JPH07107161B2 - Sintered body manufacturing method using gas atomized powder - Google Patents
Sintered body manufacturing method using gas atomized powderInfo
- Publication number
- JPH07107161B2 JPH07107161B2 JP62051078A JP5107887A JPH07107161B2 JP H07107161 B2 JPH07107161 B2 JP H07107161B2 JP 62051078 A JP62051078 A JP 62051078A JP 5107887 A JP5107887 A JP 5107887A JP H07107161 B2 JPH07107161 B2 JP H07107161B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- gas
- atomized
- water
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 162
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000007921 spray Substances 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 10
- 238000009689 gas atomisation Methods 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 4
- 238000009692 water atomization Methods 0.000 claims description 3
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 238000013329 compounding Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 44
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 9
- 238000005507 spraying Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001788 irregular Effects 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 (技術分野) 本発明はガス噴霧粉末を用いた焼結体の製造法に係り、
特にガス噴霧粉末を用いて、高圧粉密度の成形体をプレ
ス成形し、それより目的とする焼結体を製造する方法に
関するものである。TECHNICAL FIELD The present invention relates to a method for producing a sintered body using a gas atomized powder,
In particular, the present invention relates to a method for producing a desired sintered body by press-molding a high-pressure powder density molded body using a gas spray powder.
(背景技術) 従来から、鋼粉末の如き金属粉末が、溶鋼等の所定の金
属溶湯から噴霧法によって製造され、各種の用途に用い
られている。そして、そのような噴霧法によって製造さ
れる金属粉末は、噴霧媒体としてガスを用いた場合にあ
っては、ガス噴霧粉末と呼ばれ、また噴霧媒体として水
を用いた場合にあっては、水噴霧粉末と呼ばれている。(Background Art) Conventionally, metal powder such as steel powder has been produced by a spraying method from a predetermined molten metal such as molten steel and used for various purposes. The metal powder produced by such a spraying method is called a gas spraying powder when gas is used as the spraying medium, and when water is used as the spraying medium, water is used. It is called atomized powder.
ところで、金属粉末を機械部品、家電部品、多孔部品等
の各種用途に適用するに際しては、一般に、かかる粉末
をプレス成形して所定形状の成形体(圧粉体)と為した
後、かかる成形体を焼結せしめることによって得られる
焼結体が、利用されているが、上記した噴霧法によって
製造される金属粉末にあっては、ガス噴霧粉末を用いた
場合において、成形体強度が出ない等の成形性に問題を
内在しているところから、従来にあっては、専ら、水噴
霧粉末が、成形体の製造に、ひいては焼結体の製造に用
いられているのが実情であった。By the way, when the metal powder is applied to various uses such as machine parts, home electric appliance parts, porous parts, etc., in general, such a powder is press-molded into a molded product (compacted powder) having a predetermined shape, and then the molded product. A sintered body obtained by sintering is used, but in the case of the metal powder produced by the above-mentioned spraying method, the strength of the molded body does not appear when the gas sprayed powder is used, etc. From the fact that there is an inherent problem with the moldability of the above, it has been the conventional practice that the water spray powder is used exclusively for the production of the molded body and thus for the production of the sintered body.
このように、金属粉末プレス成形した後、焼結を行な
い、目的とする形状の焼結体を製造する粉末治金の技術
においては、ガス噴霧粉末は、全く利用されていなかっ
たのである。As described above, the gas atomized powder has not been used at all in the technique of powder metallurgy in which the metal powder is press-molded and then sintered to produce a sintered body having a desired shape.
(解決課題) ここにおいて、本発明は、かかる事情を背景にして為さ
れたものであって、その目的とするところは、ガス噴霧
粉末を用いて、有用な焼結体を製造する方法を提供する
ことにあり、また他の目的とするところは、ガス噴霧粉
末を用いて、高圧粉密度の成形体を効果的にプレス成形
し、それから品質の良好な焼結体を製造し得る方法を提
供することにある。(Problem to be Solved) Here, the present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing a useful sintered body by using a gas atomized powder. Another object of the present invention is to provide a method capable of effectively press-molding a high pressure powder density compact using a gas atomized powder, and producing a good quality sintered compact therefrom. To do.
(解決手段) そして、かくの如き目的を達成するために、本発明にあ
っては、所定の金属溶湯をガス噴霧法に従って粉末化し
て得られるガス噴霧粉末に対して、水噴霧法によって得
られた、該ガス噴霧粉末よりも粒径の小さな水噴霧金属
微粉末を、30重量%を越えない配合割合において配合せ
しめて、所定の形状にプレス成形し、そしてその得られ
た成形体を焼結するようにしたのである。(Solution) In order to achieve such an object, in the present invention, a gas spray powder obtained by pulverizing a predetermined molten metal according to a gas spray method is obtained by a water spray method. In addition, water-atomized metal fine powder having a particle size smaller than that of the gas-atomized powder was blended in a blending ratio not exceeding 30% by weight, press-molded into a predetermined shape, and the resulting compact was sintered. I decided to do it.
このように、本発明にあっては、所定のガス噴霧粉末に
対して水噴霧微粉末を30重量%以下の割合で配合せしめ
てなる複合粉末を用い、それをプレス成形した後、焼結
して、目的とする焼結体を得るようにしたものであっ
て、比較的平滑な表面を有する規則的形状の粗いガス噴
霧粉末の隙間に、細かい不規則形状の水噴霧微粉末を入
り込ませ、そこを埋めた状態にして、摩擦力を高めて、
プレス成形することにより、その成形性を改善し、また
得られる成形体の圧粉密度を効果的に向上せしめ得たも
のであり、この意味において、本発明にあっては、前記
水噴霧微粉末としては、ガス噴霧粉末の粒径の1/2以下
の粒径を有していることが望ましいのである。As described above, in the present invention, the composite powder obtained by mixing the water atomized fine powder with the predetermined gas atomized powder in the proportion of 30% by weight or less is used, which is press-molded and then sintered. In order to obtain the target sintered body, the fine irregular water-sprayed fine powder is allowed to enter the gap between the coarse gas sprayed powder having a regular shape having a relatively smooth surface, Fill it up, increase the friction,
By press-molding, it is possible to improve the moldability thereof, and to effectively improve the green compact density of the obtained molded body. In this sense, in the present invention, the water spray fine powder As for, it is desirable to have a particle size of 1/2 or less of the particle size of the gas atomized powder.
また、本発明にあっては、ガス噴霧粉末と水噴霧微粉末
とを配合して得られる複合粉末(配合物)は、好適に
は、熱処理され、かかる水噴霧微粉末の少なくとも一部
を焼結せしめた後、プレス成形操作が実施されるもので
あり、これによって、ガス噴霧粉末の間隙内に入り込ん
だ水噴霧微粉末を焼結せしめて、その形状を更に不規則
化せしめる一方、かかる水噴霧微粉末をガス噴霧粉末の
表面に焼結して、固着せしめ、不規則形状と為すことに
より、摩擦力を増大せしめ、以て有利に圧粉密度や形成
性が向上され得ることとなるのである。Further, in the present invention, the composite powder (blend) obtained by blending the gas atomized powder and the water atomized fine powder is preferably heat-treated to burn at least a part of the water atomized fine powder. After binding, a press molding operation is carried out, whereby the water spray fine powder that has entered the gap of the gas spray powder is sintered to further make its shape irregular, while By sintering the atomized fine powder on the surface of the gas atomized powder and fixing them to form an irregular shape, the frictional force can be increased, and thus the green compact density and formability can be advantageously improved. is there.
さらに、本発明にあっては、ガス噴霧粉末と水噴霧微粉
末との配合を、該水噴霧微粉末を前記ガス噴霧粉末の表
面に付着乃至固着せしめることによって、行なうことが
望ましく、これによって、かかるガス噴霧粉末を不規則
形状化して、その成形時における有効な絡みや摩擦を惹
起せしめ得て、以てより高圧粉密度の成形体を、更に成
形性良く得ることが出来るのである。Furthermore, in the present invention, it is desirable to mix the gas atomized powder and the water atomized fine powder by adhering or adhering the water atomized fine powder to the surface of the gas atomized powder. By making such a gas atomized powder into an irregular shape, it is possible to cause effective entanglement and friction during the molding, and thus a molded body having a higher pressure powder density can be obtained with better moldability.
なお、この水噴霧微粉末をガス噴霧粉末の表面に付着乃
至は固着せしめる手法としては、上記した熱処理の条件
を制御したり、或いはガス噴霧粉末を製造するための金
属溶湯のガス噴霧中に、水噴霧微粉末を吹き込み、形成
されるガス噴霧粉末の表面に水噴霧微粉末を付着乃至は
固着せしめる方法や、或いは水噴霧微粉末をガス噴霧粉
末の表面に糊付けしたりする方法がある。In addition, as a method for adhering or adhering this water-atomized fine powder to the surface of the gas-atomized powder, the conditions of the heat treatment described above are controlled, or during gas atomization of the molten metal for producing the gas-atomized powder, There are a method of blowing the water spray fine powder and adhering or fixing the water spray fine powder to the surface of the gas spray powder to be formed, or a method of pasting the water spray fine powder to the surface of the gas spray powder.
ところで、かかる本発明は、ガス噴霧粉末として、特
に、普通鋼、低合金鋼、ステンレス鋼等の鋼粉末を用い
て、目的とする焼結体を得る技術として開発されたもの
であるが、また本発明にあっては、そのようなガス噴霧
粉末として、溶鋼以外の他の金属溶湯を用いて、それを
通常のガス噴霧法に従って粉末化して得られる、他のガ
ス噴霧粉末に対しても、同様に、適用され得るものであ
ることは、言うまでもないところである。By the way, the present invention was developed as a technique for obtaining a desired sintered body by using steel powder such as ordinary steel, low alloy steel, and stainless steel as the gas atomized powder. In the present invention, as such a gas spray powder, using a metal melt other than molten steel, obtained by pulverizing it according to a normal gas spray method, also for other gas spray powder, It goes without saying that it can be applied as well.
なお、かかる本発明に用いられ得るガス噴霧粉末、換言
すれば溶鋼等の所定の金属溶湯から、噴霧媒体としてガ
スを用いて噴霧(粉末化)して得られる金属粉末におい
て、その粒度は、従来から粉末治金に供される粉末の粒
度範囲において適宜に決定されるものであるが、本発明
にあっては、一般に150μm以下の粒度(平均粒径)の
ものが好適に用いられることとなる。In addition, the particle size of the gas spray powder that can be used in the present invention, in other words, the metal powder obtained by spraying (powderizing) gas from a predetermined molten metal such as molten steel using a gas as a spray medium is conventionally According to the present invention, the particle size range of the powder used for powder metallurgy is appropriately determined. However, in the present invention, a particle size of 150 μm or less (average particle size) is generally preferably used. .
また、かかるガス噴霧粉末に対して配合せしめられる水
噴霧微粉末は、噴霧媒体として水を用いて溶湯を噴霧
(粉末化)する、通常の水噴霧法によって得られた金属
微粉末であって、該ガス噴霧粉末よりも粒径の小さな微
粉末、特に好ましくは、該ガス噴霧粉末の粒径の1/2以
下の粒径を有する微粉末が用いられるものである。な
お、この水噴霧微粉末としては、好適には、前記ガス噴
霧粉末を与える金属溶湯と同種の或いは類似の合金組成
を有する金属溶湯を用いて、粉末化して得られた金属粉
末であることが望ましいが、焼結体の特性に悪影響をも
たらさないものであれば、他の金属粉末も使用可能であ
り、更には焼結体の特性を向上せしめたり、或いは新た
な特性を与え得る金属粉末であっても、何等差支えない
のである。Further, the water-atomized fine powder to be blended with the gas-atomized powder is a metal fine powder obtained by a normal water-atomization method, in which the molten metal is sprayed (powderized) using water as a spray medium, A fine powder having a particle size smaller than that of the gas atomized powder, particularly preferably a fine powder having a particle size of 1/2 or less of the particle size of the gas atomized powder is used. The water spray fine powder is preferably a metal powder obtained by pulverizing a metal melt having the same or similar alloy composition as the metal melt that gives the gas spray powder. Although desirable, other metal powders can be used as long as they do not adversely affect the properties of the sintered body, and metal powders that can improve the properties of the sintered body or give new properties. If there is, it doesn't matter.
さらに、かかる水噴霧微粉末は、ガス噴霧粉末に対し
て、それとの配合物中に30重量%を越えない配合割合に
おいて、配合せしめられるものであり、このような配合
割合を用いて初めて、本発明の目的が有利に達成され得
るのである。なお、水噴霧微粉末の配合割合が30重量%
を越えるようになると、反って圧粉密度の有効な改善が
図り難く、またプレス成形時における成形性の改善も充
分でなくなるのである。特に、本発明の目的を有利に達
成する上において、ガス噴霧粉末と水噴霧微粉末とから
なる配合物中における水噴霧微粉末量としては、10〜20
重量%程度とすることが望ましい。Furthermore, such a water-atomized fine powder is added to a gas-atomized powder at a blending ratio of not more than 30% by weight in a mixture with the gas-sprayed powder. The object of the invention can be advantageously achieved. The blending ratio of the water spray fine powder is 30% by weight.
If it exceeds the range, it is difficult to effectively improve the green compact density, and the moldability during press molding is not sufficiently improved. In particular, in order to advantageously achieve the object of the present invention, the amount of water-atomized fine powder in the composition comprising the gas-atomized powder and the water-atomized fine powder is 10 to 20.
It is desirable to set the content to about wt%.
なお、かかる水噴霧微粉末のガス噴霧粉末に対する配合
は、それら粉末を均一に混合せしめる公知の各種の手法
によって行なうことが可能であるが、特に本発明にあっ
ては、そのような配合物を熱処理して、かかる水噴霧微
粉末の少なくとも一部を焼結せしめた後、後のプレス成
形操作に供するのが望ましい。そして、これによって、
前述したように、有効な粉末の絡み、摩擦力の向上等が
達成され得て、圧粉密度やプレス成形性の向上が効果的
に達成され得るのである。また、この水噴霧微粉末自体
を焼結し、更にそれをガス噴霧粉末表面に焼結、固着せ
しめるための熱処理は、水噴霧微粉末の種類やその配合
量等に応じて、適宜に決定されることとなるが、一般に
高い熱処理温度を採用すれば、より良く本発明の目的が
達成されることとなる。The water-atomized fine powder may be mixed with the gas-atomized powder by various known methods for uniformly mixing the powders. It is desirable to heat-treat and sinter at least a portion of such water-atomized fine powder, and then subject it to a subsequent press-molding operation. And this
As described above, effective entanglement of powder, improvement of frictional force, and the like can be achieved, and improvement of green compact density and press formability can be effectively achieved. Further, the heat treatment for sintering the water-sprayed fine powder itself and further for sintering and fixing it on the surface of the gas-sprayed powder is appropriately determined according to the type of the water-sprayed fine powder, the blending amount thereof, and the like. However, in general, if a high heat treatment temperature is adopted, the object of the present invention can be better achieved.
また、本発明の目的を有利に達成する上において、かか
るガス噴霧粉末と水噴霧微粉末との配合を、該水噴霧微
粉末を該ガス噴霧粉末の表面に付着乃至は固着せしめる
ことによって、行なうようにすることが望ましいのであ
る。より具体的には、そのような付着乃至は固着は、ガ
ス噴霧粉末を製造するための金属溶湯のガス噴霧中に、
予め製造された所定の水噴霧微粉末を吹き込み、形成さ
れるガス噴霧粉末の表面に該水噴霧微粉末を付着乃至は
固着せしめることによって、またポリビニルアルコー
ル、フェノール樹脂等の接合剤をガス噴霧粉末の表面に
コーティングした後、水噴霧微粉末と混合して、かかる
接合剤を介して水噴霧微粉末をガス噴霧粉末の表面に糊
付けすること等によって、容易に実施され得るものであ
る。In order to advantageously achieve the object of the present invention, the gas spray powder and the water spray fine powder are compounded by adhering or fixing the water spray fine powder to the surface of the gas spray powder. It is desirable to do so. More specifically, such adhesion or sticking may occur during gas atomization of molten metal for producing gas atomized powder.
By blowing a predetermined water spray fine powder produced in advance, and by adhering or adhering the water spray fine powder on the surface of the gas spray powder formed, polyvinyl alcohol, a bonding agent such as a phenol resin is also a gas spray powder. Can be easily carried out, for example, by coating it on the surface of No. 3, then mixing it with the water-atomized fine powder, and pasting the water-atomized fine powder onto the surface of the gas-atomized powder through such a bonding agent.
そして、このようにして得られたガス噴霧粉末と所定量
の水噴霧微粉末からなる配合物には、通常の粉末治金手
法に従って、プレス成形操作が施され、以て所定形状の
成形体(圧粉体)が成形されることとなるが、上記の如
き本発明の採用によって、その際のプレス成形性が改善
され、また高圧粉密度の成形体が容易に得られることと
なるのであり、それ故に、そのような高圧粉密度の成形
体を用いて、常法に従って焼結を行なうことにより、焼
結体特性に優れた焼結製品が有利に得られるのである。Then, the mixture consisting of the gas atomized powder thus obtained and a predetermined amount of water atomized fine powder is subjected to a press molding operation in accordance with a usual powder metallurgy method, whereby a molded body of a predetermined shape ( The green compact) is molded, but by adopting the present invention as described above, the press moldability at that time is improved, and a high pressure powder density molded product can be easily obtained. Therefore, a sintered product having excellent characteristics of the sintered body can be advantageously obtained by performing the sintering according to a conventional method using the molded body having such a high-pressure powder density.
(実施例) 以下に、本発明の代表的な実施例を示し、本発明を更に
具体的に明らかにすることとするが、本発明が、そのよ
うな実施例の記載によって、何等の制約をも受けるもの
でないことは、言うまでもないところである。(Examples) Hereinafter, representative examples of the present invention will be shown to clarify the present invention in more detail. However, the present invention does not impose any restrictions due to the description of such examples. Needless to say, it is not something to receive.
また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修
正、改良等を加え得るものであることが、理解されるべ
きである。In addition to the following embodiments, the present invention further includes various changes and modifications based on the knowledge of those skilled in the art, in addition to the above specific description, without departing from the spirit of the present invention. It should be understood that improvements and the like can be added.
なお、以下の実施例中の部及び百分率は、特に断わりの
ない限り、何れも重量基準によって示されるものであ
る。In addition, all parts and percentages in the following examples are shown by weight unless otherwise specified.
実施例 1 C:0.015%、Si:0.84%、Mn:0.12%、P:0.024%、S:0.01
1%、Cu:0.02%、Ni:11.03%、Cr:19.23%、Mo:0.01%
なる化学成分を有するステンレス鋼溶湯を用いて、通常
のガス噴霧手法若しくは水噴霧手法にて粉末化して、2
種の鋼粉末、即ちガス噴霧粉末と水噴霧粉末を得た。そ
して、それぞれ得られた粉末を乾燥し、分級して、180
μm以下のガス噴霧粉末及び30μm以下の水噴霧微粉末
を集めた。Example 1 C: 0.015%, Si: 0.84%, Mn: 0.12%, P: 0.024%, S: 0.01
1%, Cu: 0.02%, Ni: 11.03%, Cr: 19.23%, Mo: 0.01%
Using a molten stainless steel having the following chemical composition, powdered by the usual gas atomization method or water atomization method, 2
A seed steel powder was obtained, namely a gas atomized powder and a water atomized powder. Then, each of the obtained powders is dried, classified, and 180
A gas atomized powder of less than μm and a water atomized fine powder of less than 30 μm were collected.
次いで、かかる2種の鋼粉末を、下記第1表に示される
如き配合割合にて配合して、各種の焼結用粉末試料1〜
4を調製した。なお、それぞれの焼結用粉末試料には、
何れも潤滑剤としてステアリン酸亜鉛の1部を同時に均
一に混合せしめた。Next, these two kinds of steel powders were mixed in a mixing ratio as shown in Table 1 below, and various kinds of sintering powder samples 1 to 1 were mixed.
4 was prepared. In addition, in each sintering powder sample,
In each case, 1 part of zinc stearate as a lubricant was mixed uniformly at the same time.
そして、この得られた4種の焼結用粉末試料1〜4を用
いて、先ず、それぞれの粉末試料(配合物)に対して、
各種の熱処理、即ち真空下において、800、850、900℃
×1時間の熱処理を施して、水噴霧微粉末部分の焼結を
行ない、その後それぞれの熱処理物を成形圧力:5t/cm2
にてプレス成形して、それぞれ円柱状のサンプル(φ11
×10)を作製し、次いで通常の焼結手法に従って、真空
下、500℃×30分の脱ろう操作の後、1200℃×60分の焼
結操作を行なって、目的とする焼結体を製造した。 Then, using the obtained four types of sintering powder samples 1 to 4, first, for each powder sample (blend),
Various heat treatments, ie, 800, 850, 900 ℃ under vacuum
× Heat treatment for 1 hour to sinter the water-atomized fine powder part, and then form each heat-treated product at a molding pressure of 5t / cm 2
Press-molded with a cylindrical sample (φ11
X10) was prepared, and then the dewaxing operation was performed under vacuum at 500 ° C for 30 minutes, and then the sintering operation was performed at 1200 ° C for 60 minutes to obtain the desired sintered body. Manufactured.
それぞれのサンプル(圧粉体)における圧粉密度の結果
を、第1連に示すが、かかる第1図の結果から明らかな
ように、本発明に従って、ガス噴霧粉末に対して水噴霧
微粉末を配合せしめることによって、特に水噴霧微粉末
の配合量が10〜20重量%の範囲において、著しい圧粉密
度の向上が認められるのである。The results of the green compact density of each sample (green compact) are shown in the first series. As is clear from the results of FIG. 1, according to the present invention, the water atomized fine powder was compared with the gas atomized powder. It is recognized that the addition of the water-sprayed fine powder significantly improves the green compact density in the range of 10 to 20% by weight.
また、第2図には、それぞれのサンプルの抗折力をASTM
−B−528による測定法に従って測定した結果が示され
ているが、この第2図から明らかなように、本発明に従
って水噴霧微粉末を配合せしめることによって、従来の
水噴霧微粉末を用いた場合のレベルよりも抗折力は劣る
ものの、各サンプルの抗折力は改善され、実用に供せら
れるレベルとなっていることが認めることが出来る。In addition, Fig. 2 shows the bending strength of each sample according to ASTM
The results measured by the measuring method according to -B-528 are shown. As is clear from FIG. 2, a conventional water spray fine powder was used by incorporating the water spray fine powder according to the present invention. Although the transverse rupture strength is inferior to that of the case, it can be confirmed that the transverse rupture strength of each sample is improved and is at a level that can be put to practical use.
実施例 2 C:0.87%、Cr:4.02%、Mo:5.12%、W:6.38%、V:2.01%
なる鋼組成(AISIM2)の水噴霧微粉末(粒径:30μ以
下)を常法に従って製造した。一方、この水噴霧微粉末
と同組成の溶鋼を用い、それを窒素ガスによってアトマ
イズすることによりガス噴霧粉末を得るに際して、かか
る溶鋼が粉末化(ガス噴霧)された直後に、換言すれば
その粉末化点直下近傍に、前記水噴霧微粉末を吹き込む
ことにより、形成されるガス噴霧粉末の表面に水噴霧微
粉末を付着せしめた。なお、かかる操作は、上記水噴霧
微粉末の吹込み量を10%及び20%として実施された。次
いで、それぞれ、表面に微粉末の付着せしめられたガス
噴霧粉末を200μ以下に分級して軟化焼鈍を施し、そし
てその得られた粉末100部に、潤滑剤としてステアリン
酸亜鉛の1部を混合して、6t/cm2の圧力で成形した。Example 2 C: 0.87%, Cr: 4.02%, Mo: 5.12%, W: 6.38%, V: 2.01%
Water atomized fine powder (particle size: 30μ or less) of the following steel composition (AISIM2) was manufactured by a conventional method. On the other hand, when a molten steel having the same composition as this water-sprayed fine powder is used and atomized with nitrogen gas to obtain a gas-sprayed powder, immediately after the molten steel is pulverized (gas-sprayed), in other words, the powder The water spray fine powder was blown in the vicinity of just below the chemical conversion point to adhere the water spray fine powder to the surface of the gas spray powder to be formed. The operation was performed with the blowing amount of the water spray fine powder being 10% and 20%. Then, each of the gas atomized powders having fine powders adhered to the surface was classified to 200μ or less and subjected to softening annealing, and 100 parts of the obtained powders was mixed with 1 part of zinc stearate as a lubricant. And molded at a pressure of 6 t / cm 2 .
かくして得られた成形体の圧粉密度と抗折力を調べ、そ
の結果を、下記第2表に示す。The compact density and the transverse rupture strength of the thus obtained molded body were examined, and the results are shown in Table 2 below.
かかる第2表より明らかなように、本発明に従って得ら
れる粉末は、抗折力の改善が著しいことが認められる。 As is clear from Table 2, the powder obtained according to the present invention has a remarkable improvement in transverse rupture strength.
実施例 3 それぞれ、C:1%及びCr:13%の鋼組成よりなる水噴霧微
粉末(粒径:30μ以下)及びガス噴霧粉末(粒径:200μ
以下)を製造し、それら粉末を下記の如き工程でブレン
ドした。即ち、先ず、1%ポリビニルアルコール溶液中
にガス噴霧粉末を浸漬し、次いでかかる溶液中より取り
出されたガス噴霧粉末を、水噴霧微粉末と混合して、10
0℃×1時間の乾燥処理を施した。Example 3 Water-atomized fine powder (particle size: 30 μ or less) and gas-atomized powder (particle size: 200 μ) having a steel composition of C: 1% and Cr: 13%, respectively.
The following) were prepared and the powders were blended in the following steps. That is, first, a gas atomized powder is immersed in a 1% polyvinyl alcohol solution, and then the gas atomized powder taken out from the solution is mixed with a water atomized fine powder,
It was dried at 0 ° C. for 1 hour.
そして、この得られた粉末の100部に、潤滑剤としてス
テアリン酸亜鉛の1部を混合し、5t/cm2の圧力で成形を
行なって、その圧粉密度と抗折力を調べた。その結果を
下記第3表に示す。Then, 100 parts of the obtained powder was mixed with 1 part of zinc stearate as a lubricant and molded at a pressure of 5 t / cm 2 , and the powder density and transverse rupture strength were examined. The results are shown in Table 3 below.
かかる第3表の結果か明らかなように、本実施例におい
ては、粉末の焼鈍が実施されていないために、その圧粉
密度は低いが、水噴霧微粉末をポリビニルアルコールを
用いてガス噴霧粉末の表面に付着せしめることにより、
そのバインダ効果により、抗折力は比較的高くなること
が認められる。なお、高炭素含量の粉末は噴霧のままで
は硬度が高く、通常は成形不能である。 As is clear from the results in Table 3, in this example, since the powder was not annealed, its green compact density was low, but the water-atomized fine powder was gas-atomized powder using polyvinyl alcohol. By attaching to the surface of
It is recognized that the bending effect is relatively high due to the binder effect. It should be noted that powder having a high carbon content has a high hardness as sprayed and is usually unmoldable.
第1図及び第2図は、それぞれ、実施例1において求め
られた成形体の圧粉密度及び抗折力の結果を示すグラフ
である。FIG. 1 and FIG. 2 are graphs showing the results of the green compact density and the transverse rupture strength of the molded body obtained in Example 1, respectively.
Claims (6)
化して得られるガス噴霧粉末に対して、水噴霧法によっ
て得られた、該ガス噴霧粉末よりも粒径の小さな水噴霧
金属微粉末を、30重量%を越えない配合割合において配
合せしめて、所定の形状にプレス成形し、そしてその得
られた成形体を焼結することを特徴とするガス噴霧粉末
を用いた焼結体の製造法。1. A gas atomized powder obtained by pulverizing a predetermined molten metal according to the gas atomization method, to a water atomized metal fine powder having a smaller particle size than the gas atomized powder obtained by the water atomization method. , A compounding amount not exceeding 30% by weight, press-molding into a predetermined shape, and sintering the resulting molded body, a method for producing a sintered body using a gas spray powder. .
粒径の1/2以下の粒径を有している特許請求の範囲第1
項記載の焼結体の製造法。2. The water spray fine powder has a particle diameter of 1/2 or less of the particle diameter of the gas spray powder.
A method for producing a sintered body according to the item.
配合物を熱処理して、かかる水噴霧微粉末の少なくとも
一部を焼結せしめた後、前記プレス成形操作を実施する
特許請求の範囲第1項または第2項記載の焼結体の製造
法。3. A press-molding operation is performed after heat treating a mixture of the gas atomized powder and the water atomized fine powder to sinter at least a portion of the water atomized fine powder. A method for producing a sintered body according to claim 1 or 2.
配合が、該水噴霧微粉末を該ガス噴霧粉末の表面に付着
乃至は固着せしめることによって、行なわれる特許請求
の範囲第1項乃至第3項の何れかに記載の焼結体の製造
法。4. The gas spray powder and the water spray fine powder are blended by adhering or fixing the water spray fine powder to the surface of the gas spray powder. A method for manufacturing a sintered body according to any one of items 1 to 3.
属溶湯のガス噴霧中に、前記水噴霧微粉末を吹き込み、
形成されるガス噴霧粉末の表面に該水噴霧微粉末を付着
乃至は固着せしめる特許請求の範囲第4項記載の焼結体
の製造法。5. The water spray fine powder is blown into the gas spray of the molten metal for producing the gas spray powder,
The method for producing a sintered body according to claim 4, wherein the water spray fine powder is adhered or fixed to the surface of the gas spray powder formed.
表面に糊付けすることからなる特許請求の範囲第4項記
載の焼結体の製造法6. The method for producing a sintered body according to claim 4, which comprises gluing the water-atomized fine powder on the surface of the gas-atomized powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62051078A JPH07107161B2 (en) | 1987-03-05 | 1987-03-05 | Sintered body manufacturing method using gas atomized powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62051078A JPH07107161B2 (en) | 1987-03-05 | 1987-03-05 | Sintered body manufacturing method using gas atomized powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63216903A JPS63216903A (en) | 1988-09-09 |
JPH07107161B2 true JPH07107161B2 (en) | 1995-11-15 |
Family
ID=12876777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62051078A Expired - Lifetime JPH07107161B2 (en) | 1987-03-05 | 1987-03-05 | Sintered body manufacturing method using gas atomized powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107161B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8439998B2 (en) * | 2004-12-06 | 2013-05-14 | Sunrex Kogyo Co., Ltd. | Manufacturing method of metal product and metal product |
JP5149946B2 (en) * | 2010-09-28 | 2013-02-20 | 株式会社K・S・A | Method for producing filler metal and filler material |
-
1987
- 1987-03-05 JP JP62051078A patent/JPH07107161B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63216903A (en) | 1988-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3952006B2 (en) | Raw material powder for sintering or granulated powder for sintering and sintered body thereof | |
KR900006613B1 (en) | Process for producing a copper-based spinodal alloy product and age hardened product made therefrom | |
JP3856294B2 (en) | Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel | |
US4012230A (en) | Tungsten-nickel-cobalt alloy and method of producing same | |
JPS6366362B2 (en) | ||
US5141554A (en) | Injection-molded sintered alloy steel product | |
CN101124058A (en) | Stainless steel powder | |
US5284615A (en) | Method for making injection molded soft magnetic material | |
CN108085576A (en) | A kind of preparation method of steel knot TiCN base cemented carbides | |
WO2005102564A1 (en) | Mixed powder for powder metallurgy | |
JPH07107161B2 (en) | Sintered body manufacturing method using gas atomized powder | |
CN111432958B (en) | Partially diffused alloyed steel powder | |
JP4060092B2 (en) | Alloy steel powder for powder metallurgy and sintered body thereof | |
KR20070086434A (en) | Diffusion Bonded Nickel-Copper Powder Metallurgy Powder | |
JPH07179982A (en) | Soft-magnetic sintered alloy reduced in coercive force and residual magnetic flux density and its production and convergence yoke using the same alloy | |
US4518427A (en) | Iron or steel powder, a process for its manufacture and press-sintered products made therefrom | |
JPH0751721B2 (en) | Low alloy iron powder for sintering | |
JP2003531961A (en) | Method of sintering carbon steel parts using hydrocolloid binder as carbon source | |
JP2000212679A (en) | Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member | |
KR20200128158A (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
JPH0142341B2 (en) | ||
JPH0689363B2 (en) | High strength alloy steel powder for powder metallurgy | |
JPS61264105A (en) | Production of high-strength sintered member | |
CN108034881A (en) | A kind of steel knot TiCN base cemented carbides and application | |
JPH05263181A (en) | Manufacture of fe base sintered alloy member having high strength and high toughness |