[go: up one dir, main page]

JPH07107613A - Electric vehicle braking control method and electric vehicle control device - Google Patents

Electric vehicle braking control method and electric vehicle control device

Info

Publication number
JPH07107613A
JPH07107613A JP5244175A JP24417593A JPH07107613A JP H07107613 A JPH07107613 A JP H07107613A JP 5244175 A JP5244175 A JP 5244175A JP 24417593 A JP24417593 A JP 24417593A JP H07107613 A JPH07107613 A JP H07107613A
Authority
JP
Japan
Prior art keywords
electric
electric vehicle
battery
motor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5244175A
Other languages
Japanese (ja)
Other versions
JP3152027B2 (en
Inventor
Suetaro Shibukawa
末太郎 渋川
Shotaro Naito
祥太郎 内藤
Sanshiro Obara
三四郎 小原
Tsuneo Ishido
恒雄 石堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24417593A priority Critical patent/JP3152027B2/en
Publication of JPH07107613A publication Critical patent/JPH07107613A/en
Application granted granted Critical
Publication of JP3152027B2 publication Critical patent/JP3152027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

(57)【要約】 【目的】本発明は、バッテリを電源とする電気車の制動
制御において、バッテリに損傷を与えることなく、必要
なる回生制動力を確保することにより、電気車の安全運
転の向上する電気車制動制御方法および電気車制御装置
を提供する。 【構成】電気車が回生制動に移行した場合、モータ1が
電気車の慣性力により廻され、回生電流を発電する。バ
ッテリ4は、この回生電流にて充電される。この時、充
電状態検出手段5によりバッテリの充電状態が検出さ
れ、制御装置3が当該充電状態に応じてモータ1に制御
指令を送る。この制御指令により、充電電流の増減に反
比例してモータ1の力率を制御し、モータ1に流れる電
動機電流を減増させ、モータ1およびインバータ2の損
失を減増させる。これにより、全体の回生電流は抑制せ
ずに必要な量の発電エネルギをバッテリに与え、余剰の
発電エネルギを損失エネルギとして消費する。すなわ
ち、エネルギ勘定を合わせるように制御するので、所要
の回生制動力が確保される。
(57) [Summary] [Object] The present invention provides a braking control of an electric vehicle that uses a battery as a power source, by ensuring a necessary regenerative braking force without damaging the battery, thereby ensuring safe driving of the electric vehicle. An improved electric vehicle braking control method and electric vehicle control device are provided. [Constitution] When the electric vehicle shifts to regenerative braking, the motor 1 is rotated by the inertial force of the electric vehicle to generate a regenerative current. The battery 4 is charged with this regenerative current. At this time, the charge state detection means 5 detects the charge state of the battery, and the control device 3 sends a control command to the motor 1 according to the charge state. With this control command, the power factor of the motor 1 is controlled in inverse proportion to the increase / decrease of the charging current, the electric current of the motor flowing through the motor 1 is decreased, and the loss of the motor 1 and the inverter 2 is decreased. As a result, the required amount of power generation energy is supplied to the battery without suppressing the entire regenerative current, and the surplus power generation energy is consumed as loss energy. That is, since the energy accounts are controlled so as to match, the required regenerative braking force is secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電動機を備えている電
気車の制動制御方法および電気車制御装置に関するもの
で、特に、バッテリを電源とする電気車の制動制御に適
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a braking control method and an electric vehicle control device for an electric vehicle equipped with an electric motor, and more particularly to a braking control method for an electric vehicle using a battery as a power source.

【0002】[0002]

【従来の技術】従来技術としては、特開昭57−211
904号公報に開示されているものがある。これは、回
生制動時の制御方法であり、回生制動時に発生する回生
電流による弊害、特に大きな制動力を確保した場合大き
な回生電流が流れるのでこれによる(1)機器の破壊
(2)機器の増大などの弊害を回避するものである。そ
して、回生制動時の回生電流を抑制しているものであ
る。
2. Description of the Related Art As the prior art, Japanese Patent Laid-Open No. 57-212
Some are disclosed in Japanese Patent No. 904. This is a control method at the time of regenerative braking, and a harmful effect due to the regenerative current generated at the time of regenerative braking, especially a large regenerative current flows when a large braking force is secured, so that (1) destruction of equipment (2) increase in equipment This is to avoid the harmful effects such as. Then, the regenerative current during regenerative braking is suppressed.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術を、バ
ッテリを電源とする電気車の制動制御に適用する場合、
必要なる回生制動力を確保しようとすると、バッテリに
戻される回生電流が大きくなり過ぎて過充電となり、バ
ッテリの損傷に繋がると云う問題点がある。逆に、バッ
テリの損傷を回避しようとすると、回生電流を小さくす
ることとなり、十分なる回生制動力(ブレーキ力)を確
保することができないと云う問題点がある。
When the above-mentioned prior art is applied to the braking control of an electric vehicle using a battery as a power source,
If an attempt is made to secure the necessary regenerative braking force, there is a problem that the regenerative current returned to the battery becomes too large, resulting in overcharging and damage to the battery. On the contrary, when trying to avoid damage to the battery, the regenerative current is reduced, and there is a problem that a sufficient regenerative braking force (brake force) cannot be secured.

【0004】本発明の目的は、上記の問題点を鑑みてな
されるもので、バッテリに損傷を与えることなく必要な
る回生制動力を確保し、電気車の安全運転を向上する電
気車制動制御方法および電気車制御装置を提供すること
にある。
An object of the present invention is to solve the above problems, and to secure a necessary regenerative braking force without damaging a battery and to improve a safe driving of an electric vehicle by an electric vehicle braking control method. And to provide an electric vehicle control device.

【0005】[0005]

【課題を解決するための手段】上記目的は、バッテリ
と、走行駆動用の電動機と、電動機にバッテリの電力を
供給する電力変換手段と、電力変換手段を制御する制御
装置とを備える電気車の回生制動制御方法において、バ
ッテリの蓄電状態に応じて電動機の力率を制御し、バッ
テリに蓄電される蓄電エネルギと電動機および電力変換
手段で消費される損失エネルギとの両者に回生された電
気エネルギを分配する比率を変えることによって達成さ
れる。
An object of the present invention is to provide an electric vehicle equipped with a battery, an electric motor for driving a vehicle, an electric power conversion means for supplying electric power of the battery to the electric motor, and a control device for controlling the electric power conversion means. In the regenerative braking control method, the power factor of the electric motor is controlled according to the state of charge of the battery, and the electric energy regenerated to both the stored energy stored in the battery and the energy loss consumed by the electric motor and the power conversion means is controlled. This is achieved by changing the distribution ratio.

【0006】また、上記目的を達成する電気車制御装置
は、回生された電気エネルギを蓄電する蓄電手段と、回
生された電気エネルギを消費する消費手段と、蓄電手段
の蓄電状態に応じて電動機の力率を制御し蓄電手段およ
び消費手段に分配される電気エネルギの比率を変える力
率制御手段とを設けたものである。
Further, an electric vehicle control device that achieves the above-mentioned object, a storage means for storing regenerated electric energy, a consumption means for consuming the regenerated electric energy, and an electric motor of the electric motor according to the storage state of the storage means. Power factor control means for controlling the power factor and changing the ratio of the electric energy distributed to the power storage means and the consumption means is provided.

【0007】[0007]

【作用】電気車が回生制動に移行した場合、電気車の慣
性エネルギが電気エネルギに変換され、回生電流が電動
機に発生する。この回生電流の一部が、制御装置から与
えられる制御指令により電力変換手段で直流電流に変換
され、バッテリに充電され蓄電される。そして、バッテ
リが満充電に近づいた場合、バッテリの過充電を回避す
るため充電電流を減少させる。この時、バッテリの充電
電流を抑制した分、電気エネルギが余剰となる。従っ
て、バッテリに充電される蓄電エネルギが抑制され余剰
となった電気エネルギ分は、電動機電流に従って増減す
る電動機および電力変換手段の損失エネルギとして消費
するようにする。すなわち、バッテリに充電される蓄電
エネルギと電動機および電力変換手段で消費される損失
エネルギとに分配される、回生された電気エネルギの分
配比率を変えるように制御するものである。分配比率を
変える制御は、電動機の力率を変えて、電動機電流に従
って増減する電動機および電力変換手段の損失エネルギ
を制御するものである。これにより、全体の回生電流は
減少させないので、回生制動力も減少しない。従って、
バッテリの過充電を防止しつつ、所要の制動力が確保さ
れ、電気車の安全運転を向上させることができる。
When the electric vehicle shifts to regenerative braking, the inertia energy of the electric vehicle is converted into electric energy, and a regenerative current is generated in the electric motor. A part of this regenerative current is converted into a direct current by the power conversion means according to a control command given from the control device, and is charged and stored in the battery. Then, when the battery approaches full charge, the charging current is reduced to avoid overcharging of the battery. At this time, the electric energy becomes surplus by the amount that the charging current of the battery is suppressed. Therefore, the surplus electric energy due to the suppression of the stored energy charged in the battery is consumed as the energy loss of the electric motor and the electric power conversion means that increases and decreases according to the electric motor current. That is, control is performed so as to change the distribution ratio of the regenerated electric energy that is distributed between the stored energy charged in the battery and the energy loss consumed by the electric motor and the power conversion means. The control for changing the distribution ratio is to change the power factor of the electric motor to control the energy loss of the electric motor and the electric power conversion means that increases or decreases according to the electric motor current. As a result, the entire regenerative current is not reduced, so the regenerative braking force is not reduced. Therefore,
The required braking force is secured while preventing overcharging of the battery, and safe driving of the electric vehicle can be improved.

【0008】[0008]

【実施例】本発明による一実施例について、図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.

【0009】図1は、電気車の概略構成を示す図であ
る。三相交流誘導電動機であるモータ1、三相半導体式
電力変換手段であるインバータ2、制御装置3、バッテ
リ4、充電状態検出手段5などから構成されている。
FIG. 1 is a diagram showing a schematic configuration of an electric vehicle. It comprises a motor 1 which is a three-phase AC induction motor, an inverter 2 which is a three-phase semiconductor type power conversion means, a control device 3, a battery 4, a charge state detection means 5 and the like.

【0010】次に動作を説明する。電気車が走行する場
合は、バッテリ4の直流電源が、制御装置3から与えら
れる制御指令に従って、インバータ2で三相交流電源に
変換され、モータ1に印加される。そして、モータ1が
回転し、電気車が走行する。
Next, the operation will be described. When the electric vehicle runs, the DC power supply of the battery 4 is converted into the three-phase AC power supply by the inverter 2 according to the control command given from the control device 3 and applied to the motor 1. Then, the motor 1 rotates and the electric vehicle runs.

【0011】走行した電気車を停止させるまたは減速さ
せる場合は、制動(ブレーキ)を掛ける。一般には、機
械的に制動を掛けるが、電気車の場合、電気的に制動を
掛ける場合がある。これは、電気車のモータ1において
電気車の慣性エネルギを電気エネルギに変換し制動力を
得る、回生制動と云われているものである。電気車が回
生制動に移行した場合、モータ1が、電気車の慣性力に
より廻され回生電流を発電する。この回生電流の一部
が、制御装置3からインバータ2に与えられる制御指令
によりインバータ2で直流電源に変換され、バッテリ4
に充電される。この時、バッテリの充電状態が充電状態
検出手段5により検出され、この検出信号を受けた制御
装置3が、バッテリに加えられる充電電流を、所定の電
流となるように制御する。
When stopping or decelerating the running electric vehicle, braking is applied. Generally, braking is performed mechanically, but in the case of an electric vehicle, braking may be performed electrically. This is called regenerative braking in which the inertial energy of the electric vehicle is converted into electric energy in the motor 1 of the electric vehicle to obtain a braking force. When the electric vehicle shifts to regenerative braking, the motor 1 is rotated by the inertial force of the electric vehicle to generate a regenerative current. A part of this regenerative current is converted into a DC power source by the inverter 2 according to a control command given from the control device 3 to the inverter 2, and the battery 4
Will be charged. At this time, the state of charge of the battery is detected by the state-of-charge detecting means 5, and the control device 3 receiving this detection signal controls the charging current applied to the battery to be a predetermined current.

【0012】一般に、バッテリが満充電に近づくにつれ
充電電流を減少させるように、制御装置3で回生電流を
抑制する制御方法が採られている。これは、バッテリの
過充電を回避するためである。しかし、単に、回生電流
を抑制したのでは、制動力(ブレーキ力)が不足する場
合がある。従って、全体の回生電流は減らさないで、充
電電流を減少させる方法が望ましい。これを解決するも
のとして、制御装置3が、制御指令を発しモータ1の力
率を変え、バッテリに加えられる充電電流を制御する方
法がある。これは、回生された電気エネルギの内、バッ
テリの充電に必要な分はバッテリ4に流し、残りの余剰
分はモータ1およびインバータ2の損失として消費する
ものである。このようにすれば、全体としての回生電流
は減らさないので、所要の制動力が確保されると云う制
御方法が成立する。
Generally, a control method is adopted in which the control device 3 suppresses the regenerative current so that the charging current decreases as the battery approaches full charge. This is to avoid overcharging the battery. However, if the regenerative current is simply suppressed, the braking force (braking force) may be insufficient. Therefore, it is desirable to reduce the charging current without reducing the total regenerative current. As a solution to this, there is a method in which the control device 3 issues a control command to change the power factor of the motor 1 to control the charging current applied to the battery. In this, of the regenerated electric energy, a portion necessary for charging the battery is supplied to the battery 4, and the remaining surplus portion is consumed as a loss of the motor 1 and the inverter 2. In this way, the regenerative current as a whole is not reduced, so that a control method that a required braking force is secured is established.

【0013】ここで、電気車の慣性エネルギの一部が電
気エネルギに変換されて回生される場合の、回生制動時
のエネルギ勘定について説明する。エネルギ勘定を式
で、表わせば、次の通りである。
Here, the energy accounting at the time of regenerative braking when a part of the inertia energy of the electric vehicle is converted into electric energy and regenerated will be described. If the energy account is expressed by a formula, it is as follows.

【0014】 Es∝Eh …(数1) Eh=Ej+El …(数2) ここで、 Es;制動エネルギ、Eh;発電エネルギ Ej;充電エネルギ、El;損失エネルギ すなわち、慣性エネルギの一部が制動エネルギとして消
費され、電気車にブレーキが掛かる場合、有効に働いた
制動エネルギEsは、ほぼモータ1の発電エネルギEh
に変換される。そして、発電エネルギEhは、バッテリ
に蓄電される充電エネルギEjと、モータ1などで消費
される損失エネルギElとに分配される。
Es∝Eh (Equation 1) Eh = Ej + El (Equation 2) where Es: braking energy, Eh: generated energy Ej: charging energy, El; loss energy, that is, a part of the inertia energy is braking energy. When the electric vehicle is braked, the braking energy Es that has worked effectively is almost the generated energy Eh of the motor 1.
Is converted to. Then, the power generation energy Eh is distributed to the charging energy Ej stored in the battery and the loss energy El consumed by the motor 1 and the like.

【0015】上記の式を、書き替えると、 Fs∝(Dj+Ml+Il) …(数3) Dj∝Ij×Vj …(数4) ここで、 Fs;制動力、 Dj;充電電力 Ml;モータ損失、 Il;インバータ損失 Ij;充電電流、 Vj;充電電圧(バッテリ電圧一
定) で表わされる。尚、インバータ損失Ilが微小で省略さ
れる場合もある。
Rewriting the above equation, Fs∝ (Dj + Ml + Il) (Equation 3) Dj∝Ij × Vj (Equation 4) where Fs: Braking force, Dj: Charge power Ml: Motor loss, Il Inverter loss Ij; charging current, Vj; charging voltage (constant battery voltage). The inverter loss Il may be minute and may be omitted.

【0016】これより、制動力Fsが一定の場合、充電
電力Djの増減に反比例して、モータ損失Mlおよびイ
ンバータ損失Ilを減増すれば、エネルギ勘定が合うと
云うことが判る。すなわち、必要なる制動力を確保しつ
つ、バッテリの過充電を回避するために充電電力、すな
わち、充電電流を減らすならば、モータ損失とインバー
タ損失を増せば良いことが判る。言い替えれば、必要な
エネルギをバッテリに与え、余剰のエネルギを損失エネ
ルギとして流し去ることになる。
From the above, it can be understood that when the braking force Fs is constant, if the motor loss Ml and the inverter loss Il are increased and decreased in inverse proportion to the increase and decrease of the charging power Dj, the energy accounting will be in agreement. That is, it is understood that if the charging power, that is, the charging current is reduced in order to avoid the overcharge of the battery while securing the required braking force, the motor loss and the inverter loss should be increased. In other words, the required energy is given to the battery, and the surplus energy is drained away as lost energy.

【0017】 一方、 Ml=Lc+Lf+Lm+Le …(数5) ここで、 Lc;銅損、 Lf;鉄損 Lm;機械損、 Le;浮遊損 Lc∝(I)2 …(数6)On the other hand, Ml = Lc + Lf + Lm + Le (Equation 5) where, Lc: copper loss, Lf: iron loss Lm: mechanical loss, Le; floating loss Lc∝ (I) 2 (Equation 6)

【0018】[0018]

【数7】 [Equation 7]

【0019】 Il∝I …(数8)Il∝I (Equation 8)

【0020】[0020]

【数9】 [Equation 9]

【0021】ここで、 I;電動機電流、 It;ト
ルク分電流、 COSφ;力率 以上の関係がある。これより、モータ損失Mlおよびイ
ンバータ損失Ilの両損失が力率の関数で表わせること
になり、力率を変化させることによりこれらの損失を増
減させることができる。すなわち、力率を大きくすれば
損失は増え、小さくすれば損失は減ることが判る。
Here, I: motor current, It: torque component current, COSφ: power factor. As a result, both the motor loss Ml and the inverter loss Il can be expressed by a function of the power factor, and these losses can be increased or decreased by changing the power factor. That is, it can be seen that the loss increases as the power factor increases and the loss decreases as the power factor decreases.

【0022】従って、電動機の力率を制御することによ
り、モータ損失とインバータ損失を減増し、逆に充電電
流を増減して、一定の制動力を確保することができるこ
とが判る。
Therefore, it is understood that by controlling the power factor of the electric motor, it is possible to reduce the motor loss and the inverter loss, and conversely increase or decrease the charging current to secure a constant braking force.

【0023】図2、図3、図4は、この力率制御につい
て説明する図である。図2は、モータ1のベクトル制御
に関するブロックダイヤグラムの一実施例を示すもので
ある。図2の動作について説明する。
2, 3, and 4 are diagrams for explaining this power factor control. FIG. 2 shows an embodiment of a block diagram relating to vector control of the motor 1. The operation of FIG. 2 will be described.

【0024】電気車が走行する場合は、アクセルやブレ
ーキなどからなる運転状態検出手段6の出力信号から得
られたトルク指令により、トルク分電流発生手段70
で、トルク分電流Itが算出される。また、エンコーダ3
1から得られた速度信号に応じて、励磁分電流発生手段
71で、励磁分電流Imが得られる。そして、ベクトル演
算手段72、1次周波数発生手段73および乗算手段7
4によって、電流指令が得られる。この電流指令に基づ
いて、電流制御手段75は、電流検出器21で得られた
モータ1の電流の帰還信号と、三角波発生手段76が発
生する三角波形の搬送波を用いて、インバータ2をパル
ス幅変調制御方式にて制御する。
When the electric vehicle is traveling, the torque component current generating means 70 is generated by the torque command obtained from the output signal of the operating state detecting means 6 including an accelerator and a brake.
Thus, the torque current It is calculated. Also, the encoder 3
In accordance with the speed signal obtained from 1, the excitation component current generator 71 obtains the excitation component current Im. Then, the vector calculation means 72, the primary frequency generation means 73 and the multiplication means 7
4, the current command is obtained. Based on this current command, the current control means 75 uses the feedback signal of the current of the motor 1 obtained by the current detector 21 and the triangular waveform carrier wave generated by the triangular wave generation means 76 to pulse-width the inverter 2. It is controlled by the modulation control method.

【0025】回生制動時の場合は、バッテリの充電状態
を、充電状態検出手段5により検出する。この検出信号
を受けた制御装置3の中の充電制御手段7が、トルク分
電流発生手段70と励磁分電流発生手段71に、充電指
令を発信する。この充電指令により、力率制御が行われ
る。充電指令と力率の関係について、次に説明する。
In the case of regenerative braking, the charge state of the battery is detected by the charge state detecting means 5. The charge control means 7 in the control device 3 which has received this detection signal issues a charge command to the torque component current generating means 70 and the excitation component current generating means 71. Power factor control is performed by this charge command. The relationship between the charge command and the power factor will be described next.

【0026】図3は、電動機の電流ベクトル制御方式に
おいて、力率を変える方法の一実施例を示すものであ
る。
FIG. 3 shows an embodiment of a method for changing the power factor in the electric current vector control system of the electric motor.

【0027】電流Iは、電動機電流である。電圧Vは、
電動機の端子電圧である。Eoは、電動機の誘起電圧で
ある。Vxqは、リアクタンスXqにおける電圧降下であ
る。Vrは、抵抗Rにおける電圧降下である。
The current I is the motor current. The voltage V is
It is the terminal voltage of the motor. Eo is the induced voltage of the electric motor. Vxq is the voltage drop at the reactance Xq. Vr is the voltage drop across resistor R.

【0028】電動機電流Iは、トルク分電流Itと励磁
分電流Imのベクトル成分の和である。これらのトルク
分電流Itと励磁分電流Imの大きさが、充電制御手段7
の充電指令により制御される。そして、トルク分電流I
tと励磁分電流Imのベクトル成分の和である電流Iのベ
クトル方向が制御されるので、電圧Vと電流Iのなす角
度φが変えられる。角度φが変われば、角度φの余弦で
ある力率(COSφ)を変化させることができる。
The motor current I is the sum of the vector components of the torque component current It and the excitation component current Im. The magnitudes of the torque component current It and the excitation component current Im are determined by the charge control means 7.
It is controlled by the charging command of. Then, the torque component current I
Since the vector direction of the current I, which is the sum of the vector component of t and the excitation component current Im, is controlled, the angle φ formed by the voltage V and the current I can be changed. If the angle φ changes, the power factor (COSφ) that is the cosine of the angle φ can be changed.

【0029】図4は、充電制御手段7の力率制御の一実
施例である。充電状態検出手段5により検出されたバッ
テリの充電状態が、充電制御手段7に入力される。この
バッテリ充電状態の検出情報の一つとしては、例えば、
バッテリの開放電圧ある。これは、バッテリが満充電に
近づくにつれ開放電圧は高くなる特性を利用するもので
ある。
FIG. 4 shows an embodiment of the power factor control of the charging control means 7. The charge state of the battery detected by the charge state detection means 5 is input to the charge control means 7. As one of the detection information of the battery charge state, for example,
There is an open circuit voltage of the battery. This utilizes the characteristic that the open circuit voltage increases as the battery approaches full charge.

【0030】次に、トルク分電流Itと励磁分電流Imの
充電指令であるIt*とIm*が、充電制御手段7で算定
される。図4において、It・Im=(一定)である曲線
上のb点は、It=Imとなる動作点である。a点側は、
It>Imとなる任意の動作点の領域である。この動作点
領域は、力率が小さい領域である。c点側は、It<Im
となる任意の動作点の領域である。この動作点領域は、
力率が大きい領域である。線分oa、線分ob、線分o
cが、それぞれの動作点における電動機電流Iに相当す
る。
Next, the charging control means 7 calculates the charging commands It * and Im * for the torque component current It and the excitation component current Im. In FIG. 4, point b on the curve where ItIm = (constant) is the operating point at which It = Im. The point a side is
It is a region of an arbitrary operating point where It> Im. This operating point region is a region where the power factor is small. It <Im at point c
Is an area of an arbitrary operating point. This operating point area is
This is an area with a large power factor. Line segment oa, line segment ob, line segment o
c corresponds to the motor current I at each operating point.

【0031】電気車が走行する場合、電動機電流Iのト
ルク分電流Itと励磁分電流Imは、必要な駆動力に応じ
て、ob線上またはその近傍の領域の動作点で制御され
ている。これに対し、回生制動時の場合、電動機電流I
のトルク分電流Itと励磁分電流Imは、バッテリの充電
状態に応じて、It・Im=(一定)である曲線上を変化
する動作点で制御されている。すなわち、開放電圧が低
い状態から満充電の高い状態に近づくにつれ、動作点が
a点側からc点側に変化する制御が行われる。そして、
それに応じた充電指令であるIt*とIm*が算定され、
充電制御手段7から出力される。これにより、モータ1
の力率制御が行われる。
When the electric vehicle travels, the torque component current It and the excitation component current Im of the electric motor current I are controlled at operating points on or near the ob line according to the required driving force. On the other hand, in the case of regenerative braking, the motor current I
The torque component current It and the excitation component current Im are controlled at operating points that change on the curve of It · Im = (constant) according to the state of charge of the battery. That is, the control is performed such that the operating point changes from the point a side to the point c side as the open circuit voltage approaches the state of high full charge from the state of low open voltage. And
The charging instructions It * and Im * corresponding to it are calculated,
It is output from the charging control means 7. As a result, the motor 1
Power factor control is performed.

【0032】以上、一定の制動力を確保して、充電電流
を増減することができる。当発明者の一検討結果によれ
ば、有効制動力の分配されたエネルギであるバッテリ充
電電力とモータ損失とインバータ損失との概略数値は、
次の通りであり、当初の目的を達成することができた。
As described above, it is possible to increase or decrease the charging current while ensuring a constant braking force. According to the result of a study by the present inventor, the approximate numerical values of the battery charging power, which is the energy to which the effective braking force is distributed, the motor loss, and the inverter loss are:
It was as follows, and the original purpose could be achieved.

【0033】 有効制動力= 充電電力+モータ損失+インバータ損失 12(Kw)= 2 + 7 + 3(K
w)…充電電力が少ない場合 12(Kw)= 8 + 2 + 2(K
w)…充電電力が多い場合 尚、余剰の発電エネルギが、モータ損失やインバータ損
失として消費される場合、一般には、熱エネルギとして
消費されるので、モータやインバータの冷却が課題とな
る。これに対しては、モータの水冷方法やインバータの
強制空冷方法で対応する。特に、最近の電気自動車で
は、水冷式モータが採用されているので幸便である。
Effective braking force = Charging power + Motor loss + Inverter loss 12 (Kw) = 2 + 7 + 3 (K
w) ... When the charging power is low 12 (Kw) = 8 + 2 + 2 (K
w) When a large amount of charging power is used When excess power generation energy is consumed as a motor loss or an inverter loss, it is generally consumed as heat energy, so cooling of the motor or the inverter becomes a problem. For this, a water cooling method for the motor or a forced air cooling method for the inverter is used. In particular, recent electric vehicles are lucky because they use water-cooled motors.

【0034】[0034]

【発明の効果】本発明によれば、バッテリに損傷を与え
ることなく、必要なる回生制動力を確保することができ
るので、電気車の安全運転が向上する。
According to the present invention, the required regenerative braking force can be secured without damaging the battery, so that safe driving of the electric vehicle is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の電気車の概略構成を示
す図である。
FIG. 1 is a diagram showing a schematic configuration of an electric vehicle according to an embodiment of the present invention.

【図2】ベクトル制御に関するブロックダイヤグラムの
一実施例を示すものである。
FIG. 2 shows an example of a block diagram relating to vector control.

【図3】本発明に係る力率を変える方法の一実施例を示
すベクトル図である。
FIG. 3 is a vector diagram showing an embodiment of a method for changing a power factor according to the present invention.

【図4】本発明に係る充電制御手段の力率制御の一実施
例を示すものである。
FIG. 4 shows an embodiment of the power factor control of the charging control means according to the present invention.

【符号の説明】[Explanation of symbols]

1…モータ、2…インバータ、3…制御装置、4…バッ
テリ、5…充電状態検出手段、6…運転状態検出手段、
7…充電制御手段
DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Inverter, 3 ... Control device, 4 ... Battery, 5 ... Charge state detection means, 6 ... Operating state detection means,
7 ... Charge control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石堂 恒雄 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneo Ishido 2520 Takaba, Katsuta City, Ibaraki Prefecture Hitachi Ltd. Automotive Equipment Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】バッテリと、走行駆動用の電動機と、前記
電動機に前記バッテリの電力を供給する電力変換手段
と、前記電力変換手段を制御する制御装置とを備える電
気車の回生制動制御方法において、 前記バッテリの蓄電状態に応じて前記電動機の力率を制
御し、前記バッテリに蓄電される蓄電エネルギと前記電
動機および前記電力変換手段で消費される損失エネルギ
との両者に回生された前記電気エネルギを分配する比率
を変えることを特徴とする電気車制動制御方法。
1. A regenerative braking control method for an electric vehicle, comprising: a battery, an electric motor for driving the vehicle, an electric power conversion means for supplying electric power of the battery to the electric motor, and a control device for controlling the electric power conversion means. Controlling the power factor of the electric motor according to the electric storage state of the battery, and regenerating the electric energy regenerated into both electric energy stored in the battery and loss energy consumed by the electric motor and the electric power conversion means. An electric vehicle braking control method characterized by changing a distribution ratio of the electric vehicle.
【請求項2】請求項1において、前記電動機の力率を制
御する方法は、前記電動機の電流ベクトル制御方式にお
けるトルク電流ベクトル成分と励磁電流ベクトル成分と
の比率を変える制御であることを特徴とする電気車制動
制御方法。
2. The method according to claim 1, wherein the method for controlling the power factor of the electric motor is control for changing a ratio between a torque current vector component and an exciting current vector component in the electric current vector control method of the electric motor. Electric vehicle braking control method.
【請求項3】請求項1において、前記バッテリの蓄電状
態は、バッテリ開放電圧の大小状態であることを特徴と
する電気車制動制御方法。
3. The electric vehicle braking control method according to claim 1, wherein the storage state of the battery is a state in which the open circuit voltage is large or small.
【請求項4】請求項1において、前記電力変換手段は、
三相半導体式インバータであり、前記電動機は、三相交
流電動機であることを特徴とする電気車制動制御方法。
4. The power conversion means according to claim 1,
A three-phase semiconductor type inverter, wherein the electric motor is a three-phase AC electric motor.
【請求項5】電源装置と、走行駆動用の電動機と、前記
電動機に前記電源装置の電力を電力変換手段を介して供
給する制御装置とを備えた主回路を有し、電気車の慣性
エネルギを電気エネルギに変換し回生することにより、
前記電気車の制動を制御する電気車制御装置において、 回生された前記電気エネルギを蓄電する蓄電手段と、回
生された前記電気エネルギを消費する消費手段と、前記
蓄電手段の蓄電状態に応じて前記電動機の力率を制御し
前記蓄電手段および前記消費手段に分配される前記電気
エネルギの比率を変える力率制御手段とを設けたことを
特徴とする電気車制御装置。
5. A main circuit having a power supply device, an electric motor for driving the vehicle, and a control device for supplying the electric power of the power supply device to the electric motor through an electric power conversion means. Is converted into electric energy and regenerated,
In an electric vehicle control device that controls braking of the electric vehicle, a power storage unit that stores the regenerated electric energy, a consumption unit that consumes the regenerated electric energy, and the power storage unit according to a storage state of the power storage unit. An electric vehicle control device comprising: a power factor control unit that controls a power factor of an electric motor to change a ratio of the electric energy distributed to the power storage unit and the consumption unit.
【請求項6】請求項5において、前記力率制御手段は、
前記電動機の電流ベクトル制御方式におけるトルク電流
ベクトル成分と励磁電流ベクトル成分とを制御するもの
であることを特徴とする電気車制御装置。
6. The power factor control means according to claim 5,
An electric vehicle control device for controlling a torque current vector component and an exciting current vector component in a current vector control system of the electric motor.
【請求項7】請求項5において、前記消費手段は、前記
電力変換手段および前記電動機であることを特徴とする
電気車制御装置。
7. The electric vehicle controller according to claim 5, wherein the consumption means is the power conversion means and the electric motor.
【請求項8】請求項5において、前記消費手段は、前記
電動機であることを特徴とする電気車制御装置。
8. The electric vehicle controller according to claim 5, wherein the consumption means is the electric motor.
JP24417593A 1993-09-30 1993-09-30 Electric vehicle braking control method and electric vehicle control device Expired - Fee Related JP3152027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24417593A JP3152027B2 (en) 1993-09-30 1993-09-30 Electric vehicle braking control method and electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24417593A JP3152027B2 (en) 1993-09-30 1993-09-30 Electric vehicle braking control method and electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH07107613A true JPH07107613A (en) 1995-04-21
JP3152027B2 JP3152027B2 (en) 2001-04-03

Family

ID=17114885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24417593A Expired - Fee Related JP3152027B2 (en) 1993-09-30 1993-09-30 Electric vehicle braking control method and electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3152027B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112406A (en) * 2000-09-29 2002-04-12 Mitsubishi Motors Corp Control device for hybrid electric vehicle
JP2003164009A (en) * 2001-11-28 2003-06-06 Matsushita Electric Ind Co Ltd Controller for vehicle with electric traction power device
JP2007135400A (en) * 2007-01-29 2007-05-31 Hitachi Ltd Motor control device
WO2007126037A1 (en) * 2006-04-24 2007-11-08 Toyota Jidosha Kabushiki Kaisha Internal combustion engine stop control device and stop control method
JP2008312400A (en) * 2007-06-15 2008-12-25 Hitachi Ltd Rotating electrical machine control device and vehicle drive device
ITBO20090304A1 (en) * 2009-05-12 2010-11-13 Franco Cimatti BICYCLE WITH ELECTRIC ASSISTANCE
JP2011015515A (en) * 2009-07-01 2011-01-20 Nissan Motor Co Ltd System and method for control of electric motor
JP2013048608A (en) * 2011-08-31 2013-03-14 Kokusan Denki Co Ltd Electric working vehicle
JP2023152353A (en) * 2022-04-04 2023-10-17 三菱電機株式会社 Control device of ac rotating electric machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112406A (en) * 2000-09-29 2002-04-12 Mitsubishi Motors Corp Control device for hybrid electric vehicle
JP2003164009A (en) * 2001-11-28 2003-06-06 Matsushita Electric Ind Co Ltd Controller for vehicle with electric traction power device
WO2007126037A1 (en) * 2006-04-24 2007-11-08 Toyota Jidosha Kabushiki Kaisha Internal combustion engine stop control device and stop control method
US7822535B2 (en) 2006-04-24 2010-10-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine stop controller and stop control method
JP2007135400A (en) * 2007-01-29 2007-05-31 Hitachi Ltd Motor control device
JP4592712B2 (en) * 2007-01-29 2010-12-08 株式会社日立製作所 Motor control device
JP2008312400A (en) * 2007-06-15 2008-12-25 Hitachi Ltd Rotating electrical machine control device and vehicle drive device
JP4490458B2 (en) * 2007-06-15 2010-06-23 日立オートモティブシステムズ株式会社 Rotating electrical machine control device and vehicle drive device
ITBO20090304A1 (en) * 2009-05-12 2010-11-13 Franco Cimatti BICYCLE WITH ELECTRIC ASSISTANCE
JP2011015515A (en) * 2009-07-01 2011-01-20 Nissan Motor Co Ltd System and method for control of electric motor
JP2013048608A (en) * 2011-08-31 2013-03-14 Kokusan Denki Co Ltd Electric working vehicle
JP2023152353A (en) * 2022-04-04 2023-10-17 三菱電機株式会社 Control device of ac rotating electric machine

Also Published As

Publication number Publication date
JP3152027B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
CN106029430B (en) Power supply unit for electric vehicles
CA2289332C (en) Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system
CN102781711B (en) Electric vehicle and method for controlling same
KR100334555B1 (en) Regenerative braking control method and control device for electric vehicle
US6121740A (en) Control of regeneration energy from an electric motor
US5880570A (en) Method and apparatus for controlling a synchronous motor
CN114208021B (en) Motor control device, electromechanical unit, and electric vehicle system
US20070096683A1 (en) Electric Motor Driving System, Electric Four-Wheel Drive Vehicle, and Hybrid Vehicle
US20090315392A1 (en) Power Supply System and Vehicle Including the Same
JPH10295045A (en) Power generation control device for hybrid electric vehicle
JPH09322302A (en) Drive system for electric car
CN111713012B (en) Motor control device and electric vehicle system using it
JP6909694B2 (en) Work vehicle power regeneration system
WO2022014083A1 (en) Motor control device, mechatronic unit, power generation system, boost converter system, and electric vehicle system
JPH09294301A (en) Controller and control method for electric vehicle
JP3152027B2 (en) Electric vehicle braking control method and electric vehicle control device
Swaminathan et al. Review on different topologies of power electronic converters and control strategies for motors in electric vehicles
JP3972322B2 (en) Electric vehicle control device
US6239575B1 (en) Induction motor power/torque clamping for electric vehicle performance
JP2012040928A (en) Hybrid vehicle control device
JPH0463639B2 (en)
JP4104940B2 (en) Drive control apparatus for hybrid vehicle
JP2007110891A (en) Method for maintaining dc voltage applied to input of dc-ac converter, data recording medium therefor, and electric vehicle using the method
JPH0731006A (en) Synchronous motor controller for electric automobile
CA2591696C (en) Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees