JPH07106254A - Device and method for vaporization and supply equipment for liquid raw material - Google Patents
Device and method for vaporization and supply equipment for liquid raw materialInfo
- Publication number
- JPH07106254A JPH07106254A JP27771093A JP27771093A JPH07106254A JP H07106254 A JPH07106254 A JP H07106254A JP 27771093 A JP27771093 A JP 27771093A JP 27771093 A JP27771093 A JP 27771093A JP H07106254 A JPH07106254 A JP H07106254A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- liquid
- vaporization
- carrier gas
- liquid raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超LSIすなわち半導
体製造プロセスにおける液体原料を始めとし、その他化
学工業分野における液体原料の流量を制御し且つ気化す
る液体原料用気化供給器とその供給方法の改良に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid source vaporizer and a supply method thereof for controlling the flow rate of a liquid source and vaporizing it in the field of liquid chemicals including VLSI in the semiconductor manufacturing process. Regarding improvement.
【0002】[0002]
【従来の技術】以下、超LSI製造工程を例にとって説
明する。CVD法(化学気相堆積法)による超LSIの
層間絶縁膜形成用の液体原料(L)として、TEOS(Tet
ra Ethyl Ortho Silicate)が盛んに使用されている。
その理由として、従来のモノシランガスを使用したC
VD法による膜に比べてステップカバレッジ(段差の被
覆性)が良好である事、モノシランガスは極めて反応
性が高く、爆発事故を発生する可能性が高いが、これに
対してTEOSは安全性が高く、保存も容易である事、
将来、原料として高純度化及び低コスト化が期待出来
る、等の多くのメリットを有しているからである。2. Description of the Related Art A VLSI manufacturing process will be described below as an example. As a liquid raw material (L) for forming an interlayer insulating film of a VLSI by the CVD method (chemical vapor deposition method), TEOS (Tet
ra Ethyl Ortho Silicate) is widely used.
The reason is that C using conventional monosilane gas is used.
The step coverage (coverage of the step) is better than that of the film formed by the VD method, and monosilane gas is extremely reactive and may cause an explosion accident, while TEOS is highly safe. , Easy to save,
This is because it has many merits such as high purity and low cost expected as raw materials in the future.
【0003】さて、図5は液体用気化供給器(LMFC)を用
いた半導体製造プロセス装置の概略構成図の1例であ
る。本プロセス装置では液体原料タンク(T)、液体気化
供給器(LMFC)並びに搬送ガス(H)を貯蔵しているボンベ
(図示せず)と反応室(B)にて構成されている。液体原料
タンク(T)には液体原料(L)が気密状に収納されていて、
不活性ガス(F)によって液体原料タンク(T)を加圧する事
により液体原料(L)内に挿入された液体供給配管(LP)を
通して液体用気化供給器(LMFC)に液体原料(L)を供給す
るようになっている。Now, FIG. 5 is an example of a schematic configuration diagram of a semiconductor manufacturing process apparatus using a liquid vaporization feeder (LMFC). In this process equipment, a liquid raw material tank (T), a liquid vaporizer (LMFC), and a cylinder storing a carrier gas (H) are stored.
(Not shown) and reaction chamber (B). The liquid raw material tank (T) stores the liquid raw material (L) in an airtight manner,
Pressurize the liquid raw material tank (T) with an inert gas (F) to feed the liquid raw material (L) to the liquid vaporizer (LMFC) through the liquid supply pipe (LP) inserted in the liquid raw material (L). It is supposed to be supplied.
【0004】従来例である図6,7において、液体用気
化供給器(LMFC)は、流量計測部(LM)と気化供給部(VS)と
で構成されており、流量計測部(LM)は、通過する液体原
料(L)の流量を正確に検出するセンサ管(1)と、センサ管
(1)の流量に原則的に正比例して液体原料(L)が流れるバ
イパス管(2)とで構成されている。気化供給部(VS)は、
センサ管(1)並びにバイパス管(2)を流れて合流する液体
原料(L)の、流量制御室(6)への流量を正確に制御する
流量制御弁(7)と、液体原料(L)を気化・蒸発させて搬送
ガス(H)と共に反応室(B)に供給する気化室(13)と、液体
原料(L)の滲出用液絡部(23)の開閉を行う気化器開閉弁
(12)とで構成されており、気化供給部(VS)全体が恒温槽
(A1)内に収納されている。流量計測部(LM)と気化供給部
(VS)とは、継ぎ手(26)にて接続されており、前記合流し
た液体原料(L)を流量制御室(6)に送り込むようになって
いる。In FIGS. 6 and 7 which are conventional examples, a liquid vaporization feeder (LMFC) is composed of a flow rate measuring unit (LM) and a vaporization feeding unit (VS), and the flow rate measuring unit (LM) is , A sensor tube (1) that accurately detects the flow rate of the liquid raw material (L) passing through, and a sensor tube
In principle, it is composed of a bypass pipe (2) through which the liquid raw material (L) flows in direct proportion to the flow rate of (1). The vaporization supply unit (VS)
A flow rate control valve (7) for accurately controlling the flow rate of the liquid raw material (L) flowing through the sensor pipe (1) and the bypass pipe (2) into the flow control chamber (6), and the liquid raw material (L) A vaporizer opening / closing valve that opens and closes the vaporization chamber (13) that vaporizes and evaporates the liquid and supplies it to the reaction chamber (B) together with the carrier gas (H), and the liquid junction (23) for the exudation of the liquid raw material (L).
(12) consists of and the entire vaporization supply unit (VS) is a thermostatic chamber.
It is stored in (A1). Flow rate measurement unit (LM) and vaporization supply unit
(VS) is connected by a joint (26), and the combined liquid raw materials (L) are sent to the flow rate control chamber (6).
【0005】流量制御弁(7)並びに気化用開閉弁(12)
は、図6,7から分かるようにハウジングブロック(11)
中に収納一体化されており、気化用開閉弁(12)が上方
に、流量制御弁(7)が下方に配置されている。流量制御
弁(7)の流量制御室(6)と気化用開閉弁(12)側の気化室(1
3)とは、ハウジングブロック(11)に穿孔された液絡部(2
3)にて接続されている。又、図7において気化室(13)に
は搬送ガス流入路(14)と混合ガス流出路(15)とが接続さ
れ、搬送ガス流入路(14)には搬送ガス用ボンベ(図示せ
ず)が、混合ガス流出路(15)には次工程である反応室
(B)が接続される。Flow control valve (7) and vaporizing on-off valve (12)
Is the housing block (11), as can be seen in Figs.
It is housed and integrated in the inside, and the vaporizing on-off valve (12) is arranged on the upper side and the flow control valve (7) is arranged on the lower side. The flow control chamber (6) of the flow control valve (7) and the vaporization chamber (1) on the vaporization on-off valve (12) side
3) means the liquid junction (2
It is connected in 3). Further, in FIG. 7, a carrier gas inflow path (14) and a mixed gas outflow path (15) are connected to the vaporization chamber (13), and a carrier gas cylinder (not shown) is connected to the carrier gas inflow path (14). However, the mixed gas outflow passage (15) has a reaction chamber in the next step.
(B) is connected.
【0006】流量制御弁(7)の制御弁体(8)は、流量制御
室(6)内に収納されており、液絡部(23)の入り口の開度
を、制御弁体(8)を流量制御用アクチュエータ(17)で精
密に制御して液体流入通路(5)から流量制御室(6)に流入
した液体原料(L)の気化室(13)への供給量を正確に制御
する。The control valve body (8) of the flow control valve (7) is housed in the flow control chamber (6), and the opening degree of the inlet of the liquid junction (23) is controlled by the control valve body (8). Is precisely controlled by the flow rate control actuator (17) to accurately control the supply amount of the liquid raw material (L) flowing into the flow rate control chamber (6) from the liquid inflow passageway (5) to the vaporization chamber (13). .
【0007】気化器開閉弁(12)は、開閉用アクチュエー
タ(25)と、その下面中央に設置された弁体(3)とで構成
されており、開閉用アクチュエータ(25)の作用にて液絡
部(23)の気化室(13)への液出口を開閉するようになって
いる。混合ガス流出路(15)に接続される反応室(B)は、
例えばCVD装置のような半導体製造装置の反応室であ
る。The carburetor on-off valve (12) is composed of an on-off actuator (25) and a valve body (3) installed in the center of the lower surface of the carburetor on-off valve (12). The liquid outlet of the junction (23) to the vaporization chamber (13) is opened and closed. The reaction chamber (B) connected to the mixed gas outflow passage (15) is
For example, it is a reaction chamber of a semiconductor manufacturing apparatus such as a CVD apparatus.
【0008】而して、ヘリウムや窒素などの不活性ガス
(F)によって原料タンク(T)を加圧し、内部の液体原料
(L)を液体用気化供給器(LMFC)に供給する。液体用気化
供給器(LMFC)では前記で詳述したように流量制御弁(7)
の制御作用にて一定量の液体原料(L)が気化室(13)に供
給される事になる。Thus, an inert gas such as helium or nitrogen
(F) pressurizes the raw material tank (T), and the liquid raw material inside
Supply (L) to the liquid vaporizer (LMFC). In the liquid vaporizer (LMFC), the flow control valve (7) is used as detailed above.
By this control action, a certain amount of liquid raw material (L) is supplied to the vaporization chamber (13).
【0009】液体原料(L)が流量制御室(6)内に供給され
ると、液絡部(23)を通って液体原料(L)の先端が液出口
から露出する。この時、制御弁体(8)の開度を制御する
ことにより、液絡部(23)の入り口から液絡部(23)に流入
する液体原料(L)の量が流量計測部(LM)からの信号によ
って設定値に制御されつつ液絡部(23)内に流入して行
き、液出口から気化室(13)に溢出して行く。恒温槽(A1)
内は一定温度に加熱されているために前記流出液体原料
(L)は露頭部において順次気化蒸発する。一方、気化器
開閉弁(12)の搬送ガス流入路(14)からは例えばヘリウム
などの搬送ガス(H)が供給されており、蒸発した前記原
料ガスと混合して混合ガス(Kn)となり、混合ガス流出路
(15)から流出し、配管用ヒータ(図示せず)で所定温度
に加熱されつつ反応室(B)に供給される。When the liquid raw material (L) is supplied into the flow rate control chamber (6), the tip of the liquid raw material (L) is exposed from the liquid outlet through the liquid junction (23). At this time, by controlling the opening degree of the control valve body (8), the amount of the liquid raw material (L) flowing into the liquid junction (23) from the inlet of the liquid junction (23) is controlled by the flow rate measurement unit (LM). While flowing into the liquid junction portion (23) while being controlled to a set value by a signal from, the liquid outlet overflows into the vaporization chamber (13). Constant temperature bath (A1)
Since the inside is heated to a constant temperature, the effluent liquid raw material
(L) evaporates and evaporates in the exposed area. On the other hand, a carrier gas (H) such as helium is supplied from the carrier gas inflow path (14) of the vaporizer opening / closing valve (12), and becomes a mixed gas (Kn) by mixing with the vaporized raw material gas, Mixed gas outlet
It flows out from (15) and is supplied to the reaction chamber (B) while being heated to a predetermined temperature by a pipe heater (not shown).
【0010】さて、搬送ガス(H)と原料ガスの混合ガス
(Kn)の供給を受ける反応室(B)側では、前記混合ガス(K
n)の要求量に変化があり、液体気化供給装置(LMFC)とし
ては、反応室(B)側の要求に合わせてその必要量を正確
且つ安定的に供給しなければならない。さて、液体原料
(L)の流量が比較的少ない状態では(この点は、本発明
と従来例の比較例で詳述する。)、液体原料(L)を気化
させるのに搬送ガス(H)の流量が十分である場合には安
定的な気化が可能であるが、それ以上になると液体原料
(L)の供給量に対して搬送ガス(H)の流量が不足し、ま
た、気化に必要な供給熱量が不足することによって気化
しなかった一部の液体原料(L)がそのまま下流の配管に
流れ、以下のような理由による原料ガス量に変動が生じ
て半導体ウェハ上の成膜の厚さにバラツキを生じたり、
不良品を発生するなどの悪影響を及ぼす危険性があっ
た。A mixed gas of carrier gas (H) and raw material gas
On the side of the reaction chamber (B) receiving the supply of (Kn), the mixed gas (K
There is a change in the required amount of n), and the liquid vaporization supply device (LMFC) must supply the required amount accurately and stably in accordance with the request of the reaction chamber (B) side. Well, liquid raw material
When the flow rate of (L) is relatively low (this point will be described in detail in the comparative example of the present invention and the conventional example), the flow rate of the carrier gas (H) is sufficient to vaporize the liquid raw material (L). If it is, stable vaporization is possible.
The flow rate of carrier gas (H) is insufficient with respect to the supply amount of (L), and some of the liquid raw material (L) that was not vaporized due to the lack of the heat supply required for vaporization is used directly in the downstream piping. Flow into the raw material, and the amount of raw material gas fluctuates due to the following reasons, resulting in variations in the thickness of the film formed on the semiconductor wafer,
There was a risk of adverse effects such as defective products.
【0011】この点を図8に従って詳述する。液体原料
(L)の流量が増加してくると、液出口(23a)近傍の雰囲気
の気化原料ガスの分圧が飽和状態になり、供給される全
ての液体原料(L)が気化できず、液出口(23a)の周囲に液
体原料(L)が溜まり突沸し始める。気化すべき液体原料
(L)が突沸によって液滴となって飛散すると、液滴とな
っている部分は直ちに気化しないため、一時的に原料ガ
ス濃度が低下すると同時に気化室(13)内の圧力は大きく
低下する。そして突沸によって飛散した液体原料(L)の
液滴は、気化器開閉弁(12)の弁体(3)の底部や気化室(1
3)内の内壁に付着する。そしてこの付着液滴は急速に蒸
発して、気化室(13)内の圧力を高める。This point will be described in detail with reference to FIG. Liquid raw material
When the flow rate of (L) increases, the partial pressure of the vaporized raw material gas in the atmosphere near the liquid outlet (23a) becomes saturated, and all the liquid raw material (L) supplied cannot be vaporized, and the liquid outlet Liquid raw material (L) collects around (23a) and starts to bump. Liquid raw material to be vaporized
When (L) scatters into droplets due to bumping, the droplet portions are not immediately vaporized, so that the concentration of the source gas is temporarily reduced and at the same time the pressure in the vaporization chamber (13) is greatly reduced. Liquid droplets of the liquid raw material (L) scattered by bumping are then collected from the bottom of the valve body (3) of the vaporizer on-off valve (12) and the vaporization chamber (1
3) It adheres to the inner wall inside. Then, the adhered droplets evaporate rapidly to increase the pressure in the vaporization chamber (13).
【0012】このように液体原料(L)の供給量が搬送ガ
ス(H)の流量に対して過大である場合には、{突沸■液
体原料の飛散■飛散液滴の蒸発■突沸}を繰り返すこと
になり、気化室(13)内の圧力は大きく変動する。同時に
気化室(13)内の圧力上昇は気化率の低下を招き、液体原
料(L)の円滑な気化を妨げる。また、前記圧力変動は反
応室(B)の圧力変動の原因となり、また、これに起因す
る原料ガスの濃度の変動は、半導体ウェハ上の膜の厚さ
に、ばらつきを生じるほか、液滴の飛散、付着によっ
て、ウエハ表面に汚点(スポット)を生じてウェハの不
良の大きな原因となる。When the supply amount of the liquid raw material (L) is excessive with respect to the flow rate of the carrier gas (H) as described above, {burst boiling ■ scattering of liquid raw material ■ evaporation of scattered droplets ■ bumping} is repeated. As a result, the pressure in the vaporization chamber (13) fluctuates greatly. At the same time, the rise in pressure in the vaporization chamber (13) causes a reduction in the vaporization rate, which hinders the smooth vaporization of the liquid raw material (L). Further, the pressure fluctuation causes the pressure fluctuation in the reaction chamber (B), and the fluctuation of the concentration of the raw material gas caused by the fluctuation causes the thickness of the film on the semiconductor wafer to vary, Due to the scattering and adhesion, a spot (spot) is generated on the wafer surface, which is a major cause of wafer defects.
【0013】また、前記不安定な液体原料(L)の気化に
よって。反応室(B)内の圧力に変動が生じ、これがプラ
ズマの不安定性をもたらすことになり、半導体製品の不
良率を高めてしまう大きな原因となっていた。By vaporization of the unstable liquid raw material (L). The pressure in the reaction chamber (B) fluctuates, which causes instability of plasma, which is a major cause of increasing the defective rate of semiconductor products.
【0014】[0014]
【発明が解決しようとする課題】本発明の課題の第1は
供給された液体原料の気化・蒸発に際して、液体原料の
供給量が増加しても安定的に気化できるようにすること
にあり、第2は安定的気化を図ることにより、半導体製
造装置の安定的な運転を確保し、半導体製品の不良率を
低減させ、歩留まりを向上させることにある。The first object of the present invention is to enable stable vaporization of the supplied liquid raw material even when the supply amount of the liquid raw material increases, in vaporizing and evaporating the supplied liquid raw material. Secondly, stable vaporization is ensured to ensure stable operation of the semiconductor manufacturing apparatus, reduce the defective rate of semiconductor products, and improve the yield.
【0015】[0015]
【課題を解決するための手段】本発明の液体原料用気化
供給方法は、 液体原料(L)を気化室(13)に一定流量供給すると共
に気化室(13)に搬送ガス(H)を供給して、気化室(13)に
滲出して来た前記液体原料(L)を蒸発・気化させ、 搬送ガス(H)と気化した原料ガスの混合ガス(Kn)を
反応室(B)に供給する液体原料用気化供給方法におい
て、 液体原料(L)が滲出してくる液出口(23a)に向かって
搬送ガス(H)を高速で吹き付け、液出口(23a)近傍の搬送
ガス(H)の流速を高めて液出口(23a)近傍を減圧状態にす
る事によって液体原料(L)の蒸発・気化を促進する事を
特徴とする。The method for vaporizing and supplying a liquid raw material according to the present invention is to supply a constant flow rate of a liquid raw material (L) to a vaporization chamber (13) and to supply a carrier gas (H) to the vaporization chamber (13). Then, the liquid raw material (L) that has exuded into the vaporization chamber (13) is evaporated and vaporized, and a mixed gas (Kn) of the carrier gas (H) and the vaporized raw material gas is supplied to the reaction chamber (B). In the vaporization and supply method for liquid raw materials, the carrier gas (H) is sprayed at a high speed toward the liquid outlet (23a) from which the liquid raw material (L) exudes, and the carrier gas (H) in the vicinity of the liquid outlet (23a) is discharged. It is characterized in that the evaporation / vaporization of the liquid raw material (L) is promoted by increasing the flow velocity and reducing the pressure in the vicinity of the liquid outlet (23a).
【0016】搬送ガス(H)は液出口(23a)に向かって噴き
出されている。これにより、液出口(23a)近傍の空間か
ら気化した原料ガスが取り去られ、原料ガスの圧力の分
圧が低減し、液体原料(L)の気化が著しく促進されるこ
とになる。気化した原料ガスは、搬送ガス(H)と均一に
混じりあって混合ガス(Kn)となり、混合ガス流出路(15)
から流出して反応室(B)に供給される。The carrier gas (H) is ejected toward the liquid outlet (23a). As a result, the vaporized source gas is removed from the space near the liquid outlet (23a), the partial pressure of the source gas is reduced, and the vaporization of the liquid source (L) is significantly promoted. The vaporized raw material gas is uniformly mixed with the carrier gas (H) to form a mixed gas (Kn), and the mixed gas outflow path (15)
And is supplied to the reaction chamber (B).
【0017】請求項2は前記方法を実施するための第1
実施例で、 液体原料(L)を気化室(13)に供給する液出口(23a)
と、 供給された液体原料(L)を蒸発・気化させる気化室
(13)と、 搬送ガス(H)を気化室(13)に開口せる液出口(23a)に
噴射する搬送ガス噴射ノズル(4)と、 気化した原料ガスと搬送ガス(H)とを気化室(13)か
ら反応室(B)に供給する混合ガス排出口(15a)とで構成さ
れた事を特徴とする。 ここでは搬送ガス(H)の噴出は、搬送ガス噴射ノズル(4)
によって行われる事になる。Claim 2 is a first for carrying out the method.
In the embodiment, the liquid outlet (23a) for supplying the liquid raw material (L) to the vaporization chamber (13)
And a vaporization chamber that evaporates and vaporizes the supplied liquid raw material (L)
(13), a carrier gas injection nozzle (4) for injecting the carrier gas (H) into the liquid outlet (23a) opening to the vaporization chamber (13), and the vaporized source gas and carrier gas (H) in the vaporization chamber. It is characterized in that it is composed of a mixed gas discharge port (15a) supplied from (13) to the reaction chamber (B). Here, the carrier gas (H) is ejected from the carrier gas injection nozzle (4).
Will be done by.
【0018】請求項3は前記方法を実施するための第2
実施例で、 液体原料(L)を気化室(13)に供給する液出口(23a)
と、 供給された液体原料(L)を蒸発・気化させる気化室
(13)と、 搬送ガス(H)を気化室(13)に供給する搬送ガス供給
口(14a)と、 前記液出口(23a)に近接・離間して液出口(23a)との
間隙(S)を限定して液出口(23a)上の搬送ガス(H)の流速
を高めるダイアフラム(4A)と、 気化した原料ガスと搬送ガス(H)とを気化室(13)か
ら反応室(B)に供給する混合ガス排出口(15a)とで構成さ
れた事を特徴とする。 ここでは、ダイアフラム(4A)によって間隙(S)が限定さ
れ、搬送ガス(H)の流速が高められる。Claim 3 is a second for carrying out the method.
In the embodiment, the liquid outlet (23a) for supplying the liquid raw material (L) to the vaporization chamber (13)
And a vaporization chamber that evaporates and vaporizes the supplied liquid raw material (L)
(13), a carrier gas supply port (14a) for supplying the carrier gas (H) to the vaporization chamber (13), and a gap (S) between the liquid outlet (23a) and the liquid outlet (23a). ) To increase the flow rate of the carrier gas (H) on the liquid outlet (23a) and the vaporized source gas and carrier gas (H) from the vaporization chamber (13) to the reaction chamber (B). And a mixed gas discharge port (15a) for supplying to Here, the gap (S) is limited by the diaphragm (4A), and the flow velocity of the carrier gas (H) is increased.
【0019】請求項4は請求項2,3を限定したもの
で、 液出口(23a)内に、液出口(23a)よりやや細い液絡部
挿入突起(9)を配設して液出口(23a)の内周と液絡部挿入
突起(9)の外周との間に液体原料滲出用の微細間隙(10)
を形成し、液出口(23a)の近傍にロッドヒータ(22)を設
置してなる事を特徴とする。 これにより、微細間隙(10)を通って液出口(23a)に滲出
する液体原料(L)の体積は非常に小さくなり、従って、
ヒータ(22)による加熱が容易であってムラなく且つ十分
に加熱される事になる。その結果、前記搬送ガス(H)の
噴出と相俟って流量が増えた場合でも液体原料(L)の迅
速な気化が達成される。これに加えて、液体原料(L)の
気化時に発生する周囲の温度低下に対して効果的な熱の
供給がなされ、周囲温度の低下を防止して、液体原料
(L)の気化を促進する。A fourth aspect of the present invention is limited to the second and third aspects, in which the liquid outlet (23a) is provided with a liquid junction insertion protrusion (9) slightly thinner than the liquid outlet (23a). Fine gap (10) for exuding the liquid material between the inner circumference of 23a) and the outer circumference of the liquid junction insertion protrusion (9)
And a rod heater (22) is installed near the liquid outlet (23a). As a result, the volume of the liquid raw material (L) that exudes through the fine gap (10) to the liquid outlet (23a) becomes extremely small, and therefore,
The heating by the heater (22) is easy, uniform and sufficient. As a result, the rapid vaporization of the liquid raw material (L) can be achieved even when the flow rate increases in combination with the ejection of the carrier gas (H). In addition to this, effective heat supply is performed against the ambient temperature drop that occurs when the liquid raw material (L) is vaporized, preventing the ambient temperature from dropping, and
Promotes vaporization of (L).
【0020】[0020]
【実施例】本発明は、液体気化供給器(LMFC)の気化供給
部(VS)に関するものであり、図1にその第1実施例の半
断面図を示す。本発明の構成概略図は図5に示した通り
である。以下、本発明を図示実施例に従って詳述する。
図1の気化供給部(VS)において、ハウジングブロック(1
1)の上面に開閉用アクチュエータ(25)が設置されてお
り、下面には流量制御室閉塞フランジ(16)を介して流量
制御用アクチュエータ(17)が設置されている。ハウジン
グブロック(11)には、上面に開口する取付孔(18)が穿設
されていて開閉用アクチュエータ(25)の取付部が装着さ
れており、開閉用アクチュエータ(25)に接続された気化
器開閉弁(12)の弁体(3)が挿入されている。取付孔(18)
の底の部分が気化室(13)となっており、搬送ガス流入路
(14)と混合ガス流出路(15)が接続されており、その搬送
ガス供給口(14a)と混合ガス排出口(15a)が気化室(13)に
それぞれ開口している。開閉用アクチュエータ(25)は例
えば空圧式アクチュエータで構成されている。一方、流
量制御用アクチュエータ(17)は、例えば、積層圧電素
子、あるいは電磁ソレノイド等で構成されている。BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a vaporization supply section (VS) of a liquid vaporization feeder (LMFC), and FIG. 1 shows a half sectional view of the first embodiment. The schematic configuration diagram of the present invention is as shown in FIG. Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
In the vaporization supply unit (VS) of FIG. 1, the housing block (1
The opening / closing actuator (25) is installed on the upper surface of (1), and the flow control actuator (17) is installed on the lower surface via the flow control chamber closing flange (16). The housing block (11) is provided with a mounting hole (18) opening on the upper surface and is mounted with a mounting portion for the opening / closing actuator (25), and the carburetor connected to the opening / closing actuator (25). The valve body (3) of the on-off valve (12) is inserted. Mounting hole (18)
The bottom part of the is a vaporization chamber (13), and the carrier gas inflow path
The (14) and the mixed gas outflow passage (15) are connected to each other, and the carrier gas supply port (14a) and the mixed gas discharge port (15a) thereof are opened to the vaporization chamber (13), respectively. The opening / closing actuator (25) is composed of, for example, a pneumatic actuator. On the other hand, the flow rate control actuator (17) is composed of, for example, a laminated piezoelectric element, an electromagnetic solenoid, or the like.
【0021】気化室(13)の下方には、ハウジングブロッ
ク(11)の下面に開口する流量制御室(6)が穿設されてお
り、流量制御室(6)と気化室(13)とは隔壁(19)に穿設さ
れた液絡部(23)によって連通している。ハウジングブロ
ック(11)の下面には制御用ダイアフラム(20)を有する流
量制御室閉塞フランジ(16)が液密状態に固着されてい
る。流量制御室(6)には制御弁体(8)が収納されており、
その上端に突設された液絡部挿入突起(9)が液絡部(23)
に挿入され、液絡部(23)の内周と液絡部挿入突起(9)の
外周との間に微細間隙(10)が形成されている。制御弁体
(8)の下面には突起(8a)が突設されており、前記制御用
ダイアフラム(20)に当接している。Below the vaporization chamber (13), a flow rate control chamber (6) that opens to the lower surface of the housing block (11) is provided. The flow rate control chamber (6) and the vaporization chamber (13) are separated from each other. The liquid junction (23) provided in the partition (19) communicates with each other. A flow control chamber closing flange (16) having a control diaphragm (20) is fixed to the lower surface of the housing block (11) in a liquid-tight state. The control valve body (8) is housed in the flow rate control chamber (6),
The liquid junction insertion protrusion (9) protruding from the upper end of the liquid junction (23)
And a fine gap (10) is formed between the inner periphery of the liquid junction (23) and the outer periphery of the liquid junction insertion protrusion (9). Control valve
A projection (8a) is provided on the lower surface of the (8) and is in contact with the control diaphragm (20).
【0022】制御弁体(8)の側面の上半分は細径に形成
されており、細径部分にコイルバネ(21)が挿入されてい
て、制御弁体(8)を制御用ダイアフラム(20)側に押圧付
勢している。制御弁体(8)の上面には液絡部挿入突起(9)
の周囲を取り囲むようにリング状シール突起(8a)が突設
されており、隔壁(19)の下面に当接・離間するようにな
っている。流量制御用アクチュエータ(17)のプランジャ
(17a)は制御用ダイアフラム(20)の下面に当接してお
り、制御用ダイアフラム(20)を介して制御弁体(8)を駆
動するようになっている。The upper half of the side surface of the control valve body (8) is formed to have a small diameter, and the coil spring (21) is inserted in the small diameter portion, so that the control valve body (8) is controlled by the control diaphragm (20). It is biased to the side. On the upper surface of the control valve body (8), the liquid junction insertion protrusion (9)
A ring-shaped seal projection (8a) is provided so as to surround the periphery of the partition wall (9a) so as to come into contact with and separate from the lower surface of the partition wall (19). Plunger for flow control actuator (17)
(17a) is in contact with the lower surface of the control diaphragm (20), and drives the control valve body (8) via the control diaphragm (20).
【0023】隔壁(19)には液絡部(23)の近傍にロッドヒ
ータ(22)と温度センサ(24)とが埋設されており、隔壁(1
9)部分の温度を一定に保ち、液体原料(L)を加熱するよ
うになっている。流量計測部(LM)と気化供給部(VS)と
は、液入口継手(5a)を介して接続されており、液体原料
(L)が流量制御室(6)に流入するようになっている。搬送
ガス流入路(14)内には、先端部分がしぼられ且つ先端部
分が液出口(23a)に向けられた搬送ガス噴射ノズル(4)が
配設されている。先端部分の曲げ角度を(θ)で示す。
(図2,4) 搬送ガス(H)には、例えばヘリウム単体や他のガスの混
合ガスが使用される。A rod heater (22) and a temperature sensor (24) are embedded in the partition wall (19) in the vicinity of the liquid junction (23).
9) The temperature of the part is kept constant and the liquid raw material (L) is heated. The flow rate measurement unit (LM) and vaporization supply unit (VS) are connected via the liquid inlet joint (5a),
(L) flows into the flow control chamber (6). In the carrier gas inflow path (14), a carrier gas injection nozzle (4) having a squeezed tip and a tip directed toward the liquid outlet (23a) is arranged. The bending angle of the tip portion is indicated by (θ).
(FIGS. 2 and 4) As the carrier gas (H), for example, helium simple substance or a mixed gas of other gases is used.
【0024】而して、前述同様、ヘリウムや窒素などの
不活性ガス(F)を原料タンク(T)の上部空間に供給して原
料タンク(T)内の気圧を上げ、内部の液体原料(L)を液体
用気化供給器(LMFC)に供給する。液体用気化供給器(LMF
C)の流量計測部(LM)ではセンサ管(1)とバイパス管(2)に
液体原料(L)が分流して流れ、センサ管(1)の流量を計測
することにより、バイパス管(2)を含めた全流量を測定
する事が出来る。流量計測部(LM)を出た液体原料(L)
は、液体流入通路(5)を経て流量制御室(6)に入り、制御
弁体(8)と隔壁(19)との間を通って液絡部(23)の微細間
隙(10)に入り、毛細管現象で気化室(13)に開口している
液出口(23a)に滲出してくる。As described above, the inert gas (F) such as helium or nitrogen is supplied to the upper space of the raw material tank (T) to increase the atmospheric pressure in the raw material tank (T) to increase the internal liquid raw material ( L) is supplied to the liquid vaporizer (LMFC). Liquid vaporizer (LMF
In the flow rate measuring unit (LM) of C), the liquid raw material (L) flows into the sensor pipe (1) and the bypass pipe (2) in a branched manner, and by measuring the flow rate of the sensor pipe (1), the bypass pipe (2) It is possible to measure the total flow rate including). Liquid raw material (L) exiting the flow rate measuring unit (LM)
Enters the flow rate control chamber (6) through the liquid inflow passage (5), passes between the control valve body (8) and the partition wall (19), and enters the fine gap (10) of the liquid junction (23). , And oozes out to the liquid outlet (23a) opening in the vaporization chamber (13) due to the capillary phenomenon.
【0025】前記滲出液体原料(L)の流出量は制御弁体
(8)の開度で決まり、前記開度は流量制御用アクチュエ
ータ(17)によって制御される。閉塞時は気化器開閉弁(1
2)を動作させ、液出口(23a)を閉塞するようになってい
る。The outflow amount of the exuding liquid raw material (L) is controlled by the control valve body.
It is determined by the opening of (8), and the opening is controlled by the flow control actuator (17). When closed, the carburetor open / close valve (1
2) is operated to close the liquid outlet (23a).
【0026】搬送ガス(H)は搬送ガス噴射ノズル(4)を通
って液出口(23a)に向かって噴き出しているが、これに
より、液出口(23a)近傍の空間から気化した原料ガスが
取り去られ、原料ガスの圧力の分圧が低減し、その結
果、液体原料(L)が著しく促進されることになる。The carrier gas (H) is ejected toward the liquid outlet (23a) through the carrier gas injection nozzle (4), whereby the vaporized raw material gas is taken from the space near the liquid outlet (23a). The partial pressure of the raw material gas is reduced, and as a result, the liquid raw material (L) is significantly promoted.
【0027】同時に、液絡部(23)の微細間隙(10)を通っ
て液出口(23a)に滲出する液体原料(L)は、前記ロッドヒ
ータ(22)によって加熱されるが、液絡部(23)に液絡部挿
入突起(9)に挿入されているために微細間隙(10)を通過
する液体原料(L)への伝熱は容易に行われ、従って、ム
ラなく且つ十分に加熱されて液出口(23a)に滲出し、前
記搬送ガス(H)の噴出と相俟って流量が増えた場合でも
液体原料(L)の迅速な気化が達成される。At the same time, the liquid raw material (L) exuding to the liquid outlet (23a) through the fine gap (10) of the liquid junction (23) is heated by the rod heater (22), Since it is inserted in the liquid junction insertion protrusion (9) in (23), heat can be easily transferred to the liquid raw material (L) that passes through the fine gap (10), and therefore it can be heated evenly and sufficiently. Even when the flow rate of the liquid raw material (L) is increased by being exuded to the liquid outlet (23a) and jetted of the carrier gas (H), the rapid vaporization of the liquid raw material (L) is achieved.
【0028】また、液体原料(L)が気化する場合、隔壁
(19)並びにその周囲雰囲気から気化熱を奪い、温度が低
下しようとするが(温度低下は液体原料(L)の気化を妨
げる。)、ロッドヒータ(22)によって迅速に熱の供給が
なされ、隔壁(19)並びに周囲温度の低下を防止して、液
体原料(L)の気化を促進する。気化した原料ガスは、例
えばヘリウムなどの搬送ガス(H)と均一に混じりあって
混合ガス(Kn)となり、混合ガス流出路(15)から流出して
反応室(B)に供給される。Further, when the liquid raw material (L) is vaporized, a partition wall
(19) The heat of vaporization is taken from the ambient atmosphere and its surroundings, and the temperature tends to decrease (the temperature decrease hinders vaporization of the liquid raw material (L)), but the heat is rapidly supplied by the rod heater (22), The partition wall (19) and the ambient temperature are prevented from lowering to promote vaporization of the liquid raw material (L). The vaporized raw material gas is uniformly mixed with a carrier gas (H) such as helium to form a mixed gas (Kn), which flows out of the mixed gas outflow passage (15) and is supplied to the reaction chamber (B).
【0029】図3は、搬送ガス噴射ノズル(4)の代わり
に、ダイアフラム(4A)を使用した例で、弁体(3)の下面
を包むように配設してあり、弁体(3)の昇降によってダ
イアフラム(4A)と液出口(23a)との間隙(S)を規定してい
る。間隙(S)に向かって流入した搬送ガス(H)は、狭い間
隙(S)を通過する際に流速を増し、搬送ガス噴射ノズル
(4)と同様の効果を発揮する。FIG. 3 shows an example in which a diaphragm (4A) is used instead of the carrier gas injection nozzle (4), and the diaphragm (4A) is arranged so as to enclose the lower surface of the valve body (3). By raising and lowering, the gap (S) between the diaphragm (4A) and the liquid outlet (23a) is defined. The carrier gas (H) flowing into the gap (S) increases its flow velocity when passing through the narrow gap (S), and the carrier gas injection nozzle
It has the same effect as (4).
【0030】(実験例)搬送ガス噴出ノズル(4)として、
内径0.5mm、長さ20mmの毛細管を使用し、先端
が液出口(23a)を向くように曲げた。使用した液体原料
(L)はTEOS(Tetra Ethyl Ortho Silicate)であ
り、図8,9のように0.2g/分,0.4g/分,0.6g
/分,0.8g/分,1.0g/分の5段階に分けて実験を
行った。搬送ガス(H)は窒素ガスを使用し、その流量は
1リットル/分であった。恒温層(A1)内の温度は90〜
100°Cに設定した。これによると、従来装置では、
図10に示すように0.2g/分の段階では混合ガス排出
路(15)側の圧力変動を生じないが、0.4g/分になると
僅かに圧力変動が見られ、次第に増大し、1.0g/分に
なると使用不可能な程度に圧力変動が生じた。一方、本
発明では図9に示すように0.2g/分,0.4g/分,
0.6g/分,0.8g/分,1.0g/分の5段階すべてに
おいて圧力変動が生じず、良好な結果を得た。(Experimental example) As the carrier gas ejection nozzle (4),
A capillary tube having an inner diameter of 0.5 mm and a length of 20 mm was used, and it was bent so that its tip end faced the liquid outlet (23a). Liquid raw material used
(L) is TEOS (Tetra Ethyl Ortho Silicate), which is 0.2 g / min, 0.4 g / min, 0.6 g as shown in FIGS.
The experiment was carried out by dividing into 5 stages of / min, 0.8 g / min, and 1.0 g / min. Nitrogen gas was used as the carrier gas (H), and the flow rate was 1 liter / min. The temperature in the constant temperature layer (A1) is 90 ~
It was set to 100 ° C. According to this, in the conventional device,
As shown in FIG. 10, the pressure fluctuation on the side of the mixed gas discharge passage (15) does not occur at the stage of 0.2 g / min, but at 0.4 g / min, a slight pressure fluctuation is observed, and gradually increases and becomes 1 At 0.0 g / min, pressure fluctuations occurred to an unusable degree. On the other hand, in the present invention, as shown in FIG. 9, 0.2 g / min, 0.4 g / min,
Good results were obtained with no pressure fluctuations in all of the five stages of 0.6 g / min, 0.8 g / min, and 1.0 g / min.
【0031】[0031]
【効果】本発明によれば、搬送ガスが液出口に向かって
噴き出されているので、液出口近傍の空間から気化した
原料ガスが取り去られ、原料ガスの圧力の分圧が低減
し、液体原料の気化が著しく促進されることになり、そ
の結果、液体原料の供給量が増大しても円滑に気化・蒸
発させる事が出来る。更に、液体原料が微細間隙を通過
するので、液体は、迅速にムラなく且つ十分に加熱出来
前記搬送ガスの噴出と相俟って流量が増えた場合でも液
体原料の迅速な気化が達成される。According to the present invention, since the carrier gas is jetted toward the liquid outlet, the vaporized raw material gas is removed from the space near the liquid outlet, and the partial pressure of the raw material gas is reduced. The vaporization of the liquid raw material is significantly promoted, and as a result, the liquid raw material can be vaporized and evaporated smoothly even if the supply amount of the liquid raw material is increased. Furthermore, since the liquid raw material passes through the minute gaps, the liquid can be rapidly and sufficiently heated, and the rapid vaporization of the liquid raw material can be achieved even when the flow rate is increased in combination with the jet of the carrier gas. .
【図1】本発明の液体原料用気化供給器の気化供給部の
半断面図FIG. 1 is a half cross-sectional view of a vaporization supply section of a liquid source vaporization supply device of the present invention.
【図2】図1の気化室部分の部分拡大断面図FIG. 2 is a partially enlarged sectional view of a vaporization chamber portion of FIG.
【図3】本発明の気化室部分の他の実施例の部分拡大断
面図FIG. 3 is a partially enlarged cross-sectional view of another embodiment of the vaporization chamber portion of the present invention.
【図4】本発明の搬送ガス噴射ノズルと液出口部分の関
係を示す部分拡大図FIG. 4 is a partially enlarged view showing a relationship between a carrier gas injection nozzle and a liquid outlet portion of the present invention.
【図5】液体原料用気化供給器を用いた場合の構成概略
図FIG. 5 is a schematic configuration diagram when a vaporizer for liquid raw material is used.
【図6】従来の液体原料用気化供給器の断面図FIG. 6 is a sectional view of a conventional vaporizer for liquid raw materials.
【図7】図6のX−X断面図7 is a sectional view taken along line XX of FIG.
【図8】従来例における突沸状態を示す要部拡大断面図FIG. 8 is an enlarged sectional view of an essential part showing a bumping state in a conventional example.
【図9】本発明の液体原料用気化供給器による気化時の
反応室の圧力変動グラフFIG. 9 is a pressure fluctuation graph of the reaction chamber during vaporization by the vaporizer for liquid raw material of the present invention.
【図10】従来例の液体原料用気化供給器による気化時
の反応室の圧力変動グラフFIG. 10 is a graph showing pressure fluctuations in the reaction chamber during vaporization by the vaporizer for liquid raw material of the conventional example.
(13)…気化室 (23a)…液出口 (L)…液体原料 (LMFC)…液体原料用気化供給器 (H)…搬送ガス (13) ... Vaporization chamber (23a) ... Liquid outlet (L) ... Liquid raw material (LMFC) ... Liquid raw material vaporizer (H) ... Carrier gas
Claims (4)
に供給すると共に気化室に搬送ガスを供給して、気化室
に滲出して来た前記液体原料を蒸発・気化させ、搬送ガ
スと気化した原料ガスの混合ガスを反応室に供給する液
体原料用気化供給方法において、 液体原料が滲出してくる液出口に向かって搬送ガスを高
速で吹き付け、液出口近傍の搬送ガスの流速を高める事
によって液体原料の蒸発・気化を促進する事を特徴とす
る液体原料用気化供給方法。1. A liquid raw material whose flow rate is controlled is supplied to a vaporization chamber and a carrier gas is supplied to the vaporization chamber to vaporize and vaporize the liquid raw material that has exuded into the vaporization chamber, and vaporize the carrier gas. In the vaporization and supply method for a liquid raw material that supplies a mixed gas of raw material gases to the reaction chamber, by blowing the carrier gas at a high speed toward the liquid outlet from which the liquid raw material seeps out, and increasing the flow velocity of the carrier gas near the liquid outlet. A vaporization and supply method for a liquid raw material, which is characterized by promoting evaporation and vaporization of the liquid raw material.
に供給する液出口と、供給された液体原料を蒸発・気化
させる気化室と、搬送ガスを気化室に開口せる液出口に
噴射する搬送ガス噴射ノズルと、気化した原料ガスと搬
送ガスとを気化室から反応室に供給する混合ガス排出口
とで構成された事を特徴とする液体原料用気化供給器。2. A liquid outlet for supplying a liquid raw material whose flow rate is controlled to a vaporization chamber, a vaporization chamber for evaporating and vaporizing the supplied liquid raw material, and a carrier gas for injecting a carrier gas to a liquid outlet opened to the vaporization chamber. A vaporizer for a liquid raw material, comprising an injection nozzle and a mixed gas discharge port for supplying a vaporized raw material gas and a carrier gas from a vaporization chamber to a reaction chamber.
に供給する液出口と、供給された液体原料を蒸発・気化
させる気化室と、搬送ガスを気化室に供給する搬送ガス
供給口と、前記液出口に近接・離間して液出口との間隙
を限定して液出口上の搬送ガスの流速を高めるダイアフ
ラムと、気化した原料ガスと搬送ガスとを気化室から反
応室に供給する混合ガス排出口とで構成された事を特徴
とする液体原料用気化供給器。3. A liquid outlet for supplying a liquid raw material whose flow rate is controlled to a vaporization chamber, a vaporization chamber for evaporating and vaporizing the supplied liquid raw material, a carrier gas supply port for feeding a carrier gas to the vaporization chamber, A diaphragm that increases the flow velocity of the carrier gas above the liquid outlet by limiting the gap between the liquid outlet and the liquid outlet, and the mixed gas exhaust that supplies the vaporized source gas and carrier gas from the vaporization chamber to the reaction chamber. A vaporizer for liquid raw materials, characterized in that it is configured with an outlet.
液絡部挿入突起を配設して液出口の内周と液絡部挿入突
起の外周との間に液体原料滲出用の間隙を形成し、液出
口の近傍にヒータを設置してなる事を特徴とする請求項
2又は3に記載の液体原料用気化供給器。4. A liquid junction insertion protrusion slightly thinner than the liquid outlet is provided in the liquid outlet to form a gap for exuding the liquid raw material between the inner periphery of the liquid outlet and the outer periphery of the liquid junction insertion protrusion. The liquid source vaporizer according to claim 2 or 3, wherein a heater is installed near the liquid outlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27771093A JP3278265B2 (en) | 1993-10-07 | 1993-10-07 | Vaporizer and supply method for liquid raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27771093A JP3278265B2 (en) | 1993-10-07 | 1993-10-07 | Vaporizer and supply method for liquid raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07106254A true JPH07106254A (en) | 1995-04-21 |
JP3278265B2 JP3278265B2 (en) | 2002-04-30 |
Family
ID=17587241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27771093A Expired - Lifetime JP3278265B2 (en) | 1993-10-07 | 1993-10-07 | Vaporizer and supply method for liquid raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3278265B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100649852B1 (en) * | 1999-09-09 | 2006-11-24 | 동경 엘렉트론 주식회사 | Semiconductor manufacturing system having a vaporizer which efficiently vaporizes a liquid material |
JP2015039001A (en) * | 2014-09-18 | 2015-02-26 | 株式会社渡辺商行 | Vaporizer |
KR20170097427A (en) * | 2016-02-18 | 2017-08-28 | 삼성전자주식회사 | Vaporizer and thin film deposition apparatus having the same |
-
1993
- 1993-10-07 JP JP27771093A patent/JP3278265B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100649852B1 (en) * | 1999-09-09 | 2006-11-24 | 동경 엘렉트론 주식회사 | Semiconductor manufacturing system having a vaporizer which efficiently vaporizes a liquid material |
JP2015039001A (en) * | 2014-09-18 | 2015-02-26 | 株式会社渡辺商行 | Vaporizer |
KR20170097427A (en) * | 2016-02-18 | 2017-08-28 | 삼성전자주식회사 | Vaporizer and thin film deposition apparatus having the same |
Also Published As
Publication number | Publication date |
---|---|
JP3278265B2 (en) | 2002-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5419924A (en) | Chemical vapor deposition method and apparatus therefore | |
KR20210024429A (en) | Film-forming material mixed-gas forming device and film forming device | |
US7827932B2 (en) | Vaporizer and processor | |
TW476994B (en) | Semiconductor manufacturing system having a vaporizer which efficiently vaporizes a liquid material | |
JP2004140328A (en) | Gas supply system and treatment system | |
JPH06291040A (en) | Method and apparatus for vaporizing and supplying liquid | |
US8393599B2 (en) | Apparatus for liquid precursor atomization | |
JPH0828332B2 (en) | Liquid evaporation device | |
US6424800B1 (en) | Bubbler | |
WO2007097024A1 (en) | Vaporizer, semiconductor production apparatus and process of semiconductor production | |
WO2010038515A1 (en) | Vaporizer and deposition system using the same | |
KR101431290B1 (en) | Liquid material vaporizer | |
JPH0795527B2 (en) | Vaporizer for liquid raw materials | |
TW201303971A (en) | Vaporizer, gas supply device and film formation apparatus | |
US6006701A (en) | Vaporizer in a liquid material vaporizing and feeding apparatus | |
JPH11269653A (en) | Liquid material vaporizer | |
JPH07106254A (en) | Device and method for vaporization and supply equipment for liquid raw material | |
JP2009239297A (en) | Processing system | |
US11274367B2 (en) | Vaporizer | |
JP2005113221A (en) | Vaporizer, and liquid vaporization feeder using the same | |
KR101773038B1 (en) | Depositing apparatus having vaporizer and depositing method | |
JP4044810B2 (en) | Gas supply device for surface treatment | |
TW201730366A (en) | Vapor emission device and film forming apparatus | |
TWI699495B (en) | Vaporizer | |
JPH03126872A (en) | Liquid semiconductor forming material vaporization supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090215 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090215 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20100215 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110215 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120215 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130215 |
|
EXPY | Cancellation because of completion of term |