[go: up one dir, main page]

JPH07105955A - Electrode base material and its manufacture - Google Patents

Electrode base material and its manufacture

Info

Publication number
JPH07105955A
JPH07105955A JP5246973A JP24697393A JPH07105955A JP H07105955 A JPH07105955 A JP H07105955A JP 5246973 A JP5246973 A JP 5246973A JP 24697393 A JP24697393 A JP 24697393A JP H07105955 A JPH07105955 A JP H07105955A
Authority
JP
Japan
Prior art keywords
boron
fiber
base material
temperature
electrode base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5246973A
Other languages
Japanese (ja)
Other versions
JP3608669B2 (en
Inventor
Hiroaki Yoneyama
弘明 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP24697393A priority Critical patent/JP3608669B2/en
Publication of JPH07105955A publication Critical patent/JPH07105955A/en
Application granted granted Critical
Publication of JP3608669B2 publication Critical patent/JP3608669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a base material for electrode which excels in the electrical conductivity in the direction of thickness of the electrode and the resistance against thermal oxidation and to offer a method for manufacturing the base material. CONSTITUTION:A base material for electrode consists of a composite of carbon fiber or graphite fiber and a carbon matrix. At least either of the boron and boric compound is included in the carbon fiber/graphite fiber solely or in both of the fiber and matrix in the content of 0.01-5.0wt.% in boron conversion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナトリウム−硫黄型等の
二次電池や燐酸型等の燃料電池又は有機化合物の電気分
解、電気分解による合成、酸化、還元反応等の電気分解
槽等に幅広く用いられる電極基材及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is widely applied to sodium-sulfur type secondary batteries, phosphoric acid type fuel cells, electrolysis of organic compounds, electrolysis synthesis, oxidation and reduction reactions, etc. The present invention relates to an electrode base material used and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、新型二次電池を用いて夜間等の余
剰電力を貯蔵し、それを昼間の需要増大時に対応しよう
とする、電気需要の平準化の試みや、新規エネルギー開
拓の一貫として、燃料電池の開発が進み何れも実証テス
トの段階にきている。これら何れの電池の電極基材には
高温特性、電気伝導性、耐薬品性、耐熱酸化性に優れる
等の理由で炭素繊維が利用されているが、炭素繊維の電
導性は確かに繊維軸方向には優れるが断面方向には必ず
しも高くはない。しかも強度との関係で繊維長を長くす
ると得られる成型物は面方向に配列しやすく、電極基材
の厚み方向の電導性は劣るものであった。一方電力貯蔵
用二次電池、及び発電用燃料電池の作動温度は200〜
400℃と高く電解質等との耐熱酸化性等も不十分であ
った。
2. Description of the Related Art Recently, a new type of secondary battery is used to store surplus power at night and to cope with the increase in demand during the daytime. The development of fuel cells is progressing, and both are in the stage of verification test. Carbon fiber is used for the electrode base material of any of these batteries because of its excellent high-temperature characteristics, electrical conductivity, chemical resistance, and thermal oxidation resistance, but the electrical conductivity of carbon fiber is certainly the axial direction of the fiber. However, it is not necessarily high in the cross-sectional direction. In addition, the molded product obtained by increasing the fiber length in relation to the strength was easily arranged in the plane direction, and the electrical conductivity in the thickness direction of the electrode base material was poor. On the other hand, the operating temperature of the secondary battery for power storage and the fuel cell for power generation is 200-
The temperature was as high as 400 ° C., and the thermal oxidation resistance with electrolytes was insufficient.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来の電極基
材の問題点を解消し、電極の厚み方向の電導性及び耐熱
酸化性に優れた電極基材及びその製造方法の提供を課題
とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems of the conventional electrode base material and to provide an electrode base material excellent in electrical conductivity in the thickness direction of the electrode and thermal oxidation resistance and a method for producing the same. To do.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するために以下の手段をとる。すなわち、本発明の第1
の要旨は、炭素繊維又は黒鉛繊維−炭素複合材料からな
る電極基材であり、電極基材中の炭素繊維又は黒鉛繊維
のみ、或いはマトリックス炭素の両方に、ホウ素に換算
して0.01〜5.0wt%のホウ素及びホウ素化合物
の少なくとも1種を含有することを特徴とする電極基材
にあり、
The present invention adopts the following means in order to solve the above problems. That is, the first aspect of the present invention
The gist of is an electrode base material composed of a carbon fiber or a graphite fiber-carbon composite material. Only carbon fiber or graphite fiber in the electrode base material, or both of the matrix carbon, is 0.01 to 5 in terms of boron. In an electrode base material characterized by containing at least one of 0.0 wt% boron and a boron compound,

【0005】第2の要旨は、ホウ素を含有する炭素繊維
又は黒鉛繊維の短繊維と、ホウ素及びホウ素化合物と、
熱硬化樹脂及び細孔調節剤、並びに必要に応じて水又は
有機溶媒とを混練りし、金型を用いて所定形状に成型
し、脱溶剤後、加圧加熱硬化し、更に不活性雰囲気中で
1000℃以上の温度で熱処理することを特徴とする電
極基材の製造方法にあり、
A second gist of the present invention is a short fiber of carbon fiber or graphite fiber containing boron, boron and a boron compound,
A thermosetting resin, a pore control agent, and optionally water or an organic solvent are kneaded, molded into a predetermined shape using a mold, desolvated, and then pressure-heated and cured, and further in an inert atmosphere. In a method for manufacturing an electrode base material, which is characterized by performing a heat treatment at a temperature of 1000 ° C. or higher at

【0006】第3の要旨は、炭素繊維又は黒鉛繊維の短
繊維からなるシート状物を、ホウ素及びホウ素化合物を
含有する熱硬化性樹脂溶液中に含浸し、脱溶剤後、所定
の厚さに積層し熱硬化させ、更に不活性雰囲気中で10
00℃以上の温度で熱処理することを特徴とする電極基
材の製造方法にあり、
The third gist is to impregnate a thermosetting resin solution containing boron and a boron compound with a sheet-like material composed of short fibers of carbon fiber or graphite fiber, remove the solvent, and then bring it to a predetermined thickness. Laminate and heat cure, then 10 in an inert atmosphere
There is a method for manufacturing an electrode base material, which is characterized by performing heat treatment at a temperature of 00 ° C. or higher,

【0007】更に第4の要旨は、耐炎繊維からなるシー
ト状物に、ホウ素及びホウ素化合物を含浸させ、更に不
活性雰囲気中で1000℃以上の温度で熱処理すること
を特徴とする電極基材の製造方法にある。
Further, a fourth gist of the present invention relates to an electrode base material characterized in that a sheet-like material made of flame resistant fiber is impregnated with boron and a boron compound and further heat-treated at a temperature of 1000 ° C. or higher in an inert atmosphere. There is a manufacturing method.

【0008】本発明で用いるホウ素及びホウ素化合物は
ホウ素を含んでいれば特に限定されず、フッ化ホウ素、
ヨウ化ホウ素、酸化ホウ素、ペンタボラン、デカホラ
ン、オルトホウ酸、トリメチルホウ素、トリエチルホウ
素、トリフェニルホウ素等の有機溶剤可溶化合物等が挙
げられる。電極には酸化ホウ素、炭化ホウ素、窒化ホウ
素の形で含有する。本発明で含有させるホウ素及び/又
はホウ素化合物の量は、ホウ素に換算して、0.01〜
5.0wt%である。
The boron and the boron compound used in the present invention are not particularly limited as long as they contain boron, and boron fluoride,
Examples thereof include organic solvent-soluble compounds such as boron iodide, boron oxide, pentaborane, decaphorane, orthoboric acid, trimethylboron, triethylboron and triphenylboron. The electrodes contain boron oxide, boron carbide, and boron nitride. The amount of boron and / or the boron compound to be contained in the present invention is, in terms of boron, 0.01 to
It is 5.0 wt%.

【0009】0.01wt%未満の場合目的とする効果
を達成させることが困難であり、5.0wt%を越えて
含有させても効果は飽和し、得られる製品は粗剛となり
好ましくない。
If it is less than 0.01 wt%, it is difficult to achieve the intended effect, and if it exceeds 5.0 wt%, the effect is saturated and the resulting product becomes coarse and rigid, which is not preferable.

【0010】本発明で用いる熱硬化性樹脂は常温におい
て粘着性或いは流動性を示す物で、フェノール樹脂、フ
ラン樹脂等が好ましく用いられる。フェノール樹脂とし
ては、アルカリ触媒存在下にフェノール類とアルデヒド
類の反応によって得られるレゾールタイプフェノール樹
脂を用いることが出来る。又レゾールタイプの流動性フ
ェノール樹脂に、公知の方法によって酸性触媒下にフェ
ノール類とアルデヒド類の反応によって生成する固体
の、熱融着性を示すリボラックタイプのフェノール樹脂
を溶解混入させることも出来るが、この場合は硬化材、
例えばヘキサメチレンジアミンを含有した、自己架橋タ
イプのものが好ましい。
The thermosetting resin used in the present invention is one which exhibits tackiness or fluidity at room temperature, and a phenol resin, furan resin or the like is preferably used. As the phenol resin, a resol type phenol resin obtained by reacting phenols and aldehydes in the presence of an alkali catalyst can be used. It is also possible to dissolve and mix a solid, heat-fusible ribolac-type phenol resin produced by the reaction of a phenol and an aldehyde under an acidic catalyst by a known method into a resol-type fluid phenol resin. But in this case a hardener,
For example, a self-crosslinking type containing hexamethylenediamine is preferable.

【0011】フェノール類としては、例えばフェノー
ル、レゾルシン、クレゾール、キシロール等が用いられ
る、アルデヒド類としては、例えばホルマリン、パラホ
ルムアルデヒド、フルフラール等が用いられる。又これ
らを混合物としても用いることができる。これらのフェ
ノール樹脂として市販品を利用することも可能である。
As the phenols, for example, phenol, resorcin, cresol, xylol, etc. are used, and as the aldehydes, formalin, paraformaldehyde, furfural, etc. are used. Also, these can be used as a mixture. It is also possible to use commercially available products as these phenolic resins.

【0012】フラン樹脂としては、フラン樹脂初期縮合
物を用いる。又、フラン樹脂としてはフルフリルアルコ
ール縮合物、フルフリルアルコール−フルフラール共縮
合物を用いられる、この場合フルフリルアルコール、或
いはフルフリルアルコール−フルフラール混合物に酸性
触媒を添加し、加熱して適度の粘度にした後、冷却して
用いるとよい。又これら初期縮合物から揮発あるいは中
和等の手段で常温で触媒活性を消去させて用いることも
出来る。
A furan resin initial condensate is used as the furan resin. Furan resin is a furfuryl alcohol condensate or a furfuryl alcohol-furfural cocondensate. In this case, a furfuryl alcohol or a furfuryl alcohol-furfural mixture is mixed with an acidic catalyst and heated to a suitable viscosity. It is recommended to cool after use. It is also possible to eliminate the catalytic activity from these initial condensates at room temperature by means such as volatilization or neutralization.

【0013】次に本発明の第2の要旨に係わる電極基材
の製造方法について説明する。先ずホウ素を含有する炭
素繊維又は黒鉛繊維を短繊維(好ましくは繊維長0.0
1〜10.0mm)とし、所定量のホウ素及びホウ素化
合物と所定量の熱硬化性樹脂及び細孔調節材として(好
ましくは粒子径200〜20μmの)有機系高分子を混
合して混練りする。この際混練りの流動性を高めるため
に有機溶剤または水を加えてもよい。混練り物を所定形
状の電極を得るため金型中に流し込み、脱溶剤し、加圧
化で加熱硬化する。更に不活性雰囲気中で1000℃以
上、好ましくは2000℃以上の温度で焼成することに
より本発明の電極基材を製造することができる。
Next, a method of manufacturing the electrode base material according to the second aspect of the present invention will be described. First, a carbon fiber or a graphite fiber containing boron is formed into a short fiber (preferably a fiber length of 0.0
1 to 10.0 mm), and a predetermined amount of boron and a boron compound, a predetermined amount of a thermosetting resin, and an organic polymer (preferably having a particle diameter of 200 to 20 μm) as a pore adjusting material are mixed and kneaded. . At this time, an organic solvent or water may be added to improve the fluidity of kneading. The kneaded product is poured into a mold to obtain an electrode having a predetermined shape, the solvent is removed, and pressure is applied to heat and cure. Further, the electrode base material of the present invention can be manufactured by firing at a temperature of 1000 ° C. or higher, preferably 2000 ° C. or higher in an inert atmosphere.

【0014】この製造方法では炭素繊維又は黒鉛繊維の
繊維長に応じて混合比を選定する必要がある。繊維長が
長くなるに従って繊維集合体の嵩密度が大きくなり、繊
維濃度を上げるのが困難となる。繊維長が短いと嵩密度
が小さく混練り時の炭素繊維濃度を上げることが出来る
が、得られる電極の嵩密度も大きくなり空隙が小さく、
強度も低下する傾向にある。繊維長が長いと嵩密度が大
きく、混練り時の炭素繊維濃度が上げられない。空隙が
大きくなりすぎ強度も低下する。従って繊維長の異なる
ものを適度の混合比で混合することが好ましい。適度の
多孔質構造と強度特性を満足するための望ましい炭素繊
維又は黒鉛繊維の混合比率は繊維長0.1mm以下で4
0〜20部 繊維長0.1〜2.0mmで30〜10部
繊維長3.0mm以上で10〜1部の範囲が好まし
い。
In this manufacturing method, it is necessary to select the mixing ratio according to the fiber length of carbon fiber or graphite fiber. As the fiber length increases, the bulk density of the fiber assembly increases, making it difficult to increase the fiber concentration. When the fiber length is short, the bulk density is small and the carbon fiber concentration during kneading can be increased, but the bulk density of the obtained electrode is also large and the voids are small,
The strength also tends to decrease. If the fiber length is long, the bulk density is large, and the carbon fiber concentration during kneading cannot be increased. The voids become too large and the strength also decreases. Therefore, it is preferable to mix fibers having different fiber lengths at an appropriate mixing ratio. The desirable mixing ratio of carbon fibers or graphite fibers to satisfy the appropriate porous structure and strength characteristics is 4 when the fiber length is 0.1 mm or less.
0 to 20 parts Fiber length 0.1 to 2.0 mm, 30 to 10 parts Fiber length 3.0 mm or more and 10 to 1 part are preferable.

【0015】細孔調節剤としては、粒子径200〜20
μmの有機系高分子が好適に用いられる。細孔調節剤の
粒子径が200μmより大きくなると、空隙率が増大す
ると共に、曲げ強度が低下の傾向を示す。粒子径が20
μmより小さくなるとガス透過性が減少する。細孔調節
剤の有機系高分子としては、加熱により解重合を生じる
有機系高分子が好ましい、これらの代表例としてはスチ
レン、α−メチルスチレン、ビニルトルエン等の芳香族
ビニル系単量体、メチルメタクリレート、エチルメタク
リレート、nブチルメタクリレート等のメタクリレート
系単量体の単独重合体、もしくはこれらの単量体単位を
51モル%以上と他の共重合可能な単量体49モル%以
下とからなる共重合体等が挙げられる。特にスチレン系
重合体、メチルメタクリレート系重合体が好ましい。こ
こで共重合可能な他の単量体の例としてはメチルメタク
リレート、エチルアクリレート、n−ブチルアクリレー
ト等のアクリレート系単量体及びアクリル酸、メタクリ
ル酸等が挙げられる。
The pore size controlling agent may have a particle size of 200 to 20.
A μm organic polymer is preferably used. When the particle size of the pore control agent is larger than 200 μm, the porosity increases and the bending strength tends to decrease. Particle size is 20
If it is less than μm, the gas permeability decreases. The organic polymer of the pore control agent is preferably an organic polymer that undergoes depolymerization by heating, typical examples of which are styrene, α-methylstyrene, vinyl aromatic monomers such as vinyltoluene, A homopolymer of a methacrylate-based monomer such as methyl methacrylate, ethyl methacrylate or n-butyl methacrylate, or 51 mol% or more of these monomer units and 49 mol% or less of another copolymerizable monomer. Examples thereof include copolymers. Particularly preferred are styrene polymers and methyl methacrylate polymers. Examples of other copolymerizable monomers include acrylate-based monomers such as methyl methacrylate, ethyl acrylate, and n-butyl acrylate, and acrylic acid and methacrylic acid.

【0016】細孔調節材の重合度は特に制限はないが、
適度の粒径の粉体又はフレーク状を得るためには比粘度
で0.1〜0.4好ましくは0.2〜0.3の範囲がよ
い。細孔調節材の混合比率は15〜85wt%の範囲が
好ましい。混合比率が15wt%未満の場合、空隙率が
小さくなり燃料電池の場合は燃料ガスの透過が少なくな
る。混合比率が85wt%を越えると空隙率が大きくな
り電極の強度が低下するので好ましくない。
The degree of polymerization of the pore control material is not particularly limited,
In order to obtain powder or flake having an appropriate particle diameter, the specific viscosity is preferably 0.1 to 0.4, and more preferably 0.2 to 0.3. The mixing ratio of the pore control material is preferably in the range of 15 to 85 wt%. When the mixing ratio is less than 15 wt%, the porosity becomes small, and in the case of a fuel cell, the permeation of fuel gas becomes small. If the mixing ratio exceeds 85 wt%, the porosity increases and the strength of the electrode decreases, which is not preferable.

【0017】ホウ素を含有する炭素繊維又は黒鉛繊維、
ホウ素及びホウ素化合物、熱硬化性樹脂、細孔調節材、
及び流動性を増すために必要に応じて用いるメタノー
ル、エタノール、アセトン及びメチルエチルケトン等の
有機溶剤の何れか又は混合溶剤を均一に混練りした混練
り液は、片面リブ形状又は両面リブ形状金型に流し込む
か、或いは流展して、平板状に賦形する。脱溶媒は、熱
硬化性樹脂の硬化温度以下、好ましくはフェノールの場
合温度70℃以下、フラン樹脂の場合温度60℃以下の
常圧或いは減圧下で行うことが出来る。
Carbon fiber or graphite fiber containing boron,
Boron and boron compounds, thermosetting resins, pore control materials,
And a kneading solution obtained by uniformly kneading any one or a mixed solvent of organic solvents such as methanol, ethanol, acetone and methyl ethyl ketone used as necessary to increase the fluidity into a single-sided rib shape or a double-sided rib shape mold. Pour or spread and shape into a flat plate. The solvent removal can be carried out at a normal temperature or a reduced pressure below the curing temperature of the thermosetting resin, preferably below 70 ° C. for phenol and below 60 ° C. for furan resin.

【0018】次いで行う加圧加熱硬化は、圧力3〜20
0kg/cm2 好ましくは5〜100kg/cm2 で、
温度80〜300℃好ましくは、フェノール樹脂の場合
80〜200℃、フラン樹脂の場合70〜160℃で行
うが、加熱時間は通常10分〜10時間である。その後
不活性雰囲気中で温度1000℃、好ましくは2000
℃で熱処理することにより、本発明の目的とする電極基
材を製造することが出来る。
The subsequent pressure heating and curing is performed at a pressure of 3 to 20.
In 0 kg / cm 2 preferably 5 to 100 kg / cm 2,
The temperature is 80 to 300 ° C., preferably 80 to 200 ° C. for the phenol resin and 70 to 160 ° C. for the furan resin, and the heating time is usually 10 minutes to 10 hours. Then in an inert atmosphere, the temperature is 1000 ° C., preferably 2000
The electrode base material aimed at by the present invention can be produced by heat treatment at a temperature of ° C.

【0019】次いで本発明の第3の要旨に係わる電極基
材の製造方法について説明する。この製造方法は、炭素
繊維又は黒鉛繊維の短繊維(好ましくは繊維長0.1〜
30mm)からなるシート状物(シート、ペーパー、フ
ェルト、織物、編物等)を、熱硬化性樹脂、例えばフェ
ノール樹脂20〜40wt%のメタノール溶液中にホウ
素化合物をホウ素の量で0.01〜0.5wt%混合し
た樹脂浸液中に含浸させた後、所定の含有量に絞り、低
温の真空下で脱溶剤し、この半硬化状態の炭素繊維製品
を所望の枚数積層して、温度170℃以上、圧力5kg
/cm2 以上で加圧加熱硬化し、マトリックス樹脂を完
全に硬化させた後、非酸化性雰囲気中で温度1000℃
以上で焼成する熱処理する方法である。
Next, a method of manufacturing the electrode base material according to the third aspect of the present invention will be described. This production method uses short fibers of carbon fibers or graphite fibers (preferably having a fiber length of 0.1 to 0.1).
A sheet-like material (sheet, paper, felt, woven fabric, knitted fabric, etc.) consisting of 30 mm) in a methanol solution of a thermosetting resin, for example, a phenol resin of 20 to 40 wt% and a boron compound in an amount of 0.01 to 0 of boron. After impregnating in a resin dipping liquid mixed with 0.5 wt%, the content is reduced to a predetermined amount, the solvent is removed under vacuum at low temperature, a desired number of the semi-cured carbon fiber products are laminated, and the temperature is 170 ° C. Above, pressure 5kg
/ Cm 2 or more and pressurizing and heating to completely cure the matrix resin, and then the temperature is 1000 ° C in a non-oxidizing atmosphere.
This is the method of heat treatment for firing.

【0020】添加するホウ素化合物の濃度はホウ素に換
算して0.01〜0.5wt%である。炭素繊維製品へ
のホウ素の含有量は、含浸液中のホウ素濃度と絞ったあ
との含浸量によって管理される。凡その含浸量は300
〜1200%の範囲が好ましい。絞り率は以下の式で定
義する。 含浸量=(樹脂含浸重量/炭素繊維シート状物重量)1
00 即ちホウ素化合物濃度が低く、絞り量が小さいと含有量
が少なくなり、本発明の効果が不十分となる。又濃度が
高く、絞り量が多いと含有量は多くなるが効果は5.0
wt%で飽和するので無駄となり好ましくない。
The concentration of the boron compound added is 0.01 to 0.5 wt% in terms of boron. The content of boron in the carbon fiber product is controlled by the concentration of boron in the impregnation liquid and the amount of impregnation after squeezing. The impregnation amount is about 300
The range of up to 1200% is preferable. The aperture ratio is defined by the following formula. Impregnation amount = (resin impregnation weight / carbon fiber sheet material weight) 1
00 That is, when the concentration of the boron compound is low and the amount of drawing is small, the content is small and the effect of the present invention is insufficient. Also, if the concentration is high and the squeezing amount is large, the content is large but the effect is 5.0.
Since it is saturated at wt%, it is wasteful and not preferable.

【0021】フェノール樹脂の濃度も焼成して得られる
電極の空隙率に影響を与える。即ち樹脂濃度が20wt
%未満と低いと空隙率が多くなり、強度特性が低くな
る。樹脂濃度が40wt%以上と高いと強度特性は向上
するが、空隙率が小さくなり、燃料の透過性が低下する
ので好ましくない。好ましいフェノール樹脂濃度は20
〜40wt%である。
The concentration of the phenolic resin also affects the porosity of the electrode obtained by firing. That is, the resin concentration is 20 wt
If it is less than%, the porosity increases and the strength characteristics deteriorate. When the resin concentration is as high as 40 wt% or more, the strength characteristics are improved, but the porosity is reduced and the fuel permeability is reduced, which is not preferable. Preferred phenol resin concentration is 20
~ 40 wt%.

【0022】脱溶媒は半硬化状態になるまで減圧下70
℃以下の低温で行う。樹脂含浸後の炭素繊維シート状物
は所定の厚みになるように何枚か積層し、圧力5〜30
kg/cm2 、温度120〜200℃、の範囲でホット
プレス成型し、樹脂を硬化させる。次いで窒素ガス等の
不活性ガス中で1000℃以上の温度で熱処理される。
この熱処理により、前に含浸したフェノール樹脂は炭化
され炭素となると同時に炭素繊維表面にガラス状物が生
成する、更に必要に応じて2000℃以上の高温で熱処
理することにより本発明の電導性、耐熱酸化性に優れ、
燃料電池用電極基材が製造される。
Desolvation was carried out under reduced pressure until the semi-cured state was reached.
Perform at a low temperature of ℃ or less. Several sheets of carbon fiber sheet material after resin impregnation are laminated so as to have a predetermined thickness, and the pressure is 5 to 30.
Hot-press molding is performed in the range of kg / cm 2 and temperature of 120 to 200 ° C. to cure the resin. Then, heat treatment is performed at a temperature of 1000 ° C. or higher in an inert gas such as nitrogen gas.
By this heat treatment, the previously impregnated phenol resin is carbonized to become carbon and at the same time a glassy material is formed on the surface of the carbon fiber. Further, if necessary, heat treatment is performed at a high temperature of 2000 ° C. or higher to improve the conductivity and heat resistance of the present invention. Excellent in oxidization,
An electrode base material for a fuel cell is manufactured.

【0023】次に本発明の第4の要旨に係わる製造方法
について説明する。この方法は、繊維長3.0mm以上
の短繊維又は連続長繊維の耐炎繊維からなるシート状物
を、ホウ素及びホウ素化合物のアルコール溶液中に含浸
させ、所定量に絞った後乾燥させ、その後不活性ガス雰
囲気中で1000℃以上の温度で熱処理する方法であ
る。
Next, a manufacturing method according to the fourth aspect of the present invention will be described. This method involves impregnating a sheet-like material made of flame-resistant fibers of short fibers or continuous long fibers having a fiber length of 3.0 mm or more into an alcohol solution of boron and a boron compound, squeezing it to a predetermined amount, and then drying it. This is a method of performing heat treatment at a temperature of 1000 ° C. or higher in an active gas atmosphere.

【0024】尚、耐炎繊維の状態で樹脂含浸し1000
℃以上の温度で熱処理すると繊維とマトリックス樹脂と
の熱収縮差が大き過ぎるためか、接着性が低下し、もろ
い製品となるため好ましくない。必要に応じてさらに樹
脂含浸を施した後、ホットプレスを用いて熱硬化し、再
び不活性ガス雰囲気中1000℃以上の温度で熱処理す
ることにより燃料電池用として優れた電極基材を製造す
ることができる。
The resin is impregnated in the flame resistant fiber state to 1000
Heat treatment at a temperature of ℃ or more is not preferable, because the difference in heat shrinkage between the fiber and the matrix resin is too large, or the adhesiveness is lowered and the product becomes brittle. To produce an excellent electrode base material for a fuel cell by further impregnating with resin if necessary, followed by thermosetting using a hot press and heat treatment again at a temperature of 1000 ° C. or higher in an inert gas atmosphere. You can

【0025】[0025]

【実施例】以下、本発明について実施例により更に詳細
に説明する。電極基材の「空気透過度」はJIS P8
117 に準じて行った。「厚さ方向の比抵抗」は試料
を銅板にはさみ電流を流したときの抵抗値を測定し次式
より求めた。 比抵抗値(Ωcm)=測定抵抗値(Ω)×試料面積(c
2 )÷試料厚み(cm) 「曲げ強度」の測定はスパン(L)と厚さ(t)の比は
32を標準とし、3点曲げ法により測定した。耐熱酸化
性の尺度としては、空気雰囲気の高温炉中に30分間滞
在させ、重量が半減する温度を「重量半減温度」として
示した。「電極基材中のホウ素含有量wt%」は以下の
方法で測定した。試料50mgと炭酸ナトリウム1gを
白金ルツボ中で、ゆるやかに加熱して融解した後、蒸溜
水に溶解し、全体を50mlにして、日本ジャーレルア
ッシュ社製ICP発光分析装置(ICP−575MK−
2)を用いて分析波長249.773nm出力1.6K
Wでホウ素含有量を測定した。
EXAMPLES The present invention will now be described in more detail with reference to examples. "Air permeability" of the electrode base material is JIS P8
117. The "specific resistance in the thickness direction" was obtained from the following equation by measuring the resistance value when the sample was sandwiched between copper plates and a current was applied. Specific resistance value (Ωcm) = measured resistance value (Ω) × sample area (c
m 2 ) ÷ Sample thickness (cm) The “bending strength” was measured by a three-point bending method with a standard ratio of span (L) to thickness (t) of 32. As a measure of the heat-resistant oxidation resistance, the temperature at which the weight was halved by allowing it to stay in a high-temperature furnace in an air atmosphere for 30 minutes was shown as "weight half temperature". The "boron content wt% in the electrode substrate" was measured by the following method. 50 mg of sample and 1 g of sodium carbonate were gently heated and melted in a platinum crucible and then dissolved in distilled water to make 50 ml, and the whole was made into 50 ml, and the ICP emission spectrometer (ICP-575MK-
2) analysis wavelength 249.773nm output 1.6K
The boron content was measured with W.

【0026】(実施例1)特開平4−57926号法で
開示された黒鉛繊維よりなる、平均長さ160μmのミ
ルド繊維及び長さ6mmのチョップド繊維を8:2の割
合で混合したものを5重量部、細孔調節剤として粒子径
60μmのメチルメタクリレートを4重量部、及びフェ
ノール樹脂25重量部、オルトホウ酸1重量部とを混練
りし、平板状金型に流展し真空乾燥器中で脱溶剤した。
脱溶剤後、プレス成型機を用いてプレス圧力5kg/c
2 、温度170℃、時間1Hrで加熱硬化させた。次
いで炭素繊維等が混入したフェノール樹脂中間素材を、
窒素雰囲気中で昇温速度10℃/minで2000℃迄
昇温させ、さらに2000℃で1時間焼成し電極基材を
得た。得られた電極基材中のホウ素含有量は3.4wt
%であった。電極基材の厚みは0.5mm、炭素量は5
3%、空孔量は約70%、曲げ強度は200kg/cm
2 、空気透過係数は500cc.mm/Hr.cm2
mmAq.比抵抗値は0.05Ωcm、重量半減温度は
900℃であり、りん酸型燃料電池用電極基材として優
れたものであった。
(Example 1) A mixture of milled fibers having an average length of 160 μm and chopped fibers having a length of 6 mm composed of graphite fibers disclosed in JP-A-4-57926 at a ratio of 8: 2 was used. Parts by weight, 4 parts by weight of methyl methacrylate having a particle diameter of 60 μm as a pore control agent, 25 parts by weight of a phenol resin, and 1 part by weight of orthoboric acid are kneaded, spread in a flat plate mold, and then in a vacuum dryer. The solvent was removed.
After removing solvent, press pressure of 5kg / c using a press molding machine
It was heat-cured at m 2 at a temperature of 170 ° C. for 1 hour. Next, the phenol resin intermediate material mixed with carbon fiber,
In a nitrogen atmosphere, the temperature was raised up to 2000 ° C. at a heating rate of 10 ° C./min, and further baked at 2000 ° C. for 1 hour to obtain an electrode base material. The boron content in the obtained electrode base material is 3.4 wt.
%Met. The electrode substrate has a thickness of 0.5 mm and a carbon content of 5
3%, porosity about 70%, bending strength 200kg / cm
2 , the air permeability coefficient is 500 cc. mm / Hr. cm 2 .
mmAq. The specific resistance value was 0.05 Ωcm, and the weight half-life temperature was 900 ° C, which was excellent as an electrode base material for phosphoric acid fuel cells.

【0027】(比較例1)炭素繊維として弾性率24t
/mm2 タイプの通常の繊維を用い、オルトホウ酸を混
入しない以外は実施例1と全く同様の方法で試作して得
られた電極基材は厚み、炭素量、空孔量、空気透過係数
等特性は実施例1とほぼ同様の水準であった。曲げ強度
120kg/cm2 、比抵抗0.13μcm、重量半減
温度は750℃であり。実施例1と比較して低い性能で
あった。
(Comparative Example 1) Carbon fiber having an elastic modulus of 24 t
/ Mm 2 type ordinary fiber, except that orthoboric acid was not mixed in, the electrode base material obtained by trial production in the same manner as in Example 1 has a thickness, carbon amount, void amount, air permeability coefficient, etc. The characteristics were at almost the same level as in Example 1. The bending strength was 120 kg / cm 2 , the specific resistance was 0.13 μcm, and the weight half-life temperature was 750 ° C. The performance was lower than that of Example 1.

【0028】(実施例2、比較例2)炭素繊維として弾
性率24t/mm2 の通常の繊維からなる繊維長12m
mのチョップド繊維を用いて公知の方法で抄紙し坪量3
0g/m2 の炭素繊維ペーパーを製造した。フェノール
樹脂(フエノライト5900.大日本インキKK製)2
0wt%メタノール溶液中にトリメチルボレート2.5
wt%を混入して樹脂含浸液1を調整した。比較のため
上記含浸液より酸化硼素を除いたものを樹脂含浸液2を
調整した。炭素繊維ペーパーをそれぞれの樹脂含浸液
1.2.に含浸させ付着量1000%として温度60℃
の乾燥機で脱溶剤してプリプレグ1.2を作成した。上
記プリプレグを50cm×50cmに裁断し積層枚数5
枚としてプレス圧力5kg/cm2 温度180℃で、そ
れぞれ加熱硬化させた。さらに窒素雰囲気中で温度24
00℃で焼成して電極基材を製造した。それぞれの電極
基材の性能を表1に示す。同表から分かるように、ホウ
素の含有しない比較例の電極基材に比較して、本発明の
ホウ素を含有する電極基材は、重量半減温度で示される
耐熱酸化性及び厚さ方向の比抵抗値が小さく、電気伝導
性に優れるものであった。
(Example 2 and Comparative Example 2) A carbon fiber having a modulus of elasticity of 24 t / mm 2 and a normal fiber having a fiber length of 12 m
Paper is made by a known method using m chopped fiber and has a basis weight of 3
0 g / m 2 of carbon fiber paper was produced. Phenolic resin (Phenolite 5900, made by Dainippon Ink KK) 2
Trimethylborate 2.5 in 0 wt% methanol solution
Resin impregnation liquid 1 was prepared by mixing wt%. For comparison, Resin Impregnation Solution 2 was prepared by removing boron oxide from the above impregnation solution. The carbon fiber paper is treated with each resin impregnating solution 1.2. 60%
The solvent was removed with a dryer of No. 1 to prepare prepreg 1.2. Cut the above prepreg into 50 cm x 50 cm and stack 5
Each sheet was heat-cured at a pressing pressure of 5 kg / cm 2 and a temperature of 180 ° C. Furthermore, in a nitrogen atmosphere, the temperature is 24
The electrode base material was manufactured by firing at 00 ° C. The performance of each electrode substrate is shown in Table 1. As can be seen from the table, the boron-containing electrode base material of the present invention, as compared with the boron-free electrode base material of the comparative example, has a heat-resistant oxidation resistance and a specific resistance in the thickness direction which are represented by a weight half-life temperature. The value was small and the electrical conductivity was excellent.

【0029】[0029]

【表1】 [Table 1]

【0030】(実施例3〜6、比較例3)原料としてア
クリロニトリル98%と他の共重合成分2%からなる、
アクリロニトリル繊維を空気雰囲気中、温度240〜2
80℃で熱処理し、密度1.40g/cm3 の耐炎繊維
を得た。この繊維を公知の方法で捲縮処理し、切断しス
テーブルファイバーとした。公知の方法でカーデングし
てウェブを作った。次に該ウェブを数枚重ねて、ニード
ルパンチングし、厚さ10mmの坪量1000g/m3
のフエルトを作成した。このフエルトをトリメチルボレ
ートメタノール溶液の濃度を種々変更させて浸漬し、脱
溶剤した後、窒素ガス雰囲気中で600℃迄20℃/分
の速度で昇温させた。次いで2400℃迄10℃/分で
昇温させ2400℃で10分間保持した。その後降温さ
せ50℃以下になってから試料をとりだした。得られた
フエルト状電極の性能を表2に示した。本実施例の電極
基材はナトリウム硫黄電池に用いて高性能を発揮する。
(Examples 3 to 6 and Comparative Example 3) As raw materials, 98% of acrylonitrile and 2% of other copolymer components were used.
Acrylonitrile fiber in air atmosphere, temperature 240-2
Heat treatment was performed at 80 ° C. to obtain a flame resistant fiber having a density of 1.40 g / cm 3 . This fiber was crimped by a known method and cut into a stable fiber. The web was made by carding in a known manner. Next, several webs are piled up and needle punched to obtain a basis weight of 10 mm and a basis weight of 1000 g / m 3.
Created the felt. The felt was immersed in various concentrations of a trimethylborate methanol solution for immersion to remove the solvent, and then heated up to 600 ° C. at a rate of 20 ° C./min in a nitrogen gas atmosphere. Then, the temperature was raised to 2400 ° C. at a rate of 10 ° C./minute and kept at 2400 ° C. for 10 minutes. After that, the temperature was lowered and the sample was taken out after the temperature became 50 ° C. or lower. The performance of the obtained felt-like electrode is shown in Table 2. The electrode base material of this embodiment exhibits high performance when used in a sodium-sulfur battery.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】本発明によれば、ホウ素を含有させるこ
とにより厚さ方向の比抵抗値が小さく、酸素雰囲気、高
温時の重量減少が小さいという、電気伝導性並びに耐熱
酸化性に優れた電極基材を提供できる。
According to the present invention, by containing boron, the specific resistance value in the thickness direction is small, and the weight loss at oxygen atmosphere and high temperature is small, which is excellent in electrical conductivity and thermal oxidation resistance. A substrate can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/86 B 10/39 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01M 4/86 B 10/39 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維又は黒鉛繊維−炭素複合材料か
らなる電極基材であり、電極基材中の炭素繊維又は黒鉛
繊維のみ、或いはマトリックス炭素の両方に、ホウ素に
換算して0.01〜5.0wt%のホウ素及びホウ素化
合物の少なくとも1種を含有することを特徴とする電極
基材。
1. An electrode substrate made of carbon fiber or graphite fiber-carbon composite material, wherein the carbon substrate or graphite fiber alone in the electrode substrate, or both of the matrix carbons, is converted into boron in an amount of 0.01 to. An electrode substrate containing 5.0 wt% of at least one of boron and a boron compound.
【請求項2】 ホウ素を含有する炭素繊維又は黒鉛繊維
の短繊維と、ホウ素及びホウ素化合物と、熱硬化樹脂及
び細孔調節剤、並びに必要に応じて水又は有機溶媒とを
混練りし、金型を用いて所定形状に成型し、脱溶剤後、
加圧加熱硬化し、更に不活性雰囲気中で1000℃以上
の温度で熱処理することを特徴とする電極基材の製造方
法。
2. A short fiber such as a carbon fiber or a graphite fiber containing boron, a boron and a boron compound, a thermosetting resin and a pore control agent, and optionally water or an organic solvent are kneaded to obtain gold. Molded into a predetermined shape using a mold, after removing the solvent,
A method for producing an electrode base material, which comprises heat-curing under pressure, and heat treatment at a temperature of 1000 ° C. or higher in an inert atmosphere.
【請求項3】 炭素繊維又は黒鉛繊維の短繊維からなる
シート状物を、ホウ素及びホウ素化合物を含有する熱硬
化性樹脂溶液中に含浸し、脱溶剤後、所定の厚さに積層
し熱硬化させ、更に不活性雰囲気中で1000℃以上の
温度で熱処理することを特徴とする電極基材の製造方
法。
3. A thermosetting resin solution containing boron and a boron compound is impregnated with a sheet-like material composed of short fibers of carbon fiber or graphite fiber, desolvated, and then laminated to a predetermined thickness and thermoset. And a heat treatment at a temperature of 1000 ° C. or higher in an inert atmosphere.
【請求項4】 耐炎繊維からなるシート状物に、ホウ素
及びホウ素化合物を含浸させ、更に不活性雰囲気中で1
000℃以上の温度で熱処理することを特徴とする電極
基材の製造方法。
4. A sheet-shaped material made of flame resistant fiber is impregnated with boron and a boron compound, and further in an inert atmosphere.
A method for producing an electrode base material, which comprises performing a heat treatment at a temperature of 000 ° C. or higher.
JP24697393A 1993-10-01 1993-10-01 Method for producing electrode substrate Expired - Lifetime JP3608669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24697393A JP3608669B2 (en) 1993-10-01 1993-10-01 Method for producing electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697393A JP3608669B2 (en) 1993-10-01 1993-10-01 Method for producing electrode substrate

Publications (2)

Publication Number Publication Date
JPH07105955A true JPH07105955A (en) 1995-04-21
JP3608669B2 JP3608669B2 (en) 2005-01-12

Family

ID=17156483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697393A Expired - Lifetime JP3608669B2 (en) 1993-10-01 1993-10-01 Method for producing electrode substrate

Country Status (1)

Country Link
JP (1) JP3608669B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762522A1 (en) * 1995-08-18 1997-03-12 PETOCA, Ltd Boron containing carbon material for lithium secondary battery and process for producing the same
US5891592A (en) * 1997-01-31 1999-04-06 Nec Moli Energy (Canada) Limited Additives for improving cycle life of non-aqueous rechargeable lithium batteries
US6045948A (en) * 1997-09-18 2000-04-04 Nec Moli Energy (Canada) Limited Additives for improving cycle life of non-aqueous rechargeable lithium batteries
WO2001092151A1 (en) * 2000-05-31 2001-12-06 Showa Denko K.K. Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery
US6780388B2 (en) 2000-05-31 2004-08-24 Showa Denko K.K. Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery
JP2005302589A (en) * 2004-04-14 2005-10-27 Mitsubishi Rayon Co Ltd Manufacturing method of precursor sheet-like material for porous carbon electrode base
WO2013165538A1 (en) * 2012-05-01 2013-11-07 The Government Of The Usa, As Represented By The Secretary Of The Navy Formation of boron carbide-boron nitride carbon compositions
US8815381B2 (en) 2012-01-26 2014-08-26 The United States Of America, As Represented By The Secretary Of The Navy Formation of boron carbide-boron nitride carbon compositions
JP2016522562A (en) * 2013-06-24 2016-07-28 ジェナックス インコーポレイテッド Secondary battery current collector and electrode using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762522A1 (en) * 1995-08-18 1997-03-12 PETOCA, Ltd Boron containing carbon material for lithium secondary battery and process for producing the same
CN1091954C (en) * 1995-08-18 2002-10-02 鹿岛石油株式会社 Carbon material for lithium secondary battery and process for producing the same
US5891592A (en) * 1997-01-31 1999-04-06 Nec Moli Energy (Canada) Limited Additives for improving cycle life of non-aqueous rechargeable lithium batteries
US6045948A (en) * 1997-09-18 2000-04-04 Nec Moli Energy (Canada) Limited Additives for improving cycle life of non-aqueous rechargeable lithium batteries
WO2001092151A1 (en) * 2000-05-31 2001-12-06 Showa Denko K.K. Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery
US6780388B2 (en) 2000-05-31 2004-08-24 Showa Denko K.K. Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery
JP2005302589A (en) * 2004-04-14 2005-10-27 Mitsubishi Rayon Co Ltd Manufacturing method of precursor sheet-like material for porous carbon electrode base
US8815381B2 (en) 2012-01-26 2014-08-26 The United States Of America, As Represented By The Secretary Of The Navy Formation of boron carbide-boron nitride carbon compositions
WO2013165538A1 (en) * 2012-05-01 2013-11-07 The Government Of The Usa, As Represented By The Secretary Of The Navy Formation of boron carbide-boron nitride carbon compositions
JP2016522562A (en) * 2013-06-24 2016-07-28 ジェナックス インコーポレイテッド Secondary battery current collector and electrode using the same

Also Published As

Publication number Publication date
JP3608669B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
EP1323199B1 (en) Fluid diffusion layers for fuel cells
WO2001056103A1 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JPS63254669A (en) Electrode substrate for fuel cell
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
KR20180023830A (en) A manufacturing method of carbon paper for fuel cell gas diffusion layers which adds pitch-based carbon fibers and aqueous binders, and carbon paper for the fuel cell gas diffusion layers using the same
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JPH07105955A (en) Electrode base material and its manufacture
EP2396842A1 (en) Gas diffusion substrate
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP2008030981A (en) Phenol resin activated carbon, polarizable electrode and electric double layer capacitor using the same
US20030068542A1 (en) Bipolar plate for fuel cell, method for manufacturing the bipolar plate, and fuel cell using the bipolar plate
CN115233489A (en) Carbon fiber paper and preparation method and application thereof
US3859138A (en) Novel composite fuel cell electrode
CN113882186A (en) Carbon fiber paper and preparation method and application thereof
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP3437862B2 (en) Porous electrode substrate and method for producing the same
JPH06263558A (en) Manufacturing method of porous carbon plate and porous carbon electrode material
JP2780987B2 (en) Manufacturing method of carbon plate
JP2005183325A (en) Carbon fiber sheet for polymer electrolyte gas diffusion layer and its manufacturing method
JPH0517260A (en) Production of carbonaceous porous body
JPH0235707B2 (en)
JPS61186210A (en) Production of carbon porous body
JPH0131445B2 (en)
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JPH04284363A (en) Manufacture of carbon plate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

EXPY Cancellation because of completion of term