into methanol or formic acid by using a catalyst which responds to visible light having a high energy distribution in sunlight. It is to be.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために、可視光領域に吸収を有する多様な
酸化物および硫化物半導体を用いて、二酸化炭素の還元
に対するその光触媒作用について試行錯誤した結果、酸
化第一銅が、水およびアセトニトリル溶液中において二
酸化炭素を光還元し、それぞれメタノールおよび蟻酸を
与えることを見いだし、本発明に至った。
In order to solve the above-mentioned problems, the present inventors have used a variety of oxide and sulfide semiconductors having absorption in the visible light region to provide a photocatalyst for the reduction of carbon dioxide. As a result of trial and error about the action, it was found that cuprous oxide photoreduces carbon dioxide in water and acetonitrile solutions to give methanol and formic acid, respectively, and the present invention was completed.

【0013】ここに、本発明の要旨は、触媒存在下での
光還元により二酸化炭素を変換する方法において、触媒
として酸化第一銅を使用することを特徴とする方法であ
る。
Here, the gist of the present invention is a method for converting carbon dioxide by photoreduction in the presence of a catalyst, which comprises using cuprous oxide as a catalyst.

【0014】[0014]

【作用】本発明によれば酸化第一銅触媒の存在下に二酸
化炭素を光化学的に還元することにより、メタノール、
蟻酸などの有用化学物質を製造する。
According to the present invention, by photochemically reducing carbon dioxide in the presence of a cuprous oxide catalyst, methanol,
Manufacture useful chemicals such as formic acid.

【0015】この反応で用いる酸化第一銅は、酢酸銅(I
I)、水酸化銅(II)、硫酸銅(II)、塩化銅(II)等の2価銅
化合物の水溶液をヒドラジン、一酸化炭素、水素等の還
元剤と反応させて還元析出させるか、或いは塩化銅(I)
、ヨウ化銅(I) 、チオシアン酸銅(I) 等の1価銅化合
物の水溶液を加水分解反応させて析出させることにより
得られる。特に、酢酸銅(II)のヒドラジンによる還元で
得られた酸化第一銅が触媒として好ましい。
The cuprous oxide used in this reaction is copper acetate (I
I), copper (II) hydroxide, copper (II) sulphate, copper (II) chloride, etc. An aqueous solution of a divalent copper compound is reacted with a reducing agent such as hydrazine, carbon monoxide or hydrogen to cause reductive precipitation, or Or copper (I) chloride
, Copper iodide, copper (I) thiocyanate, and the like are obtained by subjecting an aqueous solution of a monovalent copper compound to a hydrolysis reaction to cause precipitation. In particular, cuprous oxide obtained by reduction of copper (II) acetate with hydrazine is preferable as a catalyst.

【0016】使用する酸化第一銅触媒は、良好な活性を
示すには、粒径10μm以下の微粉状の形態が望ましい。
このような微粉状の酸化第一銅を調製するには、前駆体
となる銅化合物水溶液の濃度をできるだけ希薄にすれば
よい。
The cuprous oxide catalyst used is preferably in the form of fine powder having a particle size of 10 μm or less in order to exhibit good activity.
In order to prepare such fine powdery cuprous oxide, the concentration of the precursor copper compound aqueous solution may be made as dilute as possible.

【0017】酸化第一銅は、反応効率と反応選択性の向
上のため、適当な担体上に担持して使用することが望ま
しい。担体としてはアルミナ、シリカ、チタニア、ゼオ
ライト、炭素等の慣用の担体材料が使用される。光触媒
の担体への担持は、混練法、含浸法、沈澱法、イオン交
換法等により行うことができる。触媒の担体への担持量
は、担体系への分散性が良好と考えられる10wt%以下が
好ましい。さらに好ましくは5wt%以下である。担持触
媒として使用する場合も、担体自体が上記のような微粉
状であることが好ましい。
Cuprous oxide is preferably used by supporting it on a suitable carrier in order to improve reaction efficiency and reaction selectivity. As the carrier, conventional carrier materials such as alumina, silica, titania, zeolite and carbon are used. The photocatalyst can be supported on the carrier by a kneading method, an impregnation method, a precipitation method, an ion exchange method, or the like. The amount of the catalyst loaded on the carrier is preferably 10 wt% or less, which is considered to have good dispersibility in the carrier system. More preferably, it is 5 wt% or less. Also when used as a supported catalyst, the carrier itself is preferably in the form of fine powder as described above.

【0018】触媒担体に、酸化第一銅に加えて貴金属触
媒も担持させると、触媒活性が向上する。貴金属触媒と
しては、パラジウム、ルテニウムなどの貴金属を用いる
ことができる。担持法については、混練法や貴金属塩の
光還元法などが用いられる。貴金属触媒と酸化第一銅触
媒は、同じ担体に担持しても、別々の担体に担持しても
よいが、同じ担体に担持することが反応効率面から好ま
しい。また、触媒の酸化第一銅に貴金属触媒を担持させ
ることもできる。
When a noble metal catalyst is carried on the catalyst carrier in addition to cuprous oxide, the catalytic activity is improved. As the noble metal catalyst, a noble metal such as palladium or ruthenium can be used. As the supporting method, a kneading method or a photoreduction method of a noble metal salt is used. The noble metal catalyst and the cuprous oxide catalyst may be supported on the same carrier or different carriers, but it is preferable to support them on the same carrier in terms of reaction efficiency. Further, a noble metal catalyst can be supported on the cuprous oxide of the catalyst.

【0019】貴金属の担持量は5wt%以下が好ましい。
5wt%を越えると、担持金属の分散性が芳しくなく、ま
た触媒自体が凝集する傾向にあるため、光反応自体が進
行し難くなる。
The amount of the noble metal supported is preferably 5 wt% or less.
When it exceeds 5 wt%, the dispersibility of the supported metal is poor and the catalyst itself tends to aggregate, so that the photoreaction itself becomes difficult to proceed.

【0020】本発明による光還元反応を行うには、調製
した酸化第一銅触媒を適当な液体中に分散させた触媒液
を反応容器に装入する。この触媒の分散媒として用いる
液体としてはその酸化還元電位から水、アセトニトリ
ル、THF 、アセトン、ブチロニトリル等を用いることが
できるが、水またはアセトニトリルが特に好ましい。前
述したように、酸化第一銅触媒を水に分散させた時に
は、二酸化炭素の光還元によりメタノールが生成し、ア
セトニトリルに分散させた時には蟻酸が生成する。
To carry out the photoreduction reaction according to the present invention, a catalyst solution prepared by dispersing the prepared cuprous oxide catalyst in a suitable liquid is charged into a reaction vessel. As the liquid used as the dispersion medium of this catalyst, water, acetonitrile, THF, acetone, butyronitrile or the like can be used because of its redox potential, but water or acetonitrile is particularly preferable. As described above, when the cuprous oxide catalyst is dispersed in water, methanol is produced by photoreduction of carbon dioxide, and when dispersed in acetonitrile, formic acid is produced.

【0021】反応方法としては、この触媒液にまず二酸
化炭素をバブリングして、液体中にCO2 を吸収させ
る。液体中に触媒が存在していても、単に二酸化炭素を
触媒分散液中にバブリングしただけでは、二酸化炭素の
還元は起こらない。二酸化炭素を吸収した触媒分散液
に、次いで攪拌により触媒を液中に懸濁させながら光を
照射する。触媒が照射された光を吸収して励起され、前
述した反応式に示すように還元が起こって、二酸化炭素
がメタノール、蟻酸などの有用化学物質に変換される。
As a reaction method, first, carbon dioxide is bubbled through this catalyst liquid to absorb CO 2 in the liquid. Even if the catalyst is present in the liquid, simply bubbling carbon dioxide into the catalyst dispersion does not reduce carbon dioxide. The catalyst dispersion liquid that has absorbed carbon dioxide is then irradiated with light while the catalyst is suspended in the liquid by stirring. The catalyst absorbs the irradiated light and is excited, and reduction occurs as shown in the above reaction formula, and carbon dioxide is converted into useful chemical substances such as methanol and formic acid.

【0022】光照射については、原理的には紫外光によ
っても光還元反応は進行するが、太陽光にエネルギー分
布の大きい可視光 (>400nm)を照射することが望まし
い。
Regarding light irradiation, in principle, the photoreduction reaction also proceeds by ultraviolet light, but it is desirable to irradiate sunlight with visible light (> 400 nm) having a large energy distribution.

【0023】この照射時に攪拌を止めると、触媒が沈降
して、系自体の光吸収量が減少するため、反応効率的に
は不利である。反応温度については常温 (約25℃) 以下
が好ましい。なお、二酸化炭素の吸収と光照射による二
酸化炭素の変換を、前記のように1つの反応器内で逐次
的に行うのではなく、同時並行で行うこともできる。ま
た、反応器を二つ用意し、第一反応器で触媒液への二酸
化炭素の吸収を行い、二酸化炭素を吸収した触媒液を第
二反応器に移送し、ここで光を照射して二酸化炭素の光
還元を行うことも可能である。二酸化炭素が消費された
触媒液は、第二反応器から第一反応器に循環させて使用
してもよい。このようにして、本発明の二酸化炭素の変
換方法は、回分式および連続式のいずれの方式でも実施
できる。反応生成物であるメタノールや蟻酸は触媒液中
に溶解している。その回収は、例えば、触媒液から触媒
を分離し、次いで蒸留などの適当な手段で反応生成物を
分離することにより行うことができる。
If stirring is stopped during this irradiation, the catalyst settles down and the amount of light absorbed by the system itself decreases, which is disadvantageous in terms of reaction efficiency. The reaction temperature is preferably room temperature (about 25 ° C) or lower. It should be noted that the absorption of carbon dioxide and the conversion of carbon dioxide by light irradiation can be carried out simultaneously in parallel instead of sequentially in one reactor as described above. In addition, two reactors are prepared, carbon dioxide is absorbed by the catalyst liquid in the first reactor, and the catalyst liquid that has absorbed the carbon dioxide is transferred to the second reactor, where it is irradiated with light to oxidize carbon dioxide. It is also possible to carry out photoreduction of carbon. The catalyst liquid in which carbon dioxide has been consumed may be circulated from the second reactor to the first reactor for use. In this way, the carbon dioxide conversion method of the present invention can be carried out by either a batch system or a continuous system. Reaction products such as methanol and formic acid are dissolved in the catalyst liquid. The recovery can be performed, for example, by separating the catalyst from the catalyst liquid and then separating the reaction product by an appropriate means such as distillation.

【0024】[0024]

【実施例】【Example】

(実施例1)酢酸銅一水和物 (アルドリッチ製) 2.0 gを
50ccの蒸留水に溶解し、ヒドラジン一水和物 (東京化成
製) 10%水溶液2mlを滴下し、氷浴中、数時間攪拌す
る。得られた黄色の懸濁液に対し、遠心分離器を用いて
デカンテーションによる洗浄を5回施し、酸化第一銅を
懸濁状態で含む水性触媒液10 ml を得た。この酸化第一
銅粒子の平均粒度は約2μmであった。
(Example 1) 2.0 g of copper acetate monohydrate (manufactured by Aldrich)
It is dissolved in 50 cc of distilled water, 2 ml of a 10% aqueous solution of hydrazine monohydrate (Tokyo Kasei) is added dropwise, and the mixture is stirred for several hours in an ice bath. The obtained yellow suspension was washed 5 times by decantation using a centrifuge to obtain 10 ml of an aqueous catalyst solution containing cuprous oxide in a suspended state. The average particle size of the cuprous oxide particles was about 2 μm.

【0025】次に、この酸化第一銅を含む水性触媒液か
ら取り出した0.03 ml(触媒量約2.0mg) をトリエタノー
ルアミン 1.0M を含む水溶液2ml中に加え、0℃におい
て二酸化炭素を30分間バブリングした。その後、25℃に
おいて攪拌しながら、300 Wハロゲンランプから、飽和
亜硝酸ナトリウムの溶液フィルターを通して波長400nm
以上の光を照射した。反応生成物の分析はガスクロマト
グラフィー (カラム :PEG1000) で行った。
Next, 0.03 ml (catalyst amount of about 2.0 mg) taken out from the aqueous catalyst solution containing cuprous oxide was added to 2 ml of an aqueous solution containing triethanolamine 1.0M, and carbon dioxide was added at 0 ° C. for 30 minutes. I bubbled. Then, while stirring at 25 ° C, a wavelength of 400 nm was passed from a 300 W halogen lamp through a saturated sodium nitrite solution filter.
The above light was applied. The reaction product was analyzed by gas chromatography (column: PEG1000).

【0026】その結果、触媒とした酸化第一銅 1.0gあ
たり、メタノールが0.021 g/h で生成し、痕跡量程度の
水素が生成した。なお、他の還元生成物 (一酸化炭素、
蟻酸、メタン) は生成しなかった。
As a result, methanol was produced at 0.021 g / h per 1.0 g of cuprous oxide used as a catalyst, and a trace amount of hydrogen was produced. Other reduction products (carbon monoxide,
Formic acid and methane) did not form.

【0027】(実施例2)実施例1と同様に調製した酸化
第一銅懸濁液から、デカンテーションで水を除いた。こ
の残渣にアセトニトリルを加えた後、再び遠心分離器を
用いて、デカンテーションによりアセトニトリルを除い
た。この操作を3回繰り返して、酸化第一銅を懸濁状態
で含む触媒液10 ml を得た。
Example 2 From the cuprous oxide suspension prepared in the same manner as in Example 1, water was removed by decantation. After adding acetonitrile to this residue, acetonitrile was removed by decantation using a centrifugal separator again. This operation was repeated 3 times to obtain 10 ml of a catalyst liquid containing cuprous oxide in a suspended state.

【0028】二酸化炭素の光還元は、反応溶液をアセト
ニトリルに変更し、分析をイオンクロマトグラフィー
[カラム: トーソー製TSC gel-SCX(H+)]に変更した以
外、実施例1と同様に行った。その結果、触媒とした酸
化第一銅 1.0gあたり、蟻酸が0.036 g/h 生成した。な
お、他の還元生成物 (一酸化炭素、メタノール、メタ
ン)は生成しなかった。
For the photoreduction of carbon dioxide, the reaction solution was changed to acetonitrile and the analysis was carried out by ion chromatography.
The procedure was performed in the same manner as in Example 1 except that [Column: Toso TSC gel-SCX (H +)] was changed. As a result, 0.036 g / h of formic acid was produced per 1.0 g of cuprous oxide used as a catalyst. Other reduction products (carbon monoxide, methanol, methane) were not produced.

【0029】(実施例3)酢酸銅一水和物 0.5gを 5.3g
のシリカ (アルドリッチ製、平均粒度10μm)を含む25c
cの蒸留水に溶解させ、ヒドラジン一水和物10%水溶液
2mlを滴下し、氷浴中、数時間攪拌した。得られた沈澱
物をろ過後、蒸留水およびエタノールでよく洗浄し、デ
シケーター内で真空乾燥した。その結果、シリカを担体
とした酸化第一銅/シリカを5.25g得た。
Example 3 Copper acetate monohydrate 0.5 g 5.3 g
25c containing silica (made by Aldrich, average particle size 10μm)
It was dissolved in distilled water of c, 2 ml of a 10% aqueous solution of hydrazine monohydrate was added dropwise, and the mixture was stirred in an ice bath for several hours. The resulting precipitate was filtered, washed thoroughly with distilled water and ethanol, and vacuum dried in a desiccator. As a result, 5.25 g of cuprous oxide / silica having silica as a carrier was obtained.

【0030】こうして調製したシリカ担持触媒83 mg(酸
化第一銅約2mg等量) を用い、実施例1と同様に二酸化
炭素の光還元を行った。その結果、触媒の酸化第一銅
1.0gあたりメタノールが0.034 g/h 生成した。
Photocatalytic reduction of carbon dioxide was carried out in the same manner as in Example 1 by using 83 mg of the silica-supported catalyst thus prepared (about 2 mg of cuprous oxide equivalent). As a result, the catalyst cuprous oxide
0.034 g / h of methanol was produced per 1.0 g.

【0031】(実施例4)担体をアルミナ (アルドリッチ
製) に変更した以外、実施例3と同様に二酸化炭素の光
還元を行った。触媒とした酸化第一銅 1.0g当たりメタ
ノールが0.041g/h 生成した。
Example 4 Carbon dioxide was photoreduced in the same manner as in Example 3 except that the carrier was changed to alumina (made by Aldrich). 0.041 g / h of methanol was produced per 1.0 g of cuprous oxide used as a catalyst.

【0032】(実施例5)実施例1に記載した方法によっ
て得た酸化第一銅懸濁液をろ過、乾燥後、得られた酸化
第一銅 (0.65g) とパラジウム黒 (3wt%) を乳鉢にい
れ、20分間よく混練させた。
Example 5 The cuprous oxide suspension obtained by the method described in Example 1 was filtered and dried, and then the obtained cuprous oxide (0.65 g) and palladium black (3 wt%) were added. It was put in a mortar and kneaded well for 20 minutes.

【0033】こうして調製した酸化第一銅にパラジウム
が担持した触媒を2mg用い、実施例1と同様に二酸化炭
素の光還元を行った。その結果、触媒とした酸化第一銅
1.0gあたり、メタノールが0.033 g/h 生成した。
Photocatalytic reduction of carbon dioxide was carried out in the same manner as in Example 1 using 2 mg of the catalyst thus prepared, which had palladium supported on cuprous oxide. As a result, cuprous oxide used as a catalyst
0.033 g / h of methanol was produced per 1.0 g.

【0034】(比較例1)触媒として硫化カドミウム (ア
ルドリッチ製、純度99.999%) を用いること以外、実施
例1と同様に二酸化炭素の光還元を行った。その結果、
触媒 1.0g当たり、蟻酸、一酸化炭素および水素が、そ
れぞれ0.028 g/h 、0.043 g/h 、0.009g/h 生成した。
即ち、この触媒では反応の選択率が低く、多様な反応生
成物が生成した。
Comparative Example 1 Photoreduction of carbon dioxide was carried out in the same manner as in Example 1 except that cadmium sulfide (manufactured by Aldrich, purity 99.999%) was used as the catalyst. as a result,
Formic acid, carbon monoxide and hydrogen were produced at 0.028 g / h, 0.043 g / h and 0.009 g / h, respectively, per 1.0 g of the catalyst.
That is, with this catalyst, the selectivity of the reaction was low, and various reaction products were produced.

【0035】(比較例2)触媒としてリン化ガリウム (ス
トレム製) を用い、トリエタノールアミンをイソプロピ
ルアルコールに代える以外、実施例1と同様に光反応を
行った。その結果、触媒1.0 g当たりメタノールが0.00
6 g/h 生成した。
Comparative Example 2 A photoreaction was performed in the same manner as in Example 1 except that gallium phosphide (made by Strem) was used as a catalyst and triethanolamine was replaced with isopropyl alcohol. As a result, methanol is 0.00 per 0.00 g of catalyst.
6 g / h produced.

【0036】[0036]

【発明の効果】実施例の結果からも明らかなように、本
発明によれば、酸化第一銅を光触媒とし、太陽光にエネ
ルギー分布の多い可視光を照射することにより、常温で
二酸化炭素を変換することができる。従って、本発明
は、無尽蔵な太陽エネルギーを用いることによって、新
たなエネルギー消費、および二次的な二酸化炭素の排出
を伴わない、地球温暖化を阻止する二酸化炭素の処理方
法を提出するものとして大きな意義がある。
As is clear from the results of the examples, according to the present invention, by using cuprous oxide as a photocatalyst and irradiating sunlight with visible light having a large energy distribution, carbon dioxide is removed at room temperature. Can be converted. Therefore, the present invention provides a method for treating carbon dioxide that prevents global warming without using new energy consumption and secondary carbon dioxide emission by using inexhaustible solar energy. it makes sense.

【0037】しかも、本発明の方法による二酸化炭素の
光変換では、他の生成物を副生せずに蟻酸や、さらには
高還元生成物であるメタノールが選択的に生成する。こ
れらの反応生成物は、各種化学合成品の中間原料として
使用されており、特にメタノールは次世代の自動車燃料
として注目を浴びていることから、本発明はメタノー
ル、蟻酸の簡便で、安価な製造方法としても有効であ
る。
Moreover, in the photoconversion of carbon dioxide by the method of the present invention, formic acid and further a highly reduced product, methanol, are selectively produced without producing other products as by-products. These reaction products are used as intermediate raw materials for various chemically synthesized products, and since methanol is particularly drawing attention as a next-generation automobile fuel, the present invention provides a simple and inexpensive method for producing methanol and formic acid. It is also effective as a method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 53/02 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C07C 53/02 // C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 触媒存在下での光還元により二酸化炭素
を変換する方法において、触媒として酸化第一銅を使用
することを特徴とする方法。
1. A method for converting carbon dioxide by photoreduction in the presence of a catalyst, which comprises using cuprous oxide as a catalyst.
【請求項2】 前記触媒が担体に担持された酸化第一銅
からなる、請求項1記載の方法。
2. The method of claim 1, wherein the catalyst comprises cuprous oxide supported on a carrier.
【請求項3】 さらに担体に担持された貴金属触媒も使
用する、請求項2記載の方法。
3. The method according to claim 2, wherein a noble metal catalyst supported on a carrier is also used.
JP5258779A 1993-10-15 1993-10-15 How to convert carbon dioxide Withdrawn JPH07112945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5258779A JPH07112945A (en) 1993-10-15 1993-10-15 How to convert carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5258779A JPH07112945A (en) 1993-10-15 1993-10-15 How to convert carbon dioxide

Publications (1)

Publication Number Publication Date
JPH07112945A true JPH07112945A (en) 1995-05-02

Family

ID=17324969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258779A Withdrawn JPH07112945A (en) 1993-10-15 1993-10-15 How to convert carbon dioxide

Country Status (1)

Country Link
JP (1) JPH07112945A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294628A (en) * 1995-03-01 1996-11-12 Nippon Insulation Kk Photocatalyst material and its preparation
JP2012219233A (en) * 2011-04-13 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> Apparatus for recycling carbon dioxide
JP2013017929A (en) * 2011-07-08 2013-01-31 Ihi Corp Carbon dioxide reduction method and reduction device
JP2016047487A (en) * 2014-08-27 2016-04-07 一般財団法人電力中央研究所 Catalyst or precursor thereof, method for hydrogenating carbon dioxide using these, and method for producing formate
US9556092B2 (en) 2012-12-22 2017-01-31 Gas Technologies Llc Method and apparatus for providing oxygenated hydrocarbons
CN107177862A (en) * 2017-05-10 2017-09-19 大连理工大学 One kind is used for electro-catalysis and reduces CO2Prepare the electrode structure and preparation method of ethene
CN114471626A (en) * 2022-01-24 2022-05-13 深圳市德尼环境技术有限公司 Preparation method and application of oxyfluoride supported noble metal catalyst
CN115595606A (en) * 2022-09-20 2023-01-13 山东大学(Cn) Copper-based catalytic electrode, preparation method and application thereof in preparing ethylene by electrocatalytic reduction of carbon dioxide
CN115786960A (en) * 2022-11-29 2023-03-14 浙江工业大学 Carbon dioxide electrocatalytic material with interface optimized through reducing atmosphere and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294628A (en) * 1995-03-01 1996-11-12 Nippon Insulation Kk Photocatalyst material and its preparation
JP2012219233A (en) * 2011-04-13 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> Apparatus for recycling carbon dioxide
JP2013017929A (en) * 2011-07-08 2013-01-31 Ihi Corp Carbon dioxide reduction method and reduction device
US9556092B2 (en) 2012-12-22 2017-01-31 Gas Technologies Llc Method and apparatus for providing oxygenated hydrocarbons
JP2016047487A (en) * 2014-08-27 2016-04-07 一般財団法人電力中央研究所 Catalyst or precursor thereof, method for hydrogenating carbon dioxide using these, and method for producing formate
CN107177862A (en) * 2017-05-10 2017-09-19 大连理工大学 One kind is used for electro-catalysis and reduces CO2Prepare the electrode structure and preparation method of ethene
CN114471626A (en) * 2022-01-24 2022-05-13 深圳市德尼环境技术有限公司 Preparation method and application of oxyfluoride supported noble metal catalyst
CN114471626B (en) * 2022-01-24 2024-04-09 深圳市德尼环境技术有限公司 Preparation method and application of oxyfluoride supported noble metal catalyst
CN115595606A (en) * 2022-09-20 2023-01-13 山东大学(Cn) Copper-based catalytic electrode, preparation method and application thereof in preparing ethylene by electrocatalytic reduction of carbon dioxide
CN115786960A (en) * 2022-11-29 2023-03-14 浙江工业大学 Carbon dioxide electrocatalytic material with interface optimized through reducing atmosphere and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Ranjit et al. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2
Kaise et al. Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M= Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in aqueous media
CN101474563B (en) Preparation method of catalyst for hydrogen production by steam reforming of methanol
Pavlik et al. Photocatalytic oxidations of lactams and N-acylamines
CN102302934A (en) Novel auxiliary-modified catalyst for preparing methanol by catalytic hydrogenation of carbon dioxide and preparation method of catalyst
CN1642891A (en) Process and catalyst for production of formaldehyde from dimethyl ether
JPH07112945A (en) How to convert carbon dioxide
CN113413897A (en) Efficient composite photocatalyst and preparation method and application thereof
CN107827709B (en) A kind of method of photocatalytic ethanol conversion to synthesize crotyl alcohol
CN101961661B (en) Organic metal catalyst for preparing cyclohexene by benzene hydrogenation and preparation method and application thereof
Tan et al. ZnO/Fe-thioporphyrazine composites as efficient photocatalysts for oxidation of glycerol to value-added C3 products in water
KR20200033624A (en) Low temperature oxidative coupling method of methane using oxidized palladium catalyst supported on cerium oxide
Endoh et al. Heterogeneous photoreduction of nitrogen to ammonia on catalyst-loaded TiO2 powders
CN105481666B (en) A kind of method for syngas catalytic conversion
KR100288647B1 (en) Zinc sulfide-producing photocatalyst for producing hydrogen and its production method, and hydrogen production method using the same
Nasrallah et al. Nanostructured Photocatalysts
CN114029043B (en) Preparation method of composite photocatalytic material
JP2002255502A (en) Light energy conversion by iodine compounds and semiconductor photocatalysts
Khan et al. Stepwise reduction of coordinated dinitrogen to ammonia via diazinido and hydrazido intermediates on a visible light irradiated Pt/CdS· Ag2S/RuO2 particulate system suspended in an aqueous solution of K [Ru (EDTA-H) Cl] 2H2O
Ranjit et al. Photocatalytic reduction of dinitrogen to ammonia
CN107051549B (en) Double-heterostructure photochemical catalyst and its application and preparation method
CN109621953A (en) A kind of three-dimensional ordered macroporous pucherite supported ruthenium catalyst of high-efficiency photocatalysis oxidization benzyl alcohol
CN110898849B (en) A method of converting CO2 into polycarbonate alcohols and polycarbonate hydrocarbons and its catalyst
CN111054384A (en) Catalyst for organic liquid hydrogen storage material dehydrogenation and preparation method thereof
JPH07313884A (en) Catalyst for photolysis of water and production of hydrogen using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226