[go: up one dir, main page]

JPH07112090B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH07112090B2
JPH07112090B2 JP21640682A JP21640682A JPH07112090B2 JP H07112090 B2 JPH07112090 B2 JP H07112090B2 JP 21640682 A JP21640682 A JP 21640682A JP 21640682 A JP21640682 A JP 21640682A JP H07112090 B2 JPH07112090 B2 JP H07112090B2
Authority
JP
Japan
Prior art keywords
layer
well
wavelength
gaas
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21640682A
Other languages
Japanese (ja)
Other versions
JPS59106171A (en
Inventor
茂伸 山腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21640682A priority Critical patent/JPH07112090B2/en
Publication of JPS59106171A publication Critical patent/JPS59106171A/en
Publication of JPH07112090B2 publication Critical patent/JPH07112090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3418Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers using transitions from higher quantum levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は半導体発光装置、特に同一光共振器より複数の
波長の光が同時に出射される半導体レーザに関する。
Description: (a) Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor laser in which lights of a plurality of wavelengths are simultaneously emitted from the same optical resonator.

(b)技術の背景 光通信ならびに各種の産業或いは民生分野における光を
情報信号の媒体とするシステムにおいて、半導体発光装
置は最も重要な構成要素であって、要求される波長帯域
の実現,安定した単一の基本零次横モード発振,単一の
縦モード発振,光ビーム発散角の減少,閾値電流の低
減,電流−光出力特性の直線性の向上、出力の増大及び
これらの特性の温度依存性の減少など諸特性の向上につ
いて多くの努力が重ねられているが、特に特性の安定性
と長寿命の実現とが重要である。
(B) Background of technology In optical communication and systems in which light is used as an information signal medium in various industries or consumer fields, a semiconductor light emitting device is the most important component, and a required wavelength band is realized and stable. Single fundamental zeroth order transverse mode oscillation, single longitudinal mode oscillation, reduction of light beam divergence angle, reduction of threshold current, improvement of linearity of current-light output characteristics, increase of output and temperature dependence of these characteristics A lot of efforts have been made to improve various characteristics such as reduction of properties, but it is particularly important to achieve stability of characteristics and long life.

(c)従来技術と問題点 前記の目的のために現在までに数多くの半導体発光装
置、特にレーザが提案されているが、その一つとして量
子井戸構造を有する半導体レーザがある。
(C) Prior Art and Problems Many semiconductor light emitting devices, particularly lasers, have been proposed to date for the above purpose, and one of them is a semiconductor laser having a quantum well structure.

量子井戸(Quantum Well)半導体レーザとは、ダブルヘ
テロ構造の活性層の厚さをキャリアのドウ・ブローイー
波長λ(GaAsではλ≒30〔nm〕)以下としたもの
で、活性層は量子力学的井戸形ポテンシャルとして機能
して、キャリアの厚さ方向の運動が量子化された二次元
電子状態となる。量子井戸レーザには活性層として1層
のウエル層から構成されるSingle Quantum Wellレーザ
と、ウエル層とバリア層とが交互に多重に積層されたMu
lti Quantum Wellレーザとがある。
The quantum well (Quantum Well) semiconductor lasers, which was not more than double heterostructure thickness of the active layer dough Buroi wavelength lambda of the carrier d of (GaAs in lambda d ≒ 30 [nm]), the active layer is a quantum It functions as a mechanical well potential and becomes a two-dimensional electronic state in which the motion of carriers in the thickness direction is quantized. The quantum well laser includes a single quantum well laser composed of one well layer as an active layer and a Mu layer in which well layers and barrier layers are alternately laminated.
There is an lti Quantum Well laser.

既に知られている多重量子井戸レーザの一例を第1図に
断面図によって示す。図において、1はn型ガリウム・
砒素(GaAs)基板、2はn型GaAsバッファ層、3はn型
アルミニウム・ガリウム砒素(AlxGa1−xAs)クラッド
層、4は多重量子井戸構造であって、ウエル層はGaAs、
バリア層はAlxGa1−xAsによって形成されている。また
5はp型AlxGa1−xAsクラッド層、6はp型GaAsキャッ
プ層、7は保護膜、8はp側電極、9はn側電極であ
る。
An example of a known multiple quantum well laser is shown in FIG. 1 by a cross-sectional view. In the figure, 1 is n-type gallium
Arsenic (GaAs) substrate, 2 n-type GaAs buffer layer, 3 n-type aluminum gallium arsenide (AlxGa 1 -xAs) clad layer, 4 multiple quantum well structure, well layer is GaAs,
Barrier layer is formed by AlxGa 1 -xAs. Further, 5 is a p-type AlxGa 1 -xAs clad layer, 6 is a p-type GaAs cap layer, 7 is a protective film, 8 is a p-side electrode, and 9 is an n-side electrode.

前記例において各半導体層の組成の例を図示しれば第2
図(a)又は(b)に示す如くである。ただし、第1図
と同一符号によって対応する部位を示す。従来の多重量
子井戸レーザにおいてはバリア層の組成はクラッド層の
組成とは必ずしも同一ではないが、バリア層相互間では
組成は同一である。またバリア層の厚さも同一とされて
いる。更にウエル層に就いても、その組成及び厚さはウ
エル層相互間で同一とされている。AlxGa1−xAsで挾ま
れたGaAs量子井戸のエネルギーダイヤグラムを第3図に
示す。図中Lzは量子井戸の幅すなわちGaAsウエル層の厚
さを示し、このLzは電子のドウ・ブローイー波長λ
下である。
If the example of the composition of each semiconductor layer is illustrated in the above example,
This is as shown in FIG. However, corresponding parts are indicated by the same reference numerals as in FIG. In the conventional multiple quantum well laser, the composition of the barrier layer is not necessarily the same as the composition of the cladding layer, but the composition is the same between the barrier layers. The thickness of the barrier layer is also the same. Further, the composition and thickness of the well layers are the same between the well layers. Figure 3 shows the energy diagram of a GaAs quantum well sandwiched by AlxGa 1 -xAs. In the figure, Lz represents the width of the quantum well, that is, the thickness of the GaAs well layer, and this Lz is equal to or less than the Dow-Bloey wavelength λ d of the electron.

図に示す如く、伝導帯のバリアはAlxGa1−xAsとGaAsと
の電子親和度の差ΔEcによって与えられ、また価電子帯
のバリアはAlxGa1−xAsとGaAsとの禁制帯幅Egの差から
前記ΔEcを引いたΔEvによって与えられる。
As shown in the figure, the conduction band barrier is given by the difference ΔEc in electron affinity between AlxGa 1 −xAs and GaAs, and the valence band barrier is calculated from the difference in the forbidden band width Eg between AlxGa 1 −xAs and GaAs. It is given by ΔEv minus ΔEc.

GaAsウエル層内において電子及び正孔はそれぞれ前記バ
リアΔEc及びΔEvによって閉じ込められて、そのエネル
ギーEは で表わされ、AlxGa1−xAsバリア層のバリア高さが無限
大であるとき で与えられる。ただし、 はプランク定数、m*は有効質量、kx及びkyは波数ベクト
ルのx及びy方向成分である。
In the GaAs well layer, electrons and holes are confined by the barriers ΔEc and ΔEv, respectively, and their energy E is When the barrier height of the AlxGa 1 −xAs barrier layer is infinite, Given in. However, Is Planck's constant, m * is effective mass, kx and ky are x- and y-direction components of the wave vector.

Enは模式的に第3図に示されるが、Ehhnは重い正孔Elhn
は軽い正孔に対応する。
En is shown schematically in Fig. 3, Ehhn is a heavy hole Elhn
Corresponds to a light hole.

このようなエネルギーをもつキャリアの状態密度は階段
状となって、三次元自由キャリアに比較してバンド端の
状態密度が著しく大きくなる。以上の如く量子化された
キャリアの輻射遷移に対する選択則はΔn=0であっ
て、例えばE1の電子はEhh1又はElh1の正孔と再結合す
る。量子井戸構造においては先に述べた如くサブバンド
端での状態密度が大きいために電子及び正孔はサブバン
ド端附近に集中しており、電子−正孔の再結合はサブバ
ンド端間で起こる。
The densities of states of carriers having such energy are stepwise, and the densities of states at the band edges are significantly higher than those of three-dimensional free carriers. The selection rule for the radiative transition of carriers quantized as described above is Δn = 0. For example, the electron of E1 is recombined with the hole of Ehh 1 or Elh 1 . In the quantum well structure, electrons and holes are concentrated near the subband edge because the density of states at the subband edge is large as described above, and electron-hole recombination occurs between the subband edges. .

以上説明した特徴を有する量子井戸構造を含む量子井戸
レーザに関しては、(イ)閾値電流が低いこと。(ロ)
閾値電流の特性温度Toが通常のダブルヘテロレーザに比
較して大きく、閾値電流の温度上昇に対する安定性が優
れていること。(ハ)単一モード発振が得られやすいこ
と。(ニ)電流−光出力特性の直線性が良いこと。
(ホ)微分量子効率が高いこと。(ヘ)ウエル幅やバリ
ア高さを選択することにより発振波長を設計できるこ
と。などの特徴が知られているが、量子井戸構造を用い
ることによって従来の半導体レーザにおいては不可能乃
至は極めて困難であった機能を実現し得る可能性を有し
ている。
Regarding the quantum well laser including the quantum well structure having the characteristics described above, (a) the threshold current is low. (B)
The characteristic temperature To of the threshold current is larger than that of an ordinary double hetero laser, and the stability of the threshold current with respect to temperature rise is excellent. (C) It is easy to obtain single-mode oscillation. (D) Good linearity of current-light output characteristics.
(E) High differential quantum efficiency. (F) The oscillation wavelength can be designed by selecting the well width and barrier height. However, by using the quantum well structure, there is a possibility that a function which is impossible or extremely difficult in a conventional semiconductor laser can be realized.

(d)発明の目的 本発明は半導体発光装置特に半導体レーザについて、一
つの光共振器より複数の波長の光が同じに出射される構
造を提供することを目的とする。
(D) Object of the Invention It is an object of the present invention to provide a semiconductor light emitting device, especially a semiconductor laser, with a structure in which light of a plurality of wavelengths is emitted from one optical resonator in the same manner.

(e)発明の構成 本発明の前記目的は、電子波のドウ・ブローイー波長以
下の厚さを有するウエル層と、該ウエル層より大なる禁
制帯幅を有するバリア層とが交互に積層された多重量子
井戸構造を備え、前記ウエル層にその厚さ及び組成の少
なくとも一が相互に異なる層が含まれて、単数又は少な
くとも近似的に一致する許容エネルギー準位が存在する
複数の該ウエル層よりなる群が複数存在し、かつ該群相
互間で許容エネルギー準位が異ならしめられてなる半導
体発光装置により達成される。
(E) Structure of the Invention The object of the present invention is to alternately stack well layers having a thickness equal to or less than the Dow-Bloey wavelength of an electron wave and barrier layers having a band gap larger than the well layers. A multiple quantum well structure, wherein the well layers include layers having at least one of thicknesses and compositions different from each other, and there are singular or at least approximately matching coincident energy levels. This is achieved by a semiconductor light emitting device in which there are a plurality of groups and the allowable energy levels are different between the groups.

すなわち本発明においては、発光波長を決定するキャリ
アのエネルギー準位を選択的に組合わせた量子井戸構造
を構成することによって、例えば赤外域の波長を有する
光と、可視帯域の波長を有する光とを同一光共振器によ
って同時に発光させることを可能とする。
That is, in the present invention, by configuring a quantum well structure that selectively combines the energy levels of carriers that determine the emission wavelength, for example, light having a wavelength in the infrared region and light having a wavelength in the visible band Can be simultaneously emitted by the same optical resonator.

キャリアのエネルギー準位は先に述べた式(2)によっ
て近似され、例えばAlxGa1−xAsよりなるバリア層に挾
まれたGaAsよりなるウエル層の厚さLzとエネルギーギャ
ップEgとは第4図に示す如き相関を有する。但し図中の
実線は電子と重い正孔との間できまるエネルギーギャッ
プ、又破線は電子と軽い正孔との間できまるエネルギー
ギャップを示している。実際はn=1の基底状態を考え
れば良い。従ってウエル層の厚さLzを変化させることに
よってエネルギーギャップEgを大きく変化させることが
可能である。
The energy level of carriers is approximated by the above-mentioned equation (2). For example, the thickness Lz of the well layer made of GaAs sandwiched by the barrier layer made of AlxGa 1 -xAs and the energy gap Eg are shown in FIG. It has a correlation as shown. However, the solid line in the figure shows the energy gap formed between electrons and heavy holes, and the broken line shows the energy gap formed between electrons and light holes. Actually, it is sufficient to consider the ground state of n = 1. Therefore, the energy gap Eg can be largely changed by changing the thickness Lz of the well layer.

また前記例のAlxGa1−xAs/GaAs系の量子井戸構造におい
てウエル層をGaAsのみならずAlx′Ga1−x′Asとし、Al
の組成比xを選択するなど、ウエル層を形成する半導体
材料の組成を選択することによってもエネルギーギャッ
プEgを変化させることができる。
In the AlxGa 1 -xAs / GaAs-based quantum well structure of the above example, the well layer is made of Alx'Ga 1 -x'As as well as GaAs.
The energy gap Eg can also be changed by selecting the composition of the semiconductor material forming the well layer, such as selecting the composition ratio x.

従って目的とする波長に対応するエネルギーギャップEg
をウエル層の厚さ及び組成の何れか一方又は双方を選択
することによって容易に実現することができ、エネルギ
ーギャップEgの異なるウエル層群を同一の多重量子井戸
構造内に形成することによって本発明の目的が達成され
る。
Therefore, the energy gap Eg corresponding to the target wavelength is
Can be easily realized by selecting one or both of the thickness and composition of the well layer, and the present invention can be realized by forming well layer groups having different energy gaps Eg in the same multiple quantum well structure. The purpose of is achieved.

(f)発明の実施例 以下、本発明を実施例により図面を参照して具体的に説
明する。
(F) Embodiments of the Invention Hereinafter, the present invention will be specifically described with reference to the drawings by embodiments.

本発明には各波長に対するウエル層を一層とするか多重
化するか、或いはpn接合従って電流注入方向を縦とする
か横とするか等の条件の組合せにより種々の実施形態が
あるが、第5図(a)に示す断面図は波長λ=870〔n
m〕と波長λ=780〔nm〕の2波長に対してそれぞれ一
層のウエル層を設け、pn接合を縦方向に形成した実施例
を示し、第5図(b)及び(c)は本実施例の各半導体
層のAl組成比を示す。
The present invention has various embodiments depending on the combination of conditions such as one or multiple well layers for each wavelength, or whether the current injection direction is vertical or horizontal depending on the pn junction. The cross-sectional view shown in FIG. 5 (a) shows a wavelength λ 1 = 870 [n
m] and a wavelength λ 2 = 780 nm, two well layers are provided for each of the two wavelengths, and a pn junction is formed in the longitudinal direction. An example is shown in FIGS. 5 (b) and 5 (c). The Al composition ratio of each semiconductor layer of the example is shown.

第5図(a)に示す半導体基板及び半導体層の具体的例
は次の通りであり、各半導体層は分子線エピタキシャル
成長方法或いは有機金属熱分解気相成長方法等によって
半導体基板上に順次成長させる。
Specific examples of the semiconductor substrate and the semiconductor layer shown in FIG. 5A are as follows, and each semiconductor layer is sequentially grown on the semiconductor substrate by a molecular beam epitaxial growth method, a metal organic thermal decomposition vapor phase growth method, or the like. .

n+型GaAs基板11; 厚さ100〔μm〕,不純物濃度1×1018〔cm-13〕 n+型GaAsバッファ層12; 厚さ3.5〔μm〕,不純物濃度1×1018〔cm-3〕 n型Al0.5Ga0.5Asクラッド層13; 厚さ1乃至1.5〔μm〕,不純物濃度3乃至5×1017〔c
m-3〕 ノンドープ第1ウエル層14a1; 発光波長λ約870〔nm〕 組成 GaAs、 厚さLz1 12〔nm〕 ノンドープバリア層 14b; 組成 Al0.3Ga0.7As、 厚さLB 4〔nm〕 ノンドープ第2ウエル層14a2; 発光波長λ約780〔nm〕 組成 GaAs 厚さLz2 5〔nm〕 p型Al0.5Ga0.5Asクラッド層15; 厚さ1乃至1.5〔μm〕,不純物濃度3×1017〔cm-3〕 p+型GaAsキャップ層16; 厚さ0.5〔μm〕,不純物濃度1×1019〔cm-3〕以上 ただし、以上示した各数値は代表的な値を示すものであ
り本実施例の各半導体層のAlの組成比を第5図(b)に
示す。
n + type GaAs substrate 11; thickness 100 [μm], impurity concentration 1 × 10 18 [cm -13 ] n + type GaAs buffer layer 12; thickness 3.5 [μm], impurity concentration 1 × 10 18 [cm -3 ] N-type Al 0.5 Ga 0.5 As clad layer 13; thickness 1 to 1.5 [μm], impurity concentration 3 to 5 × 10 17 [c
m -3 ] non-doped first well layer 14a 1 ; emission wavelength λ 1 about 870 [nm] composition GaAs, thickness Lz 1 12 [nm] non-doped barrier layer 14b; composition Al0.3Ga0.7As, thickness L B 4 [ nm] non-doped second well layer 14a 2 ; emission wavelength λ 2 about 780 [nm] composition GaAs thickness Lz 2 5 [nm] p-type Al 0.5 Ga 0.5 As clad layer 15; thickness 1 to 1.5 [μm], impurities Concentration 3 × 10 17 [cm -3 ] p + type GaAs cap layer 16; thickness 0.5 [μm], impurity concentration 1 × 10 19 [cm -3 ] or more However, the above values are typical values. FIG. 5B shows the Al composition ratio of each semiconductor layer of this example.

またn型不純物としては錫(Sn),テルル(Te)又はシ
リコン(Si),p型不純物としては分子線エピタキシャル
成長方法ではベリウム(Be)、有機金属熱分解気相成長
方法では亜鉛(Zn)もしくはカドミウム(Cd)などが適
当である。
The n-type impurities are tin (Sn), tellurium (Te) or silicon (Si), the p-type impurities are beryllium (Be) in the molecular beam epitaxial growth method, and zinc (Zn) in the organometallic pyrolysis vapor phase growth method Cadmium (Cd) is suitable.

前記実施例は第1ウエル層14a1と第2ウエル層14a2とを
同一組成であるGaAsによって形成しているが、先に述べ
た如く組成すなわち禁制帯幅を選択することによっても
波長を選択することができる。例えば前記実施例につい
てノンドープ第2ウエル層14a2を変更して ノンドープ第1ウエル層 14a1;前記例と同一 ノンドープバリア層 14b; 組成 AlxGa1−xAs,x=0.3乃至0.5 厚さLB 4〔nm〕(前記例に同じ) ノンドープ第2ウエル層 発光波長λ約780〔nm〕(前記例に同じ) 組成 Al0.15Ga0.85As 厚さLz2 12〔nm〕 とするなど多様な選択が可能である。上記実施例の各半
導体層のAlの組成比を第5図(c)に示す。
In the above embodiment, the first well layer 14a 1 and the second well layer 14a 2 are made of GaAs having the same composition, but the wavelength can be selected by selecting the composition, that is, the forbidden band width as described above. can do. For example, the non-doped second well layer 14a 2 of the above embodiment is modified to include the non-doped first well layer 14a 1 ; the same non-doped barrier layer 14b as the above example; composition AlxGa 1 -xAs, x = 0.3 to 0.5 thickness LB 4 [nm ] (Same as the above example) Non-doped second well layer Emission wavelength λ 2 Approximately 780 [nm] (Same as above example) Composition Al0.15Ga0.85As Thickness Lz 2 12 [nm] Various choices are possible. is there. FIG. 5C shows the Al composition ratio of each semiconductor layer in the above embodiment.

なお、第5図(a)において、17は保護膜、18はp側電
極、19はn側電極を示す。
In FIG. 5 (a), 17 is a protective film, 18 is a p-side electrode, and 19 is an n-side electrode.

次いで本発明の第2の実施例として、波長λ=870〔n
m〕と波長λ=780〔nm〕の2波長に対してそれぞれ複
数のウエル層を設け、pnヘテロ接合を横方向に形成した
実施例の断面図を第6図(a)に、その断面のAl組成比
を第6図(b)及び(c)に示す。なお第5図(a)等
と同一符号により同一部分を示す。
Next, as a second embodiment of the present invention, the wavelength λ 1 = 870 [n
m] and a wavelength λ 2 = 780 nm, a plurality of well layers are provided for each of the two wavelengths, and a pn heterojunction is formed in the lateral direction. The Al composition ratio of is shown in FIGS. 6 (b) and 6 (c). The same parts as those in FIG. 5 (a) are designated by the same reference numerals.

本実施例においては、第6図(a)上のX−X′断面に
見られる各半導体層をエピタキシャル成長せしめる。こ
のX−X′断面上の各半導体層のAlの組成比は第6図
(b)に示す通りであって、n+型GaAs基板11,n+型GaAs
バッファ層12、及びn型Al0.5Ga0.5Asクラッド層13は前
記実施例と同様であり、Al0.5Ga0.5Asクラッド層15及び
GaAsキャップ層16は本実施例においてはn型としてい
る。ただし、以上の各半導体層の不純物濃度はすべて1
×1018〔cm-3〕程度としてよい。
In this embodiment, each semiconductor layer shown in the XX 'section in FIG. 6 (a) is epitaxially grown. The composition ratio of Al in each semiconductor layer on the XX 'section is as shown in FIG. 6 (b). The n + type GaAs substrate 11 and the n + type GaAs are shown in FIG.
The buffer layer 12 and the n-type Al0.5Ga0.5As clad layer 13 are the same as those in the above embodiment, and the Al0.5Ga0.5As clad layer 15 and
The GaAs cap layer 16 is n-type in this embodiment. However, the impurity concentration of each semiconductor layer is 1
It may be about × 10 18 [cm -3 ].

本実施例においては量子井戸構造は次の2群によって構
成されている。
In this embodiment, the quantum well structure is composed of the following two groups.

第1群MQW−1は下記のそれぞれ複数のウエル層14a1
バリア層14b1が交互に積層され、波長λ=870〔nm〕
の光を発生する。
The first group MQW-1 Each of the plurality of well layers 14a 1 and the barrier layer 14b 1 below are laminated alternately, the wavelength lambda 1 = 870 [nm]
Emits light.

ウエル層 14a1; 組成;GaAs,厚さLz1;12〔nm〕 バリア層14b1; 組成;Al0.5Ga0.5,厚さLB1;4〔nm〕 第2群MQW−2は同様に下記のウエル層14a2とバリア層1
4b2とによって構成され、波長λ=780〔nm〕の光を発
生する。
Well layer 14a 1 ; Composition: GaAs, thickness Lz 1 ; 12 [nm] Barrier layer 14b 1 ; Composition: Al0.5Ga0.5, thickness LB 1 ; 4 [nm] Second group MQW-2 Well layer 14a 2 and barrier layer 1
4b 2 and generates light of wavelength λ 2 = 780 [nm].

ウエル層14a2; 組成;GaAs,厚さLz2;5〔nm〕 或いは、組成;Al0.15Ga0.85As,厚さLz2;12〔nm〕 バリア層 14b2; 組成;Al0.5Ga0.5,厚さLB2;4〔nm〕 またMQW−1とMQW−2との間のバリア層14bは前記バリ
ア層14b1及び14b2と同様の組成及び厚さでもよいが、pn
接合を横方向に形成する本実施例においてはキャリアが
バリア層をトンネル効果によって注入される必要がない
ために充分に厚くてもよく本実施例においてはこのバリ
ア層14bの厚さを0.1〔μm〕程度としている。
Well layer 14a 2 ; composition; GaAs, thickness Lz 2 ; 5 [nm] or composition; Al0.15Ga0.85As, thickness Lz 2 ; 12 [nm] barrier layer 14b 2 ; composition; Al0.5Ga0.5, Thickness LB 2 ; 4 [nm] The barrier layer 14b between MQW-1 and MQW-2 may have the same composition and thickness as the barrier layers 14b 1 and 14b 2 , but pn
In the present embodiment in which the junction is formed in the lateral direction, it is not necessary for carriers to be injected into the barrier layer by tunnel effect, and it may be thick enough. In this embodiment, the barrier layer 14b has a thickness of 0.1 [μm. ] It is about.

また以上説明した量子井戸構造を形成する各半導体層は
ノンドープでもよいが、不純物濃度1×1018〔cm-3〕程
度のn型とすることが望ましい。
Although each semiconductor layer forming the quantum well structure described above may be non-doped, it is desirable to be an n-type having an impurity concentration of about 1 × 10 18 [cm −3 ].

以上説明した構造を有する半導体基体のキャップ層16上
に例えば窒化シリコン(Si3N4)或いは二酸化シリコン
(SiO2)等による保護膜17を選択的に形成し、これをマ
スクとしてアクセプタ不純物例えば亜鉛(Zn)をキャッ
プ層16表面よりクラッド層13に達する深さに拡散せしめ
る。
A protective film 17 made of, for example, silicon nitride (Si 3 N 4 ) or silicon dioxide (SiO 2 ) is selectively formed on the cap layer 16 of the semiconductor substrate having the above-described structure, and this is used as a mask to acceptor impurities such as zinc. (Zn) is diffused from the surface of the cap layer 16 to a depth reaching the cladding layer 13.

この不純物拡散によって、クラッド層15及び量子井戸構
造を構成する各半導体層間において組成原子の相互拡散
が行なわれ、Al原子が量子井戸構造を形成していた半導
体領域内ではほぼ一様に分布する結果となる。20はこの
様にして形成されたp型領域を示す。また第6図(c)
はこのp型領域20を含むY−Y′断面におけるAlの組成
比を示す。
This impurity diffusion causes interdiffusion of composition atoms between the semiconductor layers that form the clad layer 15 and the quantum well structure, and Al atoms are distributed almost uniformly in the semiconductor region where the quantum well structure was formed. Becomes 20 indicates a p-type region formed in this way. In addition, FIG. 6 (c)
Indicates the composition ratio of Al in the YY ′ cross section including the p-type region 20.

量子井戸構造MQW−1のウエル層14a1及びMQW−2のウエ
ル層14a2はGaAs或いはAl組成比の少ないAlGaAsであっ
て、p型領域20とこれらのウエル層14a1又は14a2とのpn
接合界面はヘテロ接合界面となっている。この様にヘテ
ロ接合が形成されることによって注入発光効率が向上す
る。
Well layer 14a 2 of the well layer 14a 1 and MQW-2 of the quantum well structure MQW-1 is an AlGaAs small GaAs or Al composition ratio, p-type region 20 and pn of these well layers 14a 1 or 14a 2
The junction interface is a heterojunction interface. By forming the heterojunction in this way, the injection emission efficiency is improved.

以上説明した第2の実施例においては各波長毎の量子井
戸構造MQW−1とMQW−2とをクラッド層間に設けている
が、ウエル層を各波長毎に取纒めることなく、各波長の
ウエル層が交互に形成される構造であってもよい。
In the second embodiment described above, the quantum well structures MQW-1 and MQW-2 for each wavelength are provided between the cladding layers, but the well layers are not sorted for each wavelength and The well layers may be alternately formed.

何れの構造においてもウエル層内で発生した光はクラッ
ド層間に拡がり、各波長の光が同一空間に閉じ込められ
る。
In any structure, the light generated in the well layer spreads between the clad layers, and the light of each wavelength is confined in the same space.

なお以上の説明は2波長の場合の実施例であるが、3波
長以上のレーザを形成することも同様にして可能であ
る。
Although the above description is an example of the case of two wavelengths, it is possible to form a laser of three wavelengths or more in the same manner.

以上の説明はGaAs/AlGaAs系量子井戸レーザを例として
いるが、本発明は他の半導体材料、例えばInP/InGaAaP
系等に適用して同様の効果を得ることができる。
Although the above description has taken the GaAs / AlGaAs quantum well laser as an example, the present invention is not limited to other semiconductor materials such as InP / InGaAaP.
The same effect can be obtained by applying to a system or the like.

(g)発明の効果 以上説明した如く本発明によれば一つの光共振器より複
数の波長の光を同じに出射させることが可能となり、レ
ーザ光の応用が大きく拡張される。また本発明によっ
て、例えば情報伝送に用いる長波長光とともに可視波長
光(実施例に示した波長780{nm〕など)を同一の光共
振器から出射させることによって、レーザ光の目視が可
能となって光応用装置等の組立調整等に効果が発揮され
る。また同様にレーザ光による事故発生の防止等にも応
用することができる。
(G) Effects of the Invention As described above, according to the present invention, it is possible to emit light of a plurality of wavelengths from one optical resonator at the same time, and the application of laser light is greatly expanded. Further, according to the present invention, for example, by emitting visible wavelength light (wavelength 780 {nm] and the like shown in the embodiment) together with long wavelength light used for information transmission from the same optical resonator, it becomes possible to visually check laser light. This is effective for the assembly adjustment of optical application devices. In addition, it can be similarly applied to prevention of accidents caused by laser light.

【図面の簡単な説明】[Brief description of drawings]

第1図は量子井戸レーザの従来例を示す断面図、第2図
(a)及び(b)は該従来例の各半導体層の組成例を示
す図表、第3図は量子井戸のエネルギーダイヤグラム、
第4図はウエル層の厚さとエネルギーギャップとの相関
を示す図表、第5図は(a)は本発明の第1の実施例を
示す断面図、第5図(b)及び(c)は該実施例の各半
導体層の組成例を示す図表、第6図(a)は本発明の第
2の実施例を示す断面図、第6図(b)及び(c)は該
実施例の各断面における組成例を示す図表である。 図において、11はn+型GaAs基板、12はn+型GaAsバッファ
層、13はn型AlGaAsクラッド層、14a1,14a2等はウエル
層、14b,14b1,14b2等はバリア層、15はp型又はn型Al
GaAsクラッド層、16はp+型又はn型GaAsキャップ層、17
は保護膜、18はp側電極、19はn側電極を示す。
FIG. 1 is a sectional view showing a conventional example of a quantum well laser, FIGS. 2 (a) and 2 (b) are tables showing composition examples of respective semiconductor layers of the conventional example, FIG. 3 is an energy diagram of a quantum well,
FIG. 4 is a table showing the correlation between the thickness of the well layer and the energy gap, FIG. 5 (a) is a sectional view showing the first embodiment of the present invention, and FIGS. 5 (b) and 5 (c) are 6 is a table showing a composition example of each semiconductor layer of the embodiment, FIG. 6 (a) is a sectional view showing a second embodiment of the present invention, and FIGS. 6 (b) and 6 (c) are each of the embodiments. It is a chart showing a composition example in a section. In the figure, 11 is an n + type GaAs substrate, 12 is an n + type GaAs buffer layer, 13 is an n type AlGaAs cladding layer, 14a 1 , 14a 2 etc. are well layers, 14b, 14b 1 , 14b 2 etc. are barrier layers, 15 is p-type or n-type Al
GaAs cladding layer, 16 is p + type or n type GaAs cap layer, 17
Is a protective film, 18 is a p-side electrode, and 19 is an n-side electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子波のドウ・ブローイー波長以下の厚さ
を有するウエル層と、該ウエル層より大なる禁制帯幅を
有するバリア層とが交互に積層された多重量子井戸構造
を備え、前記ウエル層にその厚さ及び組成の少なくとも
一が相互に異なるウエル層が含まれて、単数又は少なく
とも近似的に一致する許容エネルギー準位が存在する複
数の該ウエル層よりなる群が複数存在し、かつ該群相互
間で許容エネルギー準位が異ならしめられてなることを
特徴とする半導体発光装置。
1. A multi-quantum well structure in which a well layer having a thickness equal to or less than the Dow Bloey wavelength of an electron wave and a barrier layer having a forbidden band width larger than the well layer are alternately laminated, The well layers include well layers having at least one of thicknesses and compositions different from each other, and there are a plurality of groups each including a plurality of the well layers having singular or at least approximately matching allowable energy levels. A semiconductor light emitting device, wherein the allowable energy levels are different between the groups.
JP21640682A 1982-12-10 1982-12-10 Semiconductor light emitting device Expired - Lifetime JPH07112090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21640682A JPH07112090B2 (en) 1982-12-10 1982-12-10 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21640682A JPH07112090B2 (en) 1982-12-10 1982-12-10 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS59106171A JPS59106171A (en) 1984-06-19
JPH07112090B2 true JPH07112090B2 (en) 1995-11-29

Family

ID=16688060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21640682A Expired - Lifetime JPH07112090B2 (en) 1982-12-10 1982-12-10 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH07112090B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102084A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor laser
DE3751549T2 (en) * 1986-07-25 1996-03-21 Mitsubishi Electric Corp Semiconductor laser.
JPS63156383A (en) * 1986-12-19 1988-06-29 Sanyo Electric Co Ltd Semiconductor laser
EP0280281B1 (en) * 1987-02-27 1994-06-15 Canon Kabushiki Kaisha Variable oscillation wavelength semiconductor laser device
JP2529260B2 (en) * 1987-05-08 1996-08-28 三菱電機株式会社 Semiconductor laser and method of using the same
US5408110A (en) * 1993-06-28 1995-04-18 National Research Council Of Canada Second-harmonic generation in semiconductor heterostructures

Also Published As

Publication number Publication date
JPS59106171A (en) 1984-06-19

Similar Documents

Publication Publication Date Title
US5625635A (en) Infrared emitting device and method
US20120236891A1 (en) Lasers with quantum wells having high indium and low aluminum with barrier layers having high aluminum and low indium with reduced traps
JP3189791B2 (en) Semiconductor laser
US6791104B2 (en) Type II quantum well optoelectronic devices
US5541949A (en) Strained algainas quantum-well diode lasers
JPH0143472B2 (en)
US6486491B1 (en) Semiconductor device
EP0610893B1 (en) Laser diode
KR100463972B1 (en) An optical semiconductor device
EP0512681B1 (en) Semiconductor laser diode
JPH07112089B2 (en) Semiconductor light emitting device
JPH07112090B2 (en) Semiconductor light emitting device
US5737353A (en) Multiquantum-well semiconductor laser
JP2004253802A (en) GaAsSb / GaAs device with improved temperature characteristics
JPH0523074B2 (en)
KR920003679B1 (en) Semiconductor apparatus
JP2618677B2 (en) Semiconductor light emitting device
US5483547A (en) Semiconductor laser structure for improved stability of the threshold current with respect to changes in the ambient temperature
JPH04350988A (en) Light-emitting element of quantum well structure
US20040136427A1 (en) Semiconductor optical device
Agahi et al. Dependence of polarization mode and threshold current on tensile strain in AlGaAsGaAsP quantum well lasers
JP2662792B2 (en) Semiconductor light emitting device
JP3403915B2 (en) Semiconductor laser
JP3255244B2 (en) Semiconductor laser
JP2004111743A (en) Semiconductor optical device