[go: up one dir, main page]

JPH07104458A - Transmission factor measuring method and device - Google Patents

Transmission factor measuring method and device

Info

Publication number
JPH07104458A
JPH07104458A JP26774193A JP26774193A JPH07104458A JP H07104458 A JPH07104458 A JP H07104458A JP 26774193 A JP26774193 A JP 26774193A JP 26774193 A JP26774193 A JP 26774193A JP H07104458 A JPH07104458 A JP H07104458A
Authority
JP
Japan
Prior art keywords
light
transparent region
transmittance
region
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26774193A
Other languages
Japanese (ja)
Other versions
JP3324013B2 (en
Inventor
Hiroshi Fujita
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP26774193A priority Critical patent/JP3324013B2/en
Publication of JPH07104458A publication Critical patent/JPH07104458A/en
Application granted granted Critical
Publication of JP3324013B2 publication Critical patent/JP3324013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To provide a measuring method and a measuring device for a transmission factor in a translucent zone, regarding a such member as a half-tone type phase shift photomask having both of a translucent zone for fine phase shift and a transparent zone. CONSTITUTION:Two beams having the prescribed coherent wavelength of equal amplitude and phase are respectively transmitted through a fine translucent zone and a transparent zone in the vicinity thereof and, then, made to interfere with each other. Thereafter, coherent light available therefrom is adjusted, thereby obtaining a maximum value Imax and a minimum value Imin for the intensity of the coherent light. Then, a light transmission factor in the translucent zone is expressed as an intensity ratio, using a transmission factor in the transparent zone as reference, based upon both of the maximum and minimum values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,微小領域での透過率の
測定に関するもので、特に、半導体素子を製造する際の
リソグラフイー工程において、被投影原版として用いら
れるフオトマスクの中でも、位相差と透過率を制御した
位相シフトパターンを有する、ハーフトーン型位相シフ
トフオトマフクの、半遮光領域の透明領域に対する相対
透過率を測定するための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of transmittance in a minute area, and particularly, in a photomask used as a projection original plate in a lithographic process for manufacturing a semiconductor element, a phase difference The present invention relates to an apparatus for measuring the relative transmittance of a half-tone type phase shift photomask having a transmittance-controlled phase shift pattern to a transparent region of a semi-shielded region.

【0002】[0002]

【従来の技術】近年、半導体集積回路の高集積化にとも
なって、この回路作製に用いられるレチクルにも、一層
の微細化が求められるようになってきた。現在では、1
6MのDRAM用の5倍レチクルから転写されるデバイ
スパターンの線幅は、0.6μmと微細なものである。
64MのDRAMのデバイスパターンの場合には、0.
35μm線幅の解像が必要となってきており、従来のス
テッパーを用いた光露光方式ではもはや限界にきてい
る。この為、光露光におけるレチクルから転写されるデ
バイスパターンの解像性を上げることができ、現状のス
テッパーにて使用できる方式の位相シフトフオトマスク
が注目されるようになってきた。位相シフトフオトマス
クについては、特開昭58−17344号、特公昭62
−59296号に、すでに、基本的な考え、原理は記載
されているが、現状の光露光のシステムをそのまま継続
できるメリットが見直され、各種タイプの位相シフトフ
オトマスクの開発が盛んに検討されるようになってき
た。図2に示すような、ハーフトーン型の位相シフトフ
オトマスクもその一つである。ハーフトーン型について
は、その製造方法の簡単さから、最近注目をあびるよう
になってきており、詳細は、特開平4−136854号
等に記載がある。このハーフトーン型位相シフトフオト
マスクの場合には、シフター部と半遮光部とを兼ねる半
透明の領域については、転写用に用いる所定波長の光に
ついて、透明領域に対する位相差を制御することが必要
な上、光透過率を制御することが必要とされている。こ
の為、ハーフトーン型位相シフトフオトマスクの場合に
おいては、微細なミクロンオーダのパターン部での、透
明領域に対する位相差および透過率を、直接的に正確
に、測定することが必要になってきた。その要求に対応
するものとして、微細なミクロンオーダのパターン部で
の、透明領域に対する位相差測定については、本発明者
出願の、特願平4−278737等があるが、透過率の
測定については、この要求に応えるものはないのが現状
である。とりわけ最近、フオトマスクに対する高い寸法
精度の要求に伴い、フオトマスクの板厚が大きくなって
きたことが、さらに透過率測定における微小化を困難に
している。従来から、一般に利用されている、分光光学
系を有する透過率測定装置においては、被測定サンプル
における測定領域の大きさは、光学系の設計上の制約よ
り直径1mm程度のスポットが限界であり、ミクロンオ
ーダの微細パターンの透過率を測定することは困難であ
る為、半遮光領域に有する位相シフトフオトマスクの透
過率の測定は、この分光光学系を有する透過率測定装置
を用い、パターン形成後に、微細パターン以外の大きな
領域で測定して、これから必要な波長での値をを得てい
た。
2. Description of the Related Art In recent years, with the high integration of semiconductor integrated circuits, further miniaturization has been required for reticles used in the fabrication of these circuits. Currently 1
The line width of a device pattern transferred from a 5 × reticle for a 6M DRAM is as fine as 0.6 μm.
In the case of a 64M DRAM device pattern, 0.
The resolution of a line width of 35 μm is required, and the conventional optical exposure method using a stepper has reached the limit. Therefore, the resolution of the device pattern transferred from the reticle in light exposure can be improved, and attention has been paid to a phase shift photomask of a system that can be used in the current stepper. The phase shift photomask is disclosed in JP-A-58-17344 and JP-B-62.
Although the basic idea and principle have already been described in No. 59296, the merit of continuing the existing optical exposure system as it is is reviewed, and development of various types of phase shift photomasks is actively studied. It's starting to happen. A halftone type phase shift photomask as shown in FIG. 2 is one of them. The halftone type has recently attracted attention because of its simple manufacturing method, and details are described in JP-A-4-136854 and the like. In the case of this halftone type phase shift photomask, it is necessary to control the phase difference with respect to the transparent region for the light of a predetermined wavelength used for transfer for the semitransparent region that also serves as the shifter portion and the semi-shielding portion. Moreover, it is necessary to control the light transmittance. For this reason, in the case of the halftone type phase shift photomask, it has become necessary to directly and accurately measure the phase difference and the transmittance with respect to the transparent region in the fine micron-order pattern portion. . In order to meet the demand, there is Japanese Patent Application No. 4-278737 of the present inventor's application for the phase difference measurement for a transparent region in a fine micron-order pattern portion, but for the measurement of the transmittance, At present, there is no one that can meet this demand. In particular, recently, with the demand for high dimensional accuracy of the photomask, the plate thickness of the photomask has become large, which makes further miniaturization in the transmittance measurement difficult. Conventionally, in a commonly used transmittance measuring apparatus having a spectroscopic optical system, the size of the measurement region in the sample to be measured is limited to a spot having a diameter of about 1 mm due to design restrictions of the optical system. Since it is difficult to measure the transmittance of a fine pattern of the order of microns, the transmittance of the phase shift photomask in the semi-shielded area is measured using a transmittance measuring device with this spectroscopic optical system, and after pattern formation. By measuring in a large area other than the fine pattern, the value at the required wavelength was obtained from this.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
状況のもと、所定波長の光に対する透明領域と該所定波
長の透過光に対し透明領域との位相差を与える半透明領
域とを有する部材の、半透明域における光透過率を測定
する方法と装置を提供するものであり、特に、ハーフト
ーン型の位相シフトフオトマスクにおける、微小な半透
明領域の透過率を測定する方法と装置を提供するもので
ある。
Under the above circumstances, the present invention provides a transparent region for light having a predetermined wavelength and a semi-transparent region for giving a phase difference to the transparent region for transmitted light having the predetermined wavelength. The present invention provides a method and apparatus for measuring the light transmittance of a member having the same in a semi-transparent region, and in particular, a method and apparatus for measuring the transmittance of a minute semi-transparent area in a halftone type phase shift photomask. Is provided.

【0004】[0004]

【課題を解決するための手段】本発明の透過率測定方法
は、所定波長の光に対する透明領域と、該所定波長の透
過光に対し透明領域との位相差を与える半透明領域とを
有する部材の、微小半透明領域の所定波長における光透
過率を、該微小半透明領域近傍の、透明領域の透過光を
基準とした光強度比でもってあらわした、相対透過率の
測定方法であって、振幅、位相が等しい、可干渉性のあ
る所定波長の2光束をそれぞれ、微小半透明領域と該微
小半透明領域近傍の、透明領域とに通過させた後に、微
小半透明領域を通過後の光束と、該微小半透明領域近傍
の、透明領域を通過後の光束とを干渉させ、得られる干
渉光の位相を調整をすることにより、干渉光の強度の最
大値Imax 、最小値Imin とを得、この2値から相対的
な透過率を求めるものである。詳しくは、この最大値I
max 、最小値Imin の値と、(Imax −Imin )/(I
max +Imin )=2(a)1/2 /(1+a)の関係式と
から、演算処理により、相対透過率aを求めるか、又
は、この最大値Imax 、最小値Imin の値と、このとき
の微小半透明領域近傍の透明領域の光強度I0 と、a=
(Imax +Imin )/2I0 −1、の関係式とから相対
透過率a求めるものである。尚、微小半透明領域近傍の
透明領域の光強度I0 については、微小半透明領域近傍
の透明領域を通過後の2光束を干渉させ、得られる干渉
光の位相を調整をすることにより、干渉光の強度の最大
値4I0 を得、この値からI0 を求めても良い。特に、
ハーフトーン型の位相シフトフオトマスクにおいては、
図2に示すように、微小領域において、半遮光領域の通
過後の所定波長の光束Aと、透明領域通過後の上記所定
波長の光束Bとを干渉させ、得られる干渉光の位相調整
をすることにより、干渉光の強度の最大値、最小値とを
得、この値と、その時の透明領域の光強度とから、相対
的な透過率を求めるものである。本発明の透過率測定装
置は、所定波長の光に対する透明領域と、該所定波長の
透過光に対し透明領域との位相差を与える半透明領域と
を有する部材の、微小半透明領域の所定波長における光
透過率を、該微小半透明領域近傍の、透明領域の透過光
を基準とした光強度比でもってあらわした、相対透過率
の測定装置であって、水銀灯光源と単一波長のみ取り出
すフイルターと偏光子とからなる、上記所定の波長の直
線偏光を供給する直線偏光供給手段と、前記直線偏光を
偏光方向の異なる2光束に分離する複屈折分離手段と、
前記2光束をれぞれ前記被投影原版に照射する単一のコ
ンデンサーレンズ系と、前記2光束による前記パターン
像を結像する単一のレンズ系と、該対物レンズを通過し
た前記2光束を再結合させる複屈折結合手段と、前記2
光束の位相差を変化させる位相差調整手段とを備え、且
つ、該複屈折結合手段により再結合された光束のパター
ンのコントラストを、位相差調整手段による調整に対応
して、測定するための検出器と、測定された値を演算処
理する演算処理部とを備えているものである。特に、本
発明の透過率測定装置は、位相差と透過率を制御した位
相シフトパターンを有する位相シフトフオトマスクの、
半遮光シフターパターン領域の透過率を、このシフター
パターン領域近傍の透明な非パターン領域に対する半遮
光領域の相対的透過率として計測することを可能とする
もので、水銀灯光源と単一波長のみ取り出すフイルター
と偏光子とからなる、単一波長、i線365nmでの、
直線偏光を供給する直線偏光供給手段と、前記直線偏光
を偏光方向の異なる2光束に分離する複屈折分離部と、
前記2光束を被測定パターンに投影するレンズと被測定
パターンを透過した2光束を結像する対物レンズと、該
対物レンズを透過した前記2光束を再結合させる複屈折
結合部と、前記2光束の位相差を変化させる位相差調整
部と、2光束の干渉パターンのコントラストを測定する
ための検出部及び演算部とを備えた装置である。この装
置においては、複屈折によって分離された2光束のサン
プル上での距離に対応して、2光束結合後、被測定パタ
ーンのパターンエッジに隣接して干渉パターンがある幅
をもって生じる。この干渉パターンのコントラストを調
整する位相差板により、干渉パターンの光強度が最大、
最小となる値をそれぞれ測定し、演算処理することがで
きる。
The transmittance measuring method of the present invention is a member having a transparent region for light of a predetermined wavelength and a semi-transparent region for imparting a phase difference to the transparent region of transmitted light of the predetermined wavelength. Of the light transmissivity at a predetermined wavelength of the micro semi-transparent region, in the vicinity of the micro translucent region, represented by a light intensity ratio based on the transmitted light of the transparent region, a method for measuring relative transmissivity, Two light fluxes having the same amplitude and phase and a coherent predetermined wavelength, which pass through the minute semitransparent region and the transparent region near the minute semitransparent region, respectively, and then pass through the minute semitransparent region. And the light flux after passing through the transparent region in the vicinity of the minute semi-transparent region are interfered with each other to adjust the phase of the obtained interference light, thereby obtaining the maximum value I max and the minimum value I min of the intensity of the interference light. And obtain the relative transmittance from these two values It is. Specifically, this maximum value I
The value of max and the minimum value I min , and (I max −I min ) / (I
max + I min ) = 2 (a) 1/2 / (1 + a), the relative transmittance a is calculated by arithmetic processing, or the maximum value I max and the minimum value I min are calculated. At this time, the light intensity I 0 of the transparent region near the minute semi-transparent region and a =
The relative transmittance a is obtained from the relational expression of (I max + I min ) / 2I 0 −1. Regarding the light intensity I 0 of the transparent area near the minute semi-transparent area, the two light beams after passing through the transparent area near the minute semi-transparent area are caused to interfere with each other, and the phase of the interference light thus obtained is adjusted. It is also possible to obtain the maximum value 4I 0 of light intensity and obtain I 0 from this value. In particular,
In the halftone type phase shift photomask,
As shown in FIG. 2, in a minute area, the light flux A having a predetermined wavelength after passing through the semi-shielded area and the light flux B having the above-mentioned predetermined wavelength after passing through the transparent area are caused to interfere with each other, and the phase of the obtained interference light is adjusted. Thus, the maximum value and the minimum value of the intensity of the interference light are obtained, and the relative transmittance is obtained from this value and the light intensity of the transparent area at that time. The transmittance measuring device of the present invention is a member having a transparent region for light having a predetermined wavelength and a semi-transparent region for imparting a phase difference to the transparent light for transmitted light having the predetermined wavelength, and a predetermined wavelength of a minute semi-transparent region. Is a device for measuring relative transmittance, in which the light transmittance in the above is represented by a light intensity ratio based on the transmitted light in the transparent area in the vicinity of the minute semi-transparent area, and a mercury lamp light source and a filter extracting only a single wavelength. A linearly polarized light supplying means for supplying linearly polarized light of the predetermined wavelength, and a birefringence separating means for separating the linearly polarized light into two light beams having different polarization directions,
A single condenser lens system that irradiates the projection original plate with each of the two light fluxes, a single lens system that forms the pattern image by the two light fluxes, and the two light fluxes that have passed through the objective lens Birefringent coupling means for recombining;
Phase difference adjusting means for changing the phase difference of the light beam, and detection for measuring the contrast of the pattern of the light beam recombined by the birefringence coupling means in correspondence with the adjustment by the phase difference adjusting means. And a calculation processing unit that performs a calculation process on the measured value. In particular, the transmittance measuring apparatus of the present invention is a phase shift photomask having a phase shift pattern with controlled phase difference and transmittance,
It is possible to measure the transmittance of the semi-shielded shifter pattern area as the relative transmittance of the semi-shielded area to the transparent non-patterned area in the vicinity of the shifter pattern area. And a polarizer at a single wavelength, i-line 365 nm,
A linearly polarized light supplying means for supplying linearly polarized light, and a birefringence separating section for separating the linearly polarized light into two light beams having different polarization directions,
A lens for projecting the two light beams onto the pattern to be measured, an objective lens for forming an image of the two light beams transmitted through the pattern to be measured, a birefringent coupling part for recombining the two light beams transmitted through the objective lens, and the two light beams The apparatus is provided with a phase difference adjusting section for changing the phase difference of the above, and a detecting section and a calculating section for measuring the contrast of the interference pattern of the two light fluxes. In this device, an interference pattern is generated with a certain width adjacent to the pattern edge of the pattern to be measured after the two light beams are combined, corresponding to the distance on the sample of the two light beams separated by the birefringence. The phase difference plate that adjusts the contrast of this interference pattern maximizes the light intensity of the interference pattern,
The minimum value can be measured and calculated.

【0005】本発明の測定原理は以下のとおりである。
直線偏光をもった測定光が複屈折分離され、2光束とな
ったとき、各々は、偏光面が90°異なっている。サン
プル通過後、この2光束が再び結合されると干渉が生
じ、そのパターン像は明暗に変化し、干渉縞となる。干
渉縞の光強度はIは、サンプル透過後の光束1、光束2
の強度を、それぞれ、I1 、I2 、光波をそれぞれ、E
1 、E2 とすると、 E1 = A1 exp(−2πω1 t) E2 = A2 exp(−2πω2 t) と表されることより、 I =〔E1 +E2 2 =〔A1 exp(−2πω
1 t)+A2 exp(−2πω2 t)〕2= A1 2
2 2 +2A1 2 cos(Δφ) と表され、2光束の干渉縞を観測する位置や光学的経路
に応じた位相差をΔφとすると、 I = I1 + I2 +2〔(I1 ×I2 )〕1/2 cos(Δφ)(1) 強度Iは、cos(Δφ)=1で最大(明)、cos
(Δφ)=−1で最小(暗)となる。通常、Δφ=0°
で最大(明)、Δφ=180°で最小(暗)とする。し
たがって、透明領域を通る光束1の光強度I1 と光束2
の光強度I2 が等しくなる、光束2がサンプルの透明領
域を通る場合において、位相調整部を変化させて、Iが
最大(Imax )と最小(Imin )になった値を記録す
る。このとき、I1 =I2 =I0 で、(1)より、 Imax =4I0 (2) Imin =0 次に、光束1は透明領域を通るままにして、光束2が半
遮光領域を透過するようにサンプルの位置を設定する
と、半遮光パターンのエッジ部にはaに応じた光強度の
干渉パターンが生じる。このときも位相調整部を変化さ
せ、Iが最大(Imax )と最小(Imin )になった値を
記録する。ここで、相対透過率を
、 I2 =aI1 (a:相対透過率、0<a≦1) (3) と定義すると、(1)式と透明領域透過の光束1の光強
度は、I1 =I0 であることから、 Imax =〔1+a+2(a)1/2 〕I0 (4) Imin =〔1+a−2(a)1/2 〕I0 (5) コントラストCを次式で定義すると、 C=(Imax −Imin )/(Imax +Imin ) (6) (4)、(5)、(6)式から C=2(a)1/2 /(1+a) (7) 又、相対透過率aは、 a=(Imax +Imin )/2I0 −1 (8) であらわされ、結局、(6)、(7)式よりImax 、I
min の値、もしくは、(8)式よりImax 、Imin 、I
0 の値から相対透過率aを求めることができる。このよ
うに、本発明の透過率測定は、光束1が透明領域を通
り、光束2が半遮光領域を透過するようにサンプル位置
を設定した場合の上記Imax 、Imin の測定、もしく
は、このImax 、Imin の測定と、光束1が透明領域を
通り、光束2も透明領域を透過するようにサンプル位置
を設定した場合の上記Imax の測定からI0 を得て、相
対透過率aを求めるものである。
The measuring principle of the present invention is as follows.
When the measurement light having linearly polarized light is birefringently separated into two light beams, the polarization planes thereof are different by 90 °. When the two light fluxes are recombined after passing through the sample, interference occurs, and the pattern image changes brightly and darkly to form interference fringes. The light intensity I of the interference fringes is 1 and 2 after the sample is transmitted.
Intensity of each of I 1 , I 2 and light wave of E
1, when E 2, E 1 = A 1 exp (-2πω 1 t) E 2 = A 2 exp than be expressed as (-2πω 2 t), I = [E 1 + E 2] 2 = [A 1 exp (-2πω
1 t) + A 2 exp (−2πω 2 t)] 2 = A 1 2 +
A 2 2 + 2A 1 A 2 cos (Δφ), where Δφ is the phase difference according to the position at which the interference fringes of the two light beams are observed and the optical path, I = I 1 + I 2 +2 [(I 1 × I 2 )] 1/2 cos (Δφ) (1) The intensity I is maximum (bright) at cos (Δφ) = 1, cos
It becomes the minimum (dark) when (Δφ) = − 1. Normally, Δφ = 0 °
Is the maximum (bright), and Δφ = 180 ° is the minimum (dark). Therefore, the light intensity I 1 of the light flux 1 and the light flux 2 that pass through the transparent region
When the light flux 2 has the same light intensity I 2 and passes through the transparent region of the sample, the phase adjusting unit is changed to record the values at which I becomes maximum (I max ) and minimum (I min ). At this time, I 1 = I 2 = I 0 , and from (1), I max = 4I 0 (2) I min = 0 Then, the light flux 1 is allowed to pass through the transparent area, and the light flux 2 is left in the semi-shielded area. When the position of the sample is set so as to pass through, an interference pattern having a light intensity corresponding to a is generated at the edge portion of the semi-shielding pattern. At this time as well, the phase adjustment unit is changed and the values at which I becomes maximum (I max ) and minimum (I min ) are recorded. Where the relative transmittance is
, I 2 = aI 1 (a: relative transmittance, 0 <a ≦ 1) If defined as (3), the light intensity of the light flux 1 transmitted through the formula (1) and the transparent region is I 1 = I 0 Therefore , I max = [1 + a + 2 (a) 1/2 ] I 0 (4) I min = [1 + a-2 (a) 1/2 ] I 0 (5) When the contrast C is defined by the following equation, C = ( I max −I min ) / (I max + I min ) (6) From equations (4), (5) and (6), C = 2 (a) 1/2 / (1 + a) (7) Further, the relative transmittance a is represented by a = (I max + I min ) / 2I 0 −1 (8), and eventually I max and I from the equations (6) and (7).
The value of min , or I max , I min , and I from equation (8)
The relative transmittance a can be obtained from the value of 0 . As described above, the transmittance measurement of the present invention is performed by measuring the above-mentioned I max and I min when the sample position is set so that the light flux 1 passes through the transparent region and the light flux 2 passes through the semi-shielded region, or I max, as the measurement of I min, the light beam 1 is a transparent region, with the I 0 from the measurement of the I max in the case of setting the sample position so that the light beam 2 is also transmitted through the transparent region, the relative transmission a Is to seek.

【0006】[0006]

【作用】本発明の透過率測定方法は、このような構成に
することにより、ハーフトーン型の位相シフトフオトマ
スクにようなミクロンオーダーの微細な半遮光領域(パ
ターン領域)の透過率の測定を該半遮光領域近傍の透明
領域(非パターン領域)を基準とし、直接、その箇所
で、i線365nm等の転写時に使用する波長で、測定
することを可能としている。そして、本発明の透過率測
定装置は、水銀灯光源と単一波長のみ取り出すフイルタ
ーと偏光子とからなる、所定の波長の直線偏光を供給す
る直線偏光供給手段と、前記直線偏光を偏光方向の異な
る2光束に分離する複屈折分離手段とを有しており、干
渉性の良い2光束をつくり出している。又、コントラス
ト検出器を用いていることにより、2光束の位相差調整
に対応して、簡単に干渉光の強度の最大値、最小値をも
とめることができる。結局、このような構成にすること
により、簡単にミクロンオーダーの幅を持つ微小な領域
での透過率の測定を可能にしている。
According to the transmittance measuring method of the present invention, by adopting such a constitution, the transmittance of a microscopic semi-light-shielding area (pattern area) such as a halftone type phase shift photomask can be measured. Using a transparent region (non-patterned region) near the semi-shielded region as a reference, it is possible to directly measure at that position at a wavelength used for transfer such as i-line 365 nm. The transmittance measuring device of the present invention comprises a linearly polarized light supply means for supplying linearly polarized light of a predetermined wavelength, which comprises a mercury lamp light source, a filter for extracting only a single wavelength, and a polarizer, and the linearly polarized light having different polarization directions. It has a birefringence separating means for separating it into two light beams, and produces two light beams with good coherence. Further, by using the contrast detector, it is possible to easily find the maximum and minimum values of the intensity of the interference light in correspondence with the phase difference adjustment of the two light fluxes. After all, with such a configuration, it is possible to easily measure the transmittance in a minute region having a width of the order of microns.

【0007】[0007]

【実施例】本発明透過率測定方法の実施例を以下、図に
そって説明する。図1は測定装置概略図、図2はハーフ
トーン型の位相シフトフオトマスクにおける半遮光パタ
ーン部を含む領域の断面図で、図2に示すハーフトーン
型の位相シフトフオトマスクを測定サンプルとして、図
1の装置を用い、半透明パターン領域における透過率の
測定をした。先ず、測定サンプルであるハーフトーン型
の位相シフトフオトマスクを、図1のXYZステージ1
5上に載せ、測定すべき所定の箇所をステージ15を動
かし決める。次いで、対物レンズ5を透過した、振幅、
位相が等しい、可干渉性のある所定波長の2光束をそれ
ぞれ、図2のように、半透明パターン領域21と、隣接
する透明パターン領域22とに通過させ、それぞれを透
過した光束A、光束Bを再結合させる。この再結合した
光についての干渉パターン像を撮像管12にて写し、2
56階調のTVモニターにて、光の強度測定を行った。
尚、測定値はレベル0から255の範囲で表示した。こ
の干渉パターンの強度には位相シフター層による位相変
化分も加わっているため位相調整板9により、干渉パタ
ーンの光強度が最大、最小となる値をそれぞれ測定し、
演算処理することによって、測定サンプルの非パターン
領域とシフターパターン領域の相対透過率を算出した。
図2のサンプルにおいては、透明領域を透過した光束A
と半遮光領域を透過した光束Bの干渉パターンの光強度
の最大値Imax 測定値は95となり、最小値Imin の測
定値は30となり、これより、相対透過率7.9%を得
ることができた。以下、上記測定に使用した測定装置に
ついて図1にそって詳述する。i線(365nm)にお
ける測定を行う為、光源に高圧水銀ランプ1と干渉フイ
ルター2を用い、単一波長i線(365nm)を供給す
る光源とし、偏光子3により単一波長i線(365n
m)の直線偏光とした。次いで、ノマルスキープリズム
4によって偏光方向の異なる2光束に分離し、×50紫
外線対物レンズ5によって、2光束を被測定サンプル6
に投影した。このときの被測定サンプル6上での2光束
のシエアリング量は0.5μmであった。被測定サンプ
ル6の任意のパターンが測定できるようサンプル6はX
YZステージ15上に設置される。被測定パターンを透
過した2光束を結像する紫外線対物レンズ7には検査光
投影レンズと同一のものを用い、また対物レンズを透過
した2光束を再結合させるために2光束分離に用いたも
のとシエアリング量が等しいノマルスキープリズム8を
用いた。位相調整部9と、2光束の偏光面の等しい成分
の干渉パターン像を得るために検光子10を回転させ直
線偏光面を選択する。この干渉像を拡大レンズ11によ
り紫外線に感度を持つ撮像管12に投影し、コントラス
トを測定するための画像処理部13において光強度を2
56階調にし測定する。測定により得られた値を、演算
処理部14にて演算処理して、相対透過率を得る。
EXAMPLES Examples of the transmittance measuring method of the present invention will be described below with reference to the drawings. 1 is a schematic view of a measuring apparatus, FIG. 2 is a sectional view of a region including a semi-shielding pattern portion in a halftone type phase shift photomask, and the halftone type phase shift photomask shown in FIG. 2 is used as a measurement sample. The transmittance of the translucent pattern area was measured using the apparatus of No. 1. First, a halftone type phase shift photomask, which is a measurement sample, is attached to the XYZ stage 1 of FIG.
Then, the stage 15 is moved to determine a predetermined position to be measured. Then, the amplitude transmitted through the objective lens 5,
As shown in FIG. 2, two light fluxes having the same phase and coherent wavelengths and having coherence are passed through the semitransparent pattern area 21 and the adjacent transparent pattern area 22, respectively, and the light flux A and the light flux B which have respectively passed therethrough. Rejoin. The interference pattern image of the recombined light is photographed by the image pickup tube 12, and 2
The light intensity was measured on a 56-tone TV monitor.
The measured values are displayed in the range of levels 0 to 255. Since the phase change amount due to the phase shifter layer is added to the intensity of this interference pattern, the phase adjusting plate 9 measures the maximum and minimum values of the optical intensity of the interference pattern,
The relative transmittance of the non-pattern area and the shifter pattern area of the measurement sample was calculated by arithmetic processing.
In the sample of FIG. 2, the luminous flux A transmitted through the transparent area
And the maximum value I max of the light intensity of the interference pattern of the light flux B transmitted through the semi-shielded region is 95, and the minimum value I min is 30, the relative transmittance is 7.9%. I was able to. Hereinafter, the measuring device used for the above measurement will be described in detail with reference to FIG. In order to perform measurement at the i-line (365 nm), the high-pressure mercury lamp 1 and the interference filter 2 are used as the light source, and the light source for supplying the single-wavelength i-line (365 nm) is used.
m) linearly polarized light. Then, the Nomarski prism 4 separates the two light beams with different polarization directions, and the x50 ultraviolet objective lens 5 separates the two light beams into the sample 6 to be measured.
Projected on. At this time, the shearing amount of the two light fluxes on the measured sample 6 was 0.5 μm. The sample 6 is X so that any pattern of the sample 6 to be measured can be measured.
It is installed on the YZ stage 15. The same ultraviolet objective lens as the inspection light projection lens is used for the ultraviolet light objective lens 7 that forms two light beams that have passed through the pattern to be measured, and that is used for two light beam separation to recombine the two light beams that have passed through the objective lens. The Nomarski prism 8 having the same shear ring amount was used. The phase adjusting unit 9 and the analyzer 10 are rotated to obtain an interference pattern image of the same component of the polarization planes of the two light fluxes, and the linear polarization plane is selected. This interference image is projected by the magnifying lens 11 onto the image pickup tube 12 that is sensitive to ultraviolet rays, and the light intensity is set to 2 in the image processing unit 13 for measuring the contrast.
Measure with 56 gradations. The value obtained by the measurement is arithmetically processed by the arithmetic processing unit 14 to obtain the relative transmittance.

【0008】[0008]

【発明の効果】上記のような構成にすることにより、本
発明の透過率測定方法、及び、装置は、微小領域での透
過率測定を可能とするもので、ハーフトーン型の位相シ
フトフオトマフクおける微細パターンの半透明部分の透
過率の測定を可能としている。
With the above-described structure, the transmittance measuring method and apparatus of the present invention enable the transmittance measurement in a minute area, and is a halftone type phase shift photometer. It is possible to measure the transmissivity of the semi-transparent part of the fine pattern in Fuku.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における装置概略図FIG. 1 is a schematic view of an apparatus according to an embodiment of the present invention.

【図2】本発明実施例における被測定サンプル物断面図FIG. 2 is a sectional view of the sample to be measured in the example of the present invention.

【符号の説明】[Explanation of symbols]

1 高圧水銀ランプ 2 干渉フイルター 3 偏光子 4 ノマルスキープリズム 5 紫外線対物レンズ 6 被測定サンプル 7 紫外線対物レンズ 8 ノマルスキープリズム 9 位相調整板 10 検光子 11 拡大レンズ 12 撮像管 13 画像処理部 14 演算処理部 15 XYZステージ A 半透明パターン領域透過光束 B 透明非パターン領域透過光束 21 半透明パターン領域 22 透明非パターン領域 1 High-pressure mercury lamp 2 Interference filter 3 Polarizer 4 Nomarski prism 5 Ultraviolet objective lens 6 Sample to be measured 7 Ultraviolet objective lens 8 Nomarski prism 9 Phase adjusting plate 10 Analyzer 11 Magnifying lens 12 Image pickup tube 13 Image processing unit 14 Arithmetic processing unit 15 XYZ stage A semi-transparent pattern area transmitted light flux B transparent non-pattern area transmitted light flux 21 semi-transparent pattern area 22 transparent non-pattern area

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定波長の光に対する透明領域と、該所
定波長の透過光に対し透明領域との位相差を与える半透
明領域とを有する部材の、微小半透明領域の所定波長に
おける光透過率を、該微小半透明領域近傍の、透明領域
の透過光を基準とした光強度比でもってあらわした、相
対透過率の測定方法であって、振幅、位相が等しい、可
干渉性のある所定波長の2光束をそれぞれ、微小半透明
領域と該微小半透明領域近傍の、透明領域とに通過させ
た後に、微小半透明領域を通過後の光束と、該微小半透
明領域近傍の、透明領域を通過後の光束とを干渉させ、
得られる干渉光の位相を調整することにより、干渉光の
強度の最大値Imax 、最小値Imin とを得、この2値か
ら相対的な透過率を求めることを特徴とする透過率測定
方法。
1. A light transmittance at a predetermined wavelength of a minute semitransparent region of a member having a transparent region for a light of a predetermined wavelength and a semitransparent region for giving a phase difference between the transmitted light of the predetermined wavelength and the transparent region. Is a method for measuring relative transmittance, which is represented by a light intensity ratio based on transmitted light in a transparent region in the vicinity of the minute semi-transparent region, and has a predetermined wavelength with equal coherence and amplitude and phase. After passing through the minute semitransparent region and the transparent region in the vicinity of the minute semitransparent region, the light fluxes after passing through the minute semitransparent region and the transparent region in the vicinity of the minute semitransparent region are Interferes with the light flux after passing,
By adjusting the phase of the obtained interference light, the maximum value I max and the minimum value I min of the intensity of the interference light are obtained, and the relative transmittance is determined from these two values, the transmittance measuring method. .
【請求項2】 請求項1において、干渉光の強度の最大
値Imax 、最小値Imin の2値と、(Imax −Imin
/(Imax +Imin )=2(a)1/2 /(1+a)の関
係式とから、演算処理により、相対透過率aを求めるこ
とを特徴とする透過率測定方法。
2. The binary value of the maximum value I max and the minimum value I min of the intensity of the interference light according to claim 1, and (I max −I min ).
A transmittance measuring method characterized in that the relative transmittance a is obtained by a calculation process from a relational expression of / (I max + I min ) = 2 (a) 1/2 / (1 + a).
【請求項3】 請求項1において、干渉光の強度の最大
値Imax 、最小値Imin の2値と、このときの微小半透
明領域近傍の、透明領域透過の光強度I0と、a=(I
max +Imin )/2I0 −1、の関係式とから、演算処
理により、相対透過率a求めることを特徴とする透過率
測定方法。
3. The binary value of the maximum value I max and the minimum value I min of the intensity of the interference light, the light intensity I 0 of the transparent region transmission near the minute semi-transparent region at this time, and a = (I
A transmittance measuring method, characterized in that a relative transmittance a is obtained by arithmetic processing from a relational expression of max + I min ) / 2I 0 −1.
【請求項4】 請求項3において、微小半透明領域近傍
の、透明領域透過光強度I0 を、微小半透明領域近傍
の、透明領域を通過後の2光束を干渉させ、得られる干
渉光の位相を調整をすることにより、干渉光の強度の最
大値4I0 を得、この値から求めることを特徴とする透
過率測定方法。
4. The interference light obtained according to claim 3, wherein the transmitted light intensity I 0 in the transparent region in the vicinity of the minute semi-transparent region is caused to interfere with two light beams after passing through the transparent region in the vicinity of the minute semi-transparent region. A transmittance measuring method characterized in that a maximum value 4I 0 of the intensity of interference light is obtained by adjusting the phase, and the maximum value 4I 0 is obtained from this value.
【請求項5】 請求項1ないし4において、測定対象部
材がハーフトーン型位相シフトフオトマスクであり、該
フオトマスクの半遮光領域の所定波長における透過率
を、透明領域との光強度比でもって、相対透過率として
あらわしたことを特徴とする透過率測定方法。
5. The member to be measured according to claim 1, wherein the member to be measured is a halftone type phase shift photomask, and the transmittance at a predetermined wavelength of the semi-shielded region of the photomask is represented by a light intensity ratio with the transparent region. A method for measuring transmittance, which is expressed as relative transmittance.
【請求項6】 所定波長の光に対する透明領域と、該所
定波長の透過光に対し透明領域との位相差を与える半透
明領域とを有する部材の、微小半透明領域の所定波長に
おける光透過率を、該微小半透明領域近傍の、透明領域
の透過光を基準とした光強度比でもってあらわした、相
対透過率の測定装置であって、水銀灯光源と単一波長の
み取り出すフイルターと偏光子とからなる、上記所定の
波長の直線偏光を供給する直線偏光供給手段と、前記直
線偏光を偏光方向の異なる2光束に分離する複屈折分離
手段と、前記2光束をれぞれ前記被投影原版に照射する
単一のコンデンサーレンズ系と、前記2光束による前記
パターン像を結像する単一のレンズ系と、該対物レンズ
を通過した前記2光束を再結合させる複屈折結合手段
と、前記2光束の位相差を変化させる位相差調整手段と
を備え、且つ、該複屈折結合手段により再結合された光
束のパターンのコントラストを、位相差調整手段による
調整に対応して、測定するための検出器と、測定された
値を演算処理する演算処理部とを備えていることを特徴
とする、透過率測定装置。
6. A light transmissivity at a predetermined wavelength of a minute semitransparent region of a member having a transparent region for light of a predetermined wavelength and a semitransparent region for imparting a phase difference between the transmitted light of the predetermined wavelength and the transparent region. In the vicinity of the minute semi-transparent region, which is represented by a light intensity ratio based on the transmitted light in the transparent region, which is a relative transmittance measuring device, wherein a mercury lamp light source, a filter for extracting only a single wavelength, and a polarizer are provided. A linearly polarized light supplying means for supplying linearly polarized light of the predetermined wavelength, a birefringence separating means for separating the linearly polarized light into two light beams having different polarization directions, and the two light beams to the projection original plate, respectively. A single condenser lens system for irradiating, a single lens system for forming the pattern image by the two light fluxes, a birefringence coupling means for recombining the two light fluxes passing through the objective lens, and the two light fluxes Phase of A phase difference adjusting means for changing the difference, and a detector for measuring the contrast of the pattern of the light beam recombined by the birefringence combining means, corresponding to the adjustment by the phase difference adjusting means, A transmittance measuring device, comprising: an arithmetic processing unit that arithmetically processes measured values.
【請求項7】 請求項6において、所定波長がi線36
5nmであることを特徴とする透過率測定装置。
7. The i-line 36 according to claim 6, wherein the predetermined wavelength is i-line.
A transmittance measuring device having a thickness of 5 nm.
JP26774193A 1993-10-01 1993-10-01 Transmittance measurement method and apparatus Expired - Lifetime JP3324013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26774193A JP3324013B2 (en) 1993-10-01 1993-10-01 Transmittance measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26774193A JP3324013B2 (en) 1993-10-01 1993-10-01 Transmittance measurement method and apparatus

Publications (2)

Publication Number Publication Date
JPH07104458A true JPH07104458A (en) 1995-04-21
JP3324013B2 JP3324013B2 (en) 2002-09-17

Family

ID=17448931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26774193A Expired - Lifetime JP3324013B2 (en) 1993-10-01 1993-10-01 Transmittance measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP3324013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059268A (en) * 2010-09-10 2012-03-22 Dimensional Photonics International Inc Data capturing method for three-dimensional imaging
JP2015225257A (en) * 2014-05-28 2015-12-14 大日本印刷株式会社 Photomask inspection method and photomask manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059268A (en) * 2010-09-10 2012-03-22 Dimensional Photonics International Inc Data capturing method for three-dimensional imaging
US9436868B2 (en) 2010-09-10 2016-09-06 Dimensional Photonics International, Inc. Object classification for measured three-dimensional object scenes
JP2015225257A (en) * 2014-05-28 2015-12-14 大日本印刷株式会社 Photomask inspection method and photomask manufacturing method

Also Published As

Publication number Publication date
JP3324013B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US20210349403A1 (en) Method of Determining a Characteristic of a Structure, and Metrology Apparatus
EP3483657B1 (en) Metrology apparatus for lithography and corresponding metrology method
US7239375B2 (en) Illumination apparatus, exposure apparatus and device manufacturing method
EP2048542A2 (en) Alignment method and apparatus, lithographic apparatus, metrology apparatus and device manufacturing method
CN111226174B (en) Metrology apparatus, lithographic system and method of measuring a structure
JPH08272070A (en) Method and apparatus for monitoring of lithographic exposure
US7428059B2 (en) Measurement method and apparatus, exposure apparatus, and device manufacturing method
JP2005326409A (en) Measuring instrument for inspecting object optically, and operation method for measuring instrument
JP2000138164A (en) Position detector and aligner using it
JPH07159978A (en) Method for inspecting phase shift mask and inspecting device used for the method
JP2003007598A (en) Focus monitoring method, focus monitor and method for manufacturing semiconductor device
US6122056A (en) Direct phase shift measurement between interference patterns using aerial image measurement tool
US5774205A (en) Exposure and method which tests optical characteristics of optical elements in a projection lens system prior to exposure
US7042577B1 (en) Architectures for high-resolution photomask phase metrology
JPH04321047A (en) Device and method for inspecting photomask
US6556286B1 (en) Inspection system for the pupil of a lithographic tool
JPH07104458A (en) Transmission factor measuring method and device
JP2006279017A (en) Apparatus and method for exposure, measurement apparatus, and method of manufacturing device
JP3984710B2 (en) Exposure method and exposure apparatus
JPH10232185A (en) Method for measuring aberration of projection optical system
JP3067191B2 (en) Phase difference measuring apparatus and method
JP2004348050A (en) Photomask, inspection method and method for manufacturing semiconductor device
JPH04318550A (en) Defect inspecting device
JP3123543B2 (en) Exposure method and exposure apparatus
JPH07280657A (en) Phase difference measuring apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

EXPY Cancellation because of completion of term