[go: up one dir, main page]

JPH07105960A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH07105960A
JPH07105960A JP5251524A JP25152493A JPH07105960A JP H07105960 A JPH07105960 A JP H07105960A JP 5251524 A JP5251524 A JP 5251524A JP 25152493 A JP25152493 A JP 25152493A JP H07105960 A JPH07105960 A JP H07105960A
Authority
JP
Japan
Prior art keywords
air passage
cooling air
cooling
plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5251524A
Other languages
Japanese (ja)
Inventor
Osamu Tajima
収 田島
Kunihiro Nakato
邦弘 中藤
Kenichi Hiromi
健一 廣實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5251524A priority Critical patent/JPH07105960A/en
Publication of JPH07105960A publication Critical patent/JPH07105960A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell which can enhance the power generating effi ciency as a whole by lessening the pressure loss at each cooling plate, and reducing the power of an auxiliary unit required when air is to be pressure fed to the cooling plates. CONSTITUTION:A fuel cell concerned is so structured that a cell element 8, where an anode 6 and a cathode 7 are arranged with an electrolyte 5 interposed, and separators 11, 12, 15 are laminated and that a cooling plate 1 equipped with a plurality of cooling air passages 3 partitioned by ribs 2 is inserted per certain number of cell elements 8. In the middle stream of each air passage 3 in the cooling plate 1, heat conducting members 4 less tall than the ribs 2 are furnished in parallel with the ribs 2, and the abovementioned anode 6 and cathode 7 are located on the oversurface and undersurface of the laminate mating with this middle stream of air passage 3 where the heat conducting members 4 are extending.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空冷式燃料電池に関し、
詳しくはその冷却プレートの改良に関するものである。
FIELD OF THE INVENTION The present invention relates to an air-cooled fuel cell,
Specifically, it relates to improvement of the cooling plate.

【0002】[0002]

【従来の技術】燃料電池は供給されるガスの化学エネル
ギーを、直接電気エネルギーに変換する装置であって、
現在では、リン酸型燃料電池、溶融炭酸塩型燃料電池、
固体電解質型燃料電池等の研究が盛んに行われており、
高い発電効率が期待されている。 図5は従来の空冷式
燃料電池の断面斜視図であり、図6は図5に示した空冷
式燃料電池の冷却プレートの要部拡大図である。従来の
空冷式燃料電池は、図5に示すように、電解質51を介
してアノード52及びカソード53を配したセル54
と、セパレータ55とを積層させ、複数の冷却空気通路
56を形成した冷却プレート57を数セル54毎に介挿
した構造である。ここで、電池反応(発電)を行うと、
セル発電に起因する反応熱等により電池温度が上昇する
ので、電池を冷却して最適温度で運転を行う必要があ
る。従来は、冷却プレート57の冷却空気通路56から
空気を流して、発電体であるセル54と熱交換を行って
電池を冷却していた。この場合、セル54の反応熱は、
図6に示すように、リブ58等を伝って伝導するため、
冷却空気通路56内の温度は、壁面部56aでは高く、
中心部56bでは低くなっている。したがって、冷却空
気通路56の壁面部56aを流れる空気は熱交換に利用
されるが、中心部56bを流れる空気が熱交換にほとん
ど寄与しないので、熱交換効率が悪いという問題があっ
た。
2. Description of the Related Art A fuel cell is a device for directly converting chemical energy of supplied gas into electric energy.
Currently, phosphoric acid fuel cells, molten carbonate fuel cells,
Research on solid oxide fuel cells etc. is actively conducted,
High power generation efficiency is expected. FIG. 5 is a cross-sectional perspective view of a conventional air-cooled fuel cell, and FIG. 6 is an enlarged view of a main part of a cooling plate of the air-cooled fuel cell shown in FIG. As shown in FIG. 5, a conventional air-cooled fuel cell has a cell 54 in which an anode 52 and a cathode 53 are arranged via an electrolyte 51.
And a separator 55 are laminated, and a cooling plate 57 having a plurality of cooling air passages 56 formed therein is inserted in every several cells 54. Here, when the battery reaction (power generation) is performed,
Since the battery temperature rises due to reaction heat and the like caused by cell power generation, it is necessary to cool the battery and operate it at an optimum temperature. Conventionally, air is made to flow from the cooling air passage 56 of the cooling plate 57 to exchange heat with the cells 54 that are power generators to cool the battery. In this case, the reaction heat of the cell 54 is
As shown in FIG. 6, since conduction is performed through the ribs 58 and the like,
The temperature in the cooling air passage 56 is high on the wall surface portion 56a,
It is low at the central portion 56b. Therefore, although the air flowing through the wall surface portion 56a of the cooling air passage 56 is used for heat exchange, the air flowing through the central portion 56b hardly contributes to the heat exchange, which causes a problem of poor heat exchange efficiency.

【0003】この問題を解決するために、図7及び図8
に示すような構造の冷却プレートが提案されている。図
7は従来の冷却プレートの平面図であり、図8は図7に
示した冷却プレートのX−X線断面図である。この冷却
プレート70は、リブ71によって仕切られた複数の冷
却空気通路72を有し、リブ71とリブ71の間にフィ
ン73を設けた構造である。この冷却プレート70は、
冷却空気通路72の壁面部に集中していたセルの反応熱
を、熱伝導体であるフィン73を介して中心部にも分散
させることにより、従来、ほとんど熱交換に寄与してい
なかった冷却空気通路72の中心部を流れる空気を利用
して、熱交換効率の向上を図ろうとするものである。
In order to solve this problem, FIG. 7 and FIG.
There has been proposed a cooling plate having a structure as shown in FIG. FIG. 7 is a plan view of a conventional cooling plate, and FIG. 8 is a sectional view taken along line XX of the cooling plate shown in FIG. The cooling plate 70 has a plurality of cooling air passages 72 partitioned by ribs 71 and fins 73 are provided between the ribs 71. This cooling plate 70 is
The reaction heat of the cells, which has been concentrated on the wall surface portion of the cooling air passage 72, is dispersed to the central portion via the fin 73 which is a heat conductor, so that the cooling air that has hardly contributed to the heat exchange in the past. The air flowing through the center of the passage 72 is used to improve the heat exchange efficiency.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来の
冷却プレート70は、各冷却空気通路72に設けたフィ
ン73が、図7に示すように、冷却空気通路の下流部7
2aにまで延設されているので、空気を下流部72aま
で圧送する際の圧力損失が大きくなる。そのため、空気
を圧送する際に要する補機動力が増大する。燃料電池で
は、通常、燃料電池発電により得た電力の一部が補機動
力の駆動に使用されるため、補機動力の増大は結果とし
て燃料電池の発電効率の低下を招くことになる。
However, in the above-described conventional cooling plate 70, the fins 73 provided in each cooling air passage 72 have the downstream portion 7 of the cooling air passage as shown in FIG.
Since it is extended to 2a, the pressure loss when pumping air to the downstream portion 72a becomes large. Therefore, the auxiliary machine power required when air is pressure-fed increases. In the fuel cell, since a part of the electric power obtained by the fuel cell power generation is usually used to drive the auxiliary machine power, an increase in the auxiliary machine power results in a decrease in the power generation efficiency of the fuel cell.

【0005】本発明は、かかる現状に鑑みてなされたも
のであり、冷却プレートでの圧力損失を小さくすること
により冷却プレートに空気を圧送する際に要する補機動
力の低減を図り、全体として発電効率を向上させること
が可能な燃料電池を提供することを目的としている。
The present invention has been made in view of the above circumstances, and reduces the pressure loss in the cooling plate to reduce the power of the auxiliary machine required when pumping air to the cooling plate, and to generate electricity as a whole. It is an object of the present invention to provide a fuel cell capable of improving efficiency.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本請求項1の発明は、電解質を介してアノード及び
カソードを配したセルと、アノードガス通路及び/又は
カソードガス通路を形成したセパレータとを積層し、リ
ブによって仕切られた複数の冷却空気通路を有する冷却
プレートを数セル毎に介挿した構造の燃料電池におい
て、前記冷却プレートの各冷却空気通路の中流部に、リ
ブよりも低い高さの熱伝導部材を該リブと平行に延設
し、且つ、該熱伝導部材が延設される冷却空気通路の中
流部と対応する積層上下面にアノード及びカソードを夫
々配置したことを特徴としている。
In order to achieve the above object, the invention of claim 1 forms a cell in which an anode and a cathode are arranged through an electrolyte and an anode gas passage and / or a cathode gas passage. In a fuel cell having a structure in which a separator and a cooling plate having a plurality of cooling air passages partitioned by ribs are inserted every several cells, in the middle part of each cooling air passage of the cooling plate, a A heat conducting member having a low height is extended in parallel with the ribs, and an anode and a cathode are arranged on the upper and lower surfaces of the stack corresponding to the midstream portion of the cooling air passage in which the heat conducting member is extended. It has a feature.

【0007】また、本請求項2の発明は、前記冷却プレ
ートは、熱伝導率が異なる少なくとも2以上のプレート
で構成され、且つ、熱伝導部材が設けられない冷却空気
通路の上流部を構成するプレートの熱伝導率が、熱伝導
部材が設けられる冷却空気通路の中流部を構成するプレ
ートの熱伝導率よりも小さいことを特徴としている。
According to the second aspect of the present invention, the cooling plate is composed of at least two plates having different thermal conductivities, and constitutes the upstream portion of the cooling air passage in which the heat conducting member is not provided. It is characterized in that the heat conductivity of the plate is smaller than the heat conductivity of the plate forming the midstream portion of the cooling air passage in which the heat conducting member is provided.

【0008】[0008]

【作用】上記本請求項1の発明の構成によれば、アノー
ド及びカソードは冷却空気通路の中流部と対応する積層
上下面に配置されている。即ち、冷却空気通の上流部及
び下流部に対応する位置にはアノード及びカソードが何
れも配置されていないので、セル発電に伴う反応熱は冷
却空気通路の中流部に専ら集中し、上流部及び下流部に
はセルの反応熱は伝導しにくい。本請求項1の発明で
は、セルの反応熱が伝導しにくい冷却空気通路の下流部
には熱伝導部材を設けていないので、従来のように、熱
伝導部材を下流部にまで延設する場合に比べて、空気を
圧送する際の圧力損失が小さくなる。その結果、空気を
圧送する際に要する補機動力も低減するので、燃料電池
全体としての発電効率が向上する。
According to the structure of the invention of claim 1, the anode and the cathode are arranged on the upper and lower surfaces of the stack corresponding to the midstream portion of the cooling air passage. That is, since neither the anode nor the cathode is arranged at the positions corresponding to the upstream portion and the downstream portion of the cooling air passage, the reaction heat accompanying the cell power generation is concentrated in the middle portion of the cooling air passage, and The reaction heat of the cell is difficult to conduct to the downstream portion. In the invention of claim 1, since the heat conducting member is not provided in the downstream portion of the cooling air passage in which the reaction heat of the cell is difficult to be conducted, when the heat conducting member is extended to the downstream portion as in the conventional case. Compared with, the pressure loss when pumping air is smaller. As a result, the auxiliary machine power required to pump air is also reduced, so that the power generation efficiency of the fuel cell as a whole is improved.

【0009】また、冷却空気通路の上流部は、上述の如
くセルの反応熱が伝導しにくいのに加えて、熱交換に寄
与する前の比較的低温の空気が流れるため温度が低くな
りすぎる。本請求項2の発明によれば、この冷却空気通
路の上流部は、熱伝導度が小さいプレートで構成されて
いるので、当該部分でのセルの反応熱が逃げにくくな
り、その分温度低下が抑制される。一方、セルの反応熱
が集中するため温度が高くなりすぎる冷却空気通路の中
流部は、上流部よりも熱伝導度が大きいプレートで構成
されているので、当該部分でのセルの反応熱が逃げやす
くなり、その分温度上昇が抑制される。これらの結果、
冷却プレートの温度格差が抑制され、電池面内温度が均
一化する。
Further, in the upstream portion of the cooling air passage, the reaction heat of the cell is difficult to be conducted as described above, and in addition, relatively low temperature air before contributing to heat exchange flows, so that the temperature becomes too low. According to the invention of claim 2, since the upstream portion of the cooling air passage is formed of the plate having a small thermal conductivity, the reaction heat of the cell in the portion is less likely to escape, and the temperature is reduced accordingly. Suppressed. On the other hand, since the reaction heat of the cell is concentrated and the temperature of the cooling air passage becomes too high, the middle part of the cooling air passage is composed of a plate with higher thermal conductivity than the upstream part, so the reaction heat of the cell at that part escapes. It becomes easier and the temperature rise is suppressed accordingly. These results,
The temperature difference between the cooling plates is suppressed, and the in-plane temperature of the battery is made uniform.

【0010】[0010]

【実施例】図1は本発明の一実施例に係る燃料電池の冷
却プレートの平面図であり、図2は図1に示した冷却プ
レートの上流部及び下流部のA−A線断面図であり、図
3は図1に示した冷却プレートの中流部のB−B線断面
図である。この冷却プレート1は、複数のリブ2によっ
て略等間隔に仕切られた複数の冷却空気通路3を有し、
各冷却空気通路3の空気の流路方向であって上流部3a
と下流部3bとを除いた中流部3cには、熱伝導部材と
してのフィン4が延設されている。このフィン4は、図
3に示すように、リブ2とリブ2とによって仕切られた
冷却空気通路3の略中央に形成され、該フィン4の高さ
(h)は各冷却空気通路3を仕切っているリブ2の高さ
(H)よりも低くなるように設けられている(H>
h)。これは、フィン4の高さ(h)が高くなれば、そ
れだけ冷却空気通路3を流れる空気の圧力損失が増大す
るためであり、フィン4の高さ(h)はリブ2の高さ
(H)の1/2程度になるように設けるのが好ましい。
また、フィン4の材質は特に限定はなく、冷却プレート
1やリブ2と同一の材料で構成してもよく、またこれら
と熱伝導度が異なる材料で構成することも可能である。
1 is a plan view of a cooling plate of a fuel cell according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA of an upstream portion and a downstream portion of the cooling plate shown in FIG. FIG. 3 is a sectional view taken along the line BB of the midstream portion of the cooling plate shown in FIG. This cooling plate 1 has a plurality of cooling air passages 3 partitioned by a plurality of ribs 2 at substantially equal intervals,
Upstream portion 3a in the direction of the air flow path of each cooling air passage 3
A fin 4 as a heat conduction member is extended in the middle-flow portion 3c except the downstream portion 3b. As shown in FIG. 3, the fins 4 are formed substantially in the center of the cooling air passages 3 partitioned by the ribs 2 and the height (h) of the fins 4 separates the cooling air passages 3. It is provided so as to be lower than the height (H) of the rib 2 (H>
h). This is because the higher the height (h) of the fins 4 is, the more the pressure loss of the air flowing through the cooling air passage 3 is increased, and the height (h) of the fins 4 is the height (H) of the ribs 2. It is preferable to provide it so as to be about 1/2 of
Further, the material of the fins 4 is not particularly limited, and may be made of the same material as the cooling plate 1 or the ribs 2, or may be made of a material having a thermal conductivity different from those of these.

【0011】図4は図1〜図3に示した冷却プレート1
を用いた燃料電池の断面斜視図(一部破断面)である。
この燃料電池は、電解質マトリックス5を介してアノー
ド6及びカソード7を配したセル8と、アノードガス通
路9及びカソードガス通路10を形成したバイポーラプ
レート11とを複数積層し、且つ、一方の面にはアノー
ドガス通路9を形成したハーフプレート12が接着され
ており、他方の面にはカソードガス通路10を形成した
ハーフプレート15が接着された冷却プレート1を数セ
ル8毎に介挿した構造である。
FIG. 4 shows the cooling plate 1 shown in FIGS.
FIG. 3 is a cross-sectional perspective view (partially broken surface) of a fuel cell using
In this fuel cell, a cell 8 in which an anode 6 and a cathode 7 are arranged via an electrolyte matrix 5 and a bipolar plate 11 in which an anode gas passage 9 and a cathode gas passage 10 are formed are laminated, and one surface is formed. Has a structure in which a cooling plate 1 having a half plate 12 having an anode gas passage 9 bonded thereto and having a half plate 15 having a cathode gas passage 10 bonded to the other surface thereof is inserted every several cells 8. is there.

【0012】前記セル8は、炭化ケイ素から成る電解質
マトリックス5を介して、カーボンペーパに白金触媒を
担持させたアノード6及びカソード7を配した構造であ
り、前記アノード6の外周側にはガスをシールするため
のアノードシム13が設けられ、前記カソード7の外周
側にも、前記アノードシム13と同様にガスをシールす
るためのカソードシム14が設けられている。ここで、
アノード6及びカソード7は、図1に示した冷却プレー
ト1のフィン4が設けられる冷却空気通路の中流部3c
と対応する積層上下面に夫々配置され、この中流部3c
を除いた冷却空気通路の上流部3a及び下流部3bに対
応する積層上下面には、アノードシム13及びカソード
シム14が夫々配置されている。
The cell 8 has a structure in which an anode 6 and a cathode 7 supporting a platinum catalyst on carbon paper are arranged via an electrolyte matrix 5 made of silicon carbide, and gas is provided on the outer peripheral side of the anode 6. An anode shim 13 for sealing is provided, and a cathode shim 14 for sealing gas is provided on the outer peripheral side of the cathode 7 as in the case of the anode shim 13. here,
The anode 6 and the cathode 7 are the middle portion 3c of the cooling air passage in which the fins 4 of the cooling plate 1 shown in FIG. 1 are provided.
Are respectively arranged on the upper and lower surfaces of the stack corresponding to
Anode shims 13 and cathode shims 14 are arranged on the upper and lower surfaces of the stack corresponding to the upstream portion 3a and the downstream portion 3b of the cooling air passage except for the above.

【0013】以下、上記の如く構成された燃料電池にお
ける電池の冷却について説明する。前述したように、ア
ノード6及びカソード7は、冷却空気通路の中流部3c
と対応する位置に配置され、冷却空気通路の上流部3a
及び下流部3bと対応する位置には配置されていないの
で、セル発電に伴う反応熱は冷却空気通路の中流部3c
に集中する。この冷却空気通路の中流部3cにはフィン
4が延設されているので、前記反応熱はリブ2壁面部だ
けでなく、冷却空気通路3の中心部にも分散される。
The cooling of the cell in the fuel cell constructed as described above will be described below. As described above, the anode 6 and the cathode 7 are connected to the middle portion 3c of the cooling air passage.
And the upstream portion 3a of the cooling air passage arranged at a position corresponding to
Since it is not arranged at a position corresponding to the downstream portion 3b and the downstream portion 3b, the heat of reaction caused by cell power generation is generated in the middle portion 3c of the cooling air passage.
Concentrate on. Since the fins 4 are extended in the midstream portion 3c of the cooling air passage, the reaction heat is dispersed not only in the wall surface portion of the rib 2 but also in the central portion of the cooling air passage 3.

【0014】次に、冷却空気通路の上流部3aから空気
を流すと、リブ2壁面部を流れる空気はリブ2壁面部と
熱交換を行ない、冷却空気通路3の中心部を流れる空気
は前記フィン4と熱交換を行う。したがって、従来、熱
交換にほとんど寄与していなかった冷却空気通路3の中
心部を流れる空気が熱交換に利用されるので、熱交換効
率が向上する。
Next, when air is made to flow from the upstream portion 3a of the cooling air passage, the air flowing through the wall surface of the rib 2 exchanges heat with the wall surface portion of the rib 2 and the air flowing through the central portion of the cooling air passage 3 has the fins. Heat exchange with 4. Therefore, since the air flowing through the central portion of the cooling air passage 3 which has hardly contributed to the heat exchange in the past is used for the heat exchange, the heat exchange efficiency is improved.

【0015】続いて、冷却空気通路の中流部3cで熱交
換を行った後の排空気は、冷却空気通路の下流部3bを
経て電池外に排出される。ここで、前記冷却空気通路の
下流部3bには、フィン4が設けられていないので、排
空気の圧力損失が小さくなる。 ところで、冷却プレー
ト1を1枚のプレートで構成したが、例えば、熱伝導率
が異なる複数のプレートで構成することも可能である。
但し、この場合は、フィン4が設けられない冷却空気通
路の上流部3aを構成するプレートの熱伝導率を、フィ
ン4が設けられる冷却空気通路の中流部3cを構成する
プレートの熱伝導率よりも小さくする必要がある。具体
的には、フィン4が設けられない冷却空気通路の上流部
3aを熱伝導率が40〜50Kcal/m.h.℃であるカ
ーボンプレートで構成し、フィン4が設けられる冷却空
気通路の中流部3c及びフィン4が設けられない冷却空
気通路の下流部3bを熱伝導率が120〜130Kcal/
m.h.℃であるカーボンプレートで構成した冷却プレ
ートを使用することができる。このように構成すれば、
温度が低くなりすぎる冷却空気通路の上流部3aでセル
8の反応熱が逃げにくくなるため温度が上昇し、温度か
高くなりすぎる冷却空気通路の中流部3cでセル8の反
応熱が逃げやすくなるため温度が低下する。また、冷却
空気通路の下流部3bを、冷却空気通路の上流部3aと
同一の熱伝導率を有するプレートに変えることも可能で
ある。尚、このような冷却プレートは既知の方法によっ
て製造することができるが、例えば、鋳型に上記2種類
のカーボンの粉末を入れてプレスする等の方法によって
製造することができる。
Subsequently, the exhaust air after heat exchange in the midstream portion 3c of the cooling air passage is discharged to the outside of the battery through the downstream portion 3b of the cooling air passage. Here, since the fins 4 are not provided in the downstream portion 3b of the cooling air passage, the pressure loss of the exhaust air becomes small. By the way, although the cooling plate 1 is composed of one plate, it may be composed of a plurality of plates having different thermal conductivities, for example.
However, in this case, the thermal conductivity of the plate that constitutes the upstream portion 3a of the cooling air passage in which the fins 4 are not provided is greater than the thermal conductivity of the plate that constitutes the midstream portion 3c of the cooling air passage in which the fins 4 are provided. Also needs to be small. Specifically, the thermal conductivity of the upstream portion 3a of the cooling air passage where the fins 4 are not provided is 40 to 50 Kcal / m. h. The thermal conductivity of the middle portion 3c of the cooling air passage provided with the fins 4 and the downstream portion 3b of the cooling air passage not provided with the fins 4 is 120 to 130 Kcal /
m. h. It is possible to use a cooling plate composed of a carbon plate which is at ° C. With this configuration,
The reaction heat of the cell 8 becomes difficult to escape in the upstream portion 3a of the cooling air passage where the temperature becomes too low, so that the temperature rises, and the reaction heat of the cell 8 easily escapes in the middle portion 3c of the cooling air passage where the temperature becomes too high. Therefore, the temperature decreases. It is also possible to replace the downstream portion 3b of the cooling air passage with a plate having the same thermal conductivity as the upstream portion 3a of the cooling air passage. Although such a cooling plate can be manufactured by a known method, for example, it can be manufactured by a method in which the above-mentioned two kinds of carbon powders are put into a mold and pressed.

【0016】また、上記実施例によれば、また、アノー
ド6及びカソード7を設ける位置が、従来よりも中央部
にシフトするので、電池面内温度の低温部の温度も高温
側にシフトし、電池面内温度格差が抑制される。
Further, according to the above-mentioned embodiment, since the position where the anode 6 and the cathode 7 are provided is shifted to the central portion as compared with the conventional case, the temperature of the low temperature portion of the in-plane temperature of the battery is also shifted to the high temperature side. The temperature difference within the battery surface is suppressed.

【0017】[0017]

【発明の効果】以上の本請求項1の発明によれば、アノ
ード及びカソードは冷却空気通路の中流部と対応する積
層上下面に配置されている。即ち、冷却空気通の上流部
及び下流部に対応する位置にはアノード及びカソードが
何れも配置されていないので、セル発電に伴う反応熱は
冷却空気通路の中流部に専ら集中し、上流部及び下流部
にはセルの反応熱は伝導しにくい。本請求項1の発明で
は、セルの反応熱が伝導しにくい冷却空気通路の下流部
には熱伝導部材を設けていないので、従来のように、熱
伝導部材を下流部にまで延設する場合に比べて、空気を
圧送する際の圧力損失が小さくなる。その結果、空気を
圧送する際に要する補機動力も低減するので、燃料電池
全体としての発電効率が向上する。
As described above, according to the first aspect of the present invention, the anode and the cathode are arranged on the upper and lower surfaces of the stack corresponding to the midstream portion of the cooling air passage. That is, since neither the anode nor the cathode is arranged at the positions corresponding to the upstream portion and the downstream portion of the cooling air passage, the reaction heat accompanying the cell power generation is concentrated in the middle portion of the cooling air passage, and The reaction heat of the cell is difficult to conduct to the downstream portion. In the invention of claim 1, since the heat conducting member is not provided in the downstream portion of the cooling air passage in which the reaction heat of the cell is difficult to be conducted, when the heat conducting member is extended to the downstream portion as in the conventional case. Compared with, the pressure loss when pumping air is smaller. As a result, the auxiliary machine power required to pump air is also reduced, so that the power generation efficiency of the fuel cell as a whole is improved.

【0018】また、冷却空気通路の上流部は、上述の如
くセルの反応熱が伝導しにくいのに加えて、熱交換に寄
与する前の比較的低温の空気が流れるため温度が低くな
りすぎる。本請求項2の発明によれば、この冷却空気通
路の上流部は、熱伝導度が小さいプレートで構成されて
いるので、当該部分でのセルの反応熱が逃げにくくな
り、その分温度低下が抑制される。一方、セルの反応熱
が集中するため温度が高くなりすぎる冷却空気通路の中
流部は、上流部よりも熱伝導度が大きいプレートで構成
されているので、当該部分でのセルの反応熱が逃げやす
くなり、その分温度上昇が抑制される。これらの結果、
冷却プレートの温度格差が抑制され、電池面内温度が均
一化する。
In addition, in the upstream portion of the cooling air passage, the reaction heat of the cell is difficult to be conducted as described above, and the temperature is too low because relatively low temperature air before it contributes to heat exchange flows. According to the invention of claim 2, since the upstream portion of the cooling air passage is formed of the plate having a small thermal conductivity, the reaction heat of the cell in the portion is less likely to escape, and the temperature is reduced accordingly. Suppressed. On the other hand, since the reaction heat of the cell is concentrated and the temperature of the cooling air passage becomes too high, the middle part of the cooling air passage is composed of a plate with higher thermal conductivity than the upstream part, so the reaction heat of the cell at that part escapes. It becomes easier and the temperature rise is suppressed accordingly. These results,
The temperature difference between the cooling plates is suppressed, and the in-plane temperature of the battery is made uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る燃料電池の冷却プレー
トの平面図である。
FIG. 1 is a plan view of a cooling plate of a fuel cell according to an exemplary embodiment of the present invention.

【図2】図1に示した冷却プレートの上流部及び下流部
のA−A線断面図である。
FIG. 2 is a cross-sectional view taken along line AA of the upstream portion and the downstream portion of the cooling plate shown in FIG.

【図3】図1に示した冷却プレートの中流部のB−B線
断面図である。
FIG. 3 is a cross-sectional view taken along the line BB of the midstream portion of the cooling plate shown in FIG.

【図4】図1〜図3に示した冷却プレートを用いた燃料
電池の断面斜視図(一部破断面)である。
4 is a sectional perspective view (partially broken section) of a fuel cell using the cooling plate shown in FIGS. 1 to 3. FIG.

【図5】従来の空冷式燃料電池の断面斜視図である。FIG. 5 is a cross-sectional perspective view of a conventional air-cooled fuel cell.

【図6】図5に示した空冷式燃料電池の冷却プレートの
要部拡大図である。
6 is an enlarged view of a main part of a cooling plate of the air-cooled fuel cell shown in FIG.

【図7】従来の冷却プレートの平面図である。FIG. 7 is a plan view of a conventional cooling plate.

【図8】図7に示した冷却プレートのX−X線断面図で
ある。
8 is a cross-sectional view taken along line XX of the cooling plate shown in FIG.

【符号の説明】[Explanation of symbols]

1 冷却プレート 2 リブ 3 冷却空気通路 4 熱伝導部材 5 電解質 6 アノード 7 カソード 8 セル 9 アノードガス通路 10 カソードガス通路 11・12・15 セパレータ 13 アノードシム 14 カソードシム 1 Cooling Plate 2 Rib 3 Cooling Air Passage 4 Heat Conducting Member 5 Electrolyte 6 Anode 7 Cathode 8 Cell 9 Anode Gas Passage 10 Cathode Gas Passage 11 ・ 12 ・ 15 Separator 13 Anode Shim 14 Cathode Shim

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質を介してアノード及びカソードを
配したセルと、アノードガス通路及び/又はカソードガ
ス通路を形成したセパレータとを積層し、リブによって
仕切られた複数の冷却空気通路を有する冷却プレートを
数セル毎に介挿した構造の燃料電池において、 前記冷却プレートの各冷却空気通路の中流部に、リブよ
りも低い高さの熱伝導部材を該リブと平行に延設し、且
つ、該熱伝導部材が延設される冷却空気通路の中流部と
対応する積層上下面にアノード及びカソードを夫々配置
したことを特徴とする燃料電池。
1. A cooling plate having a plurality of cooling air passages which are stacked by stacking a cell in which an anode and a cathode are arranged via an electrolyte and a separator in which an anode gas passage and / or a cathode gas passage is formed, and which are partitioned by ribs. In a fuel cell having a structure in which every several cells are inserted, a heat conducting member having a height lower than that of a rib is provided in parallel with the rib at a midstream portion of each cooling air passage of the cooling plate, and A fuel cell, wherein an anode and a cathode are respectively arranged on the upper and lower surfaces of the stack corresponding to the midstream portion of the cooling air passage through which the heat conduction member is extended.
【請求項2】 前記冷却プレートは、熱伝導率が異なる
少なくとも2以上のプレートで構成され、且つ、熱伝導
部材が設けられない冷却空気通路の上流部を構成するプ
レートの熱伝導率が、熱伝導部材が設けられる冷却空気
通路の中流部を構成するプレートの熱伝導率よりも小さ
いことを特徴とする請求項1記載の燃料電池。
2. The cooling plate is composed of at least two plates having different thermal conductivities, and the thermal conductivity of the plate constituting the upstream part of the cooling air passage in which the heat conducting member is not provided is 2. The fuel cell according to claim 1, wherein the heat conductivity of the plate is smaller than that of a plate forming a midstream portion of the cooling air passage provided with the conductive member.
JP5251524A 1993-10-07 1993-10-07 Fuel cell Pending JPH07105960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5251524A JPH07105960A (en) 1993-10-07 1993-10-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5251524A JPH07105960A (en) 1993-10-07 1993-10-07 Fuel cell

Publications (1)

Publication Number Publication Date
JPH07105960A true JPH07105960A (en) 1995-04-21

Family

ID=17224096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5251524A Pending JPH07105960A (en) 1993-10-07 1993-10-07 Fuel cell

Country Status (1)

Country Link
JP (1) JPH07105960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387425A1 (en) * 2002-07-30 2004-02-04 General Electric Company Improved fluid passages for power generation equipment
WO2005053072A1 (en) * 2003-11-28 2005-06-09 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2011022336A (en) * 2009-07-15 2011-02-03 Fuji Xerox Co Ltd Image forming apparatus
CN106165172A (en) * 2014-03-31 2016-11-23 智慧能量有限公司 Coldplate for fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387425A1 (en) * 2002-07-30 2004-02-04 General Electric Company Improved fluid passages for power generation equipment
US7011904B2 (en) 2002-07-30 2006-03-14 General Electric Company Fluid passages for power generation equipment
WO2005053072A1 (en) * 2003-11-28 2005-06-09 Toyota Jidosha Kabushiki Kaisha Fuel cell
JPWO2005053072A1 (en) * 2003-11-28 2007-08-23 トヨタ自動車株式会社 Fuel cell
DE112004002313B4 (en) * 2003-11-28 2011-09-15 Toyota Jidosha Kabushiki Kaisha fuel cell
JP4956000B2 (en) * 2003-11-28 2012-06-20 トヨタ自動車株式会社 Fuel cell stack
JP2011022336A (en) * 2009-07-15 2011-02-03 Fuji Xerox Co Ltd Image forming apparatus
CN106165172A (en) * 2014-03-31 2016-11-23 智慧能量有限公司 Coldplate for fuel cell
JP2022037045A (en) * 2014-03-31 2022-03-08 インテリジェント エナジー リミテッド Fuel battery cooling plate

Similar Documents

Publication Publication Date Title
US7482087B2 (en) Fuel cell
US7022430B2 (en) Compact fuel cell with improved fluid supply
US7799480B2 (en) Fuel cell stack with dummy cell
US6294280B1 (en) Fuel cell stack
CA2446540C (en) Fuel cell stack with electrically conductive corrugated heat insulation plate
US8574778B2 (en) Fuel cell stack
US8778553B2 (en) Fuel cell
US20090042075A1 (en) Fuel Cell Stack
US20090053570A1 (en) Fuel cell stack for low temperature start-up and operation
US7169496B2 (en) Fuel Cell
US7846613B2 (en) Fuel cell with separator having a ridge member
US7572538B2 (en) Fuel cell
JPH06251790A (en) Fuel cell
JP2003132911A (en) Fuel cell
JP5354023B2 (en) Fuel cell stack
JP2008251236A (en) Flat lamination type fuel cell
US6723463B2 (en) Fuel cell stack having terminal element located at specified location
JP4726186B2 (en) Fuel cell stack
JPH07105960A (en) Fuel cell
JP4040863B2 (en) Fuel cell stack
EP1162681A2 (en) Cooling of a fuel cell system
JP2610255B2 (en) Molten carbonate fuel cell
JP4432291B2 (en) Fuel cell
US20240204215A1 (en) Fuel cell stack
JPH05151980A (en) Cooling plate of fuel cell