JPH07103439B2 - Amorphous metal wire - Google Patents
Amorphous metal wireInfo
- Publication number
- JPH07103439B2 JPH07103439B2 JP13087087A JP13087087A JPH07103439B2 JP H07103439 B2 JPH07103439 B2 JP H07103439B2 JP 13087087 A JP13087087 A JP 13087087A JP 13087087 A JP13087087 A JP 13087087A JP H07103439 B2 JPH07103439 B2 JP H07103439B2
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- wire
- added
- toughness
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005300 metallic glass Substances 0.000 title claims description 17
- 239000000203 mixture Substances 0.000 claims description 10
- 238000005260 corrosion Methods 0.000 description 23
- 230000007797 corrosion Effects 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 15
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 238000009987 spinning Methods 0.000 description 12
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000000110 cooling liquid Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910008423 Si—B Inorganic materials 0.000 description 3
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Ropes Or Cables (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は,Fe−Cr−Si−Bからなる非晶質合金が有する
疲労特性又は耐蝕性に優れた性質を維持しながら,Coを
添加することによって靭性が改良された断面が円形な非
晶質金属細線に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention adds Co while maintaining the excellent fatigue properties and corrosion resistance of an amorphous alloy of Fe-Cr-Si-B. The present invention relates to an amorphous metal thin wire having a circular cross section with improved toughness.
(従来の技術) 非晶質金属材料は,その材質の優れた電磁気特性,機械
的特性から種々の実用化研究が進められている。その中
でも,断面が円形なFe系非晶質金属細線については特開
昭56−165016号公報に記載されており,また,疲労特性
に優れたものは特開昭58−213857号公報に,さらに,疲
労特性と靭性に優れたものは特開昭60−106949号公報に
それぞれ記載されている。そして,特に特開昭60−1069
49号公報記載のものは,冷間加工性が改良され,撚り線
への加工が可能であるまでに改良されてきている。(Prior Art) Amorphous metal materials have been studied for various practical applications due to their excellent electromagnetic and mechanical properties. Among them, Fe-based amorphous metal fine wires having a circular cross section are described in JP-A-56-165016, and those having excellent fatigue properties are disclosed in JP-A-58-213857 and further. Those having excellent fatigue characteristics and toughness are described in JP-A-60-106949. And, in particular, JP-A-60-1069
The one described in Japanese Patent Publication No. 49 has improved cold workability and has been improved to the point that it can be processed into a stranded wire.
一方,耐蝕性に優れたFe系非晶質合金については,特開
昭59−193248号公報,特開昭59−13056号公報に記載さ
れているが,耐蝕性と靭性に優れた非晶質金属細線につ
いての提案はない。On the other hand, Fe-based amorphous alloys having excellent corrosion resistance are described in JP-A-59-193248 and JP-A-59-13056, but amorphous alloys having excellent corrosion resistance and toughness are described. There are no proposals for thin metal wires.
(発明が解決しようとする問題点) 前記の金属細線は,適当な径の線に伸線加工されたり,
あるいは伸線される以前の素線の状態や伸線された状態
で撚り加工されたり又は織ったり,編んだりして用いら
れることが非常に多い。これらの加工を行うためには,
疲労特性又は耐蝕性が優れていることは勿論のこと,靭
性にも優れていることが必要であり,靭性に優れていな
いと,上記の加工の途中で金属細線が切断することにな
る。従来の金属細線を,例えばダイヤモンドダイスを用
いて線引すると,原線2000m当り数回から数十回切断す
ることがある。そのため,金属細線の長さは短くなって
商品価値を減ずるとともに,上記の作業効率を低下させ
ることになる。また,撚ったり,織ったり,編んだりす
るような応力のかかる加工を行うと,これも原線2000m
当り数回から数十回切断することがある。(Problems to be solved by the invention) The thin metal wire is drawn into a wire having an appropriate diameter,
Alternatively, it is very often used by twisting, weaving, or knitting in a state of a strand before being drawn or a state of being drawn. In order to perform these processing,
Not only the fatigue property or the corrosion resistance is excellent, but also the toughness is required. If the toughness is not excellent, the fine metal wire will be cut during the above processing. When a conventional thin metal wire is drawn using, for example, a diamond die, it may be cut several to several tens of times per 2000 m of the original wire. Therefore, the length of the thin metal wire is shortened, which reduces the commercial value and also reduces the above work efficiency. Also, when stressed processing such as twisting, weaving, or knitting is performed, this also results in 2000 m of original wire.
It may cut several times to several tens of times.
(問題点を解決するための手段) そこで,本発明者らは,これらの現状に鑑み,Fe−Cr−S
i−Bからなる非晶質合金が有する疲労特性又は耐蝕性
に優れた性質を維持しながら,靭性に優れた非晶質合金
材料を提供することを目的として鋭意研究した結果,特
定のFe−Cr−Si−Bの合金組成に特定量のCoを添加する
ことにより上記の目的が達成され,断面が円形な非晶質
金属細線が得られるという事実及び得られた細線が加工
の途中で切断をほとんど生じないという事実を見い出
し,本発明に到達したものである。(Means for Solving Problems) Therefore, in view of these present circumstances, the present inventors have considered Fe-Cr-S.
As a result of earnest research for the purpose of providing an amorphous alloy material having excellent toughness while maintaining the fatigue characteristics or the corrosion resistance of the amorphous alloy of i-B, a specific Fe- By adding a specific amount of Co to the alloy composition of Cr-Si-B, the above-mentioned object is achieved, and the fact that an amorphous metal fine wire having a circular cross section can be obtained and the obtained fine wire is cut in the middle of processing The present invention has been achieved by finding the fact that the above phenomenon hardly occurs.
すなわち,本発明は,組成式 FeaCobCrcSixBy (53原子%≦a+b≦80原子%で,3原子%≦c≦20原子
%で,かつ0.025c+0.25≦b/(a+b)≦0.012c+0.73
を満足し,5原子%≦x≦15原子%で,5原子%≦y≦15原
子%で,17原子%≦x+y≦27原子%である。)で示さ
れる組成よりなり,靭性に優れた,断面が円形な非晶質
金属細線を要旨とするものである。That is, the present invention provides a composition formula Fe a Co b Cr c Si x B y (53 atomic% ≦ a + b ≦ 80 atomic%, 3 at% ≦ c ≦ 20 atomic%, and 0.025c + 0.25 ≦ b / ( a + b) ≦ 0.012c + 0.73
5 atomic% ≤ x ≤ 15 atomic%, 5 atomic% ≤ y ≤ 15 atomic%, and 17 atomic% ≤ x + y ≤ 27 atomic%. The main point is an amorphous metal fine wire having a circular cross section, which is composed of a composition shown in) and has excellent toughness.
本発明の非晶質金属細線は,疲労特性又は耐蝕性に優
れ,靭性の改良された材料であり,その合金組成は,上
記の特性を満足するために以下のように限定することが
必要である。The amorphous metal thin wire of the present invention is a material having excellent fatigue characteristics or corrosion resistance and improved toughness, and its alloy composition needs to be limited as follows in order to satisfy the above characteristics. is there.
すなわち,靭性を向上させるためには,FeとCoの和は53
原子%以上,80原子%以下で,Cr量は3原子%以上,20原
子%以下で,かつFe,Co,Cr量は0.025c+0.25≦b/(a+
b)≦0.012c+0.73(a:Feの添加原子%,b:Coの添加原
子%,c:Crの添加原子%)なる関係式を満足することが
必要で,FeとCoの和は57原子%以上,76原子%以下で,Cr
量は5原子%以上,18原子%以下で,かつFe,Co,Cr量は
0.025c+0.27≦b/(a+b)≦0.012c+0.68なる関係式
を満足することがより好ましい。That is, in order to improve toughness, the sum of Fe and Co is 53
Atomic% or more and 80 atomic% or less, Cr content of 3 atomic% or more and 20 atomic% or less, and Fe, Co, Cr content of 0.025c + 0.25 ≦ b / (a +
b) ≦ 0.012c + 0.73 (a: Fe added atomic%, b: Co added atomic%, c: Cr added atomic%) must be satisfied, and the sum of Fe and Co must be 57 Atomic% or more, 76 atomic% or less, Cr
The amount is 5 atomic% or more and 18 atomic% or less, and the Fe, Co, Cr contents are
It is more preferable to satisfy the relational expression 0.025c + 0.27 ≦ b / (a + b) ≦ 0.012c + 0.68.
疲労特性は,Crの添加量の増大とともに向上し,約10原
子%以上ではほぼ平衡に達し,また,耐蝕性は,Cr添加
量とともに向上するが,10原子%より少ない添加量で
は,例えば1N濃度の塩酸,硫酸,硝酸中又は海水中では
まだ不十分で,10原子%以上添加することにより,ほぼS
US304並又はそれ以上の耐蝕性を示すが,20原子%より多
く添加すると,Coを最適量添加しても非晶質形成能が大
幅に低下し,靭性の優れた非晶質金属細線は得られな
い。Fatigue properties improve with increasing Cr addition amount, reach almost equilibrium at about 10 atomic% or more, and corrosion resistance improves with Cr adding amount, but with addition amount less than 10 atomic%, for example, 1N Concentrations of hydrochloric acid, sulfuric acid, nitric acid or seawater are still insufficient.
Corrosion resistance equal to or higher than that of US304 is exhibited, but if more than 20 atomic% is added, even if the optimal amount of Co is added, the amorphous forming ability is significantly reduced, and an amorphous metal fine wire with excellent toughness is obtained. I can't.
すなわち,疲労特性又は耐蝕性を向上させるためにCrを
添加するのであるが,優れた靭性を維持するためには,C
rの添加量に対応したFeとCoとの添加比率が重要で,Crの
添加量が少ないときは,Feに対するCoの添加量は少なく,
Crの添加量が増大するに従ってCoの添加量を増大させる
ことが必要である。特に,疲労特性に優れた性質を維持
しながら靭性を向上させるには,Crは3原子%以上,12原
子%以下であって,5原子%以上,10原子%以下が好まし
く,そのときのFeは20原子%以上,40原子%以下であっ
て,25原子%以上,35原子%以下であることが好ましく,C
oは30原子%以上,60原子%以下であって,35原子%以上,
55原子%以下であることが好ましい。That is, Cr is added to improve fatigue properties or corrosion resistance, but in order to maintain excellent toughness, C is added.
The addition ratio of Fe and Co corresponding to the addition amount of r is important.When the addition amount of Cr is small, the addition amount of Co to Fe is small.
It is necessary to increase the amount of Co added as the amount of Cr added increases. In particular, in order to improve toughness while maintaining excellent fatigue properties, Cr is 3 atom% or more and 12 atom% or less, preferably 5 atom% or more and 10 atom% or less. Is 20 atom% or more and 40 atom% or less, preferably 25 atom% or more and 35 atom% or less, C
o is 30 atom% or more and 60 atom% or less, 35 atom% or more,
It is preferably 55 atomic% or less.
また,Si及びBは5原子%以上,15原子%以下であること
が必要で,7原子%以上,15原子%以下であることが好ま
しい。さらに,SiとBの総和は17原子%以上,27原子%以
下であることが必要で,19原子%以上,25原子%以下であ
ることが好ましい。Further, Si and B must be 5 at% or more and 15 at% or less, preferably 7 at% or more and 15 at% or less. Further, the total sum of Si and B must be 17 at% or more and 27 at% or less, preferably 19 at% or more and 25 at% or less.
本発明において,前記のFe−Co−Cr−Si−B系の組成に
より耐蝕性を向上させる目的で,Niを30原子%以下,好
ましくは0.1原子%以上,30原子%以下,Ti,Al及びCuのう
ち少なくとも1種を10原子%以下,好ましくは0.1原子
%以上,10原子%以下,耐熱性,耐蝕性及び機械的特性
を向上させる目的で,Ta,Nb,Mo及びWのうち少なくとも
1種を10原子%以下,好ましくは0.1原子%以上,10原子
%以下,耐熱性及び機械的特性を向上させる目的で,V,M
n及びZrのうち少なくとも1種を10原子%以下,好まし
くは0.1原子%以上,10原子%以下,それぞれ添加するこ
とができる。また,非晶質形成能,強度及び疲労特性を
向上させる目的で,Cを2原子%以下,好ましくは0.1原
子%以上,2原子%以下添加することができる。特にこれ
らの添加元素の中で耐蝕性を向上させるには,Niを1〜2
0原子%,Moを0.5〜5原子%添加することが好ましい。In the present invention, for the purpose of improving the corrosion resistance by the composition of the Fe-Co-Cr-Si-B system, Ni is 30 atomic% or less, preferably 0.1 atomic% or more, 30 atomic% or less, Ti, Al and At least one of Cu is 10 atomic% or less, preferably 0.1 atomic% or more and 10 atomic% or less, and at least 1 of Ta, Nb, Mo and W is used for the purpose of improving heat resistance, corrosion resistance and mechanical properties. Seed content is 10 atomic% or less, preferably 0.1 atomic% or more, 10 atomic% or less. For the purpose of improving heat resistance and mechanical properties, V, M
At least one of n and Zr can be added in an amount of 10 atomic% or less, preferably 0.1 atomic% or more and 10 atomic% or less. Further, for the purpose of improving the amorphous forming ability, strength and fatigue characteristics, C can be added in an amount of 2 atomic% or less, preferably 0.1 atomic% or more and 2 atomic% or less. In particular, in order to improve the corrosion resistance among these additive elements, Ni is added to 1 to 2
It is preferable to add 0 atom% and 0.5 to 5 atom% of Mo.
本発明の細線を製造するのには,前記合金組成を用い,
製造法として特に好ましい回転液中紡糸法により急冷固
化させればよい。回転液中紡糸法としては,特開昭56−
165016号公報に記載されているように,回転ドラムの中
に水を入れ,遠心力でドラム内壁に水膜を形成させ,こ
の水膜中に溶融した合金を約80〜200μm径の紡糸ノズ
ルより噴出し,円形断面を有する細線を得る方法があげ
られる。特に,均一な連続細線を得るには,回転ドラム
の周速度を紡糸ノズルより噴出される溶融金属流の速度
と同速度にするか又はそれ以上にすることが望まれ,特
に,回転ドラムの周速度を紡糸ノズルより噴出される溶
融金属流の速度よりも5〜30%速くすることが好まし
い。また,紡糸ノズルより噴出される溶融金属流とドラ
ム内壁に形成された水膜との角度は,20゜以上が好まし
い。In order to manufacture the thin wire of the present invention, the above alloy composition is used,
It may be solidified by quenching by a spinning method in a rotating liquid which is particularly preferable as a manufacturing method. As a spinning liquid spinning method, Japanese Patent Laid-Open No. 56-
As described in Japanese Patent No. 165016, water is put into a rotating drum, a water film is formed on the inner wall of the drum by centrifugal force, and the alloy melted in the water film is discharged from a spinning nozzle having a diameter of about 80 to 200 μm. There is a method of jetting to obtain a fine wire having a circular cross section. In particular, in order to obtain a uniform continuous thin wire, it is desirable that the peripheral velocity of the rotating drum be equal to or higher than the velocity of the molten metal flow ejected from the spinning nozzle. The speed is preferably 5 to 30% faster than the speed of the molten metal flow ejected from the spinning nozzle. Further, the angle between the molten metal flow ejected from the spinning nozzle and the water film formed on the inner wall of the drum is preferably 20 ° or more.
また,本発明の細線を製造するに好ましい他の方法とし
て,特開昭58−173059号公報に記載されているように,
走行している溝付コンベアベルト上に形成された冷却液
体層に,前記合金組成からなる溶融した合金を約80〜20
0μm径の紡糸ノズルより噴出し,円形断面を有する細
線を得る方法もある。Further, as another preferable method for producing the thin wire of the present invention, as described in JP-A-58-173059,
About 80 to 20 molten alloy consisting of the above alloy composition is added to the cooling liquid layer formed on the running grooved conveyor belt.
There is also a method of ejecting from a spinning nozzle having a diameter of 0 μm to obtain a fine wire having a circular cross section.
本発明の細線は,線径が約50〜250μmであり,しかも,
60%以上,好ましくは80%以上,特に好ましくは90%以
上の真円度を有し,好ましくは線径斑が4%以下の均一
な形状を有する細線である。The thin wire of the present invention has a wire diameter of about 50 to 250 μm, and
It is a fine wire having a roundness of 60% or more, preferably 80% or more, particularly preferably 90% or more, and preferably a uniform shape with a wire diameter unevenness of 4% or less.
(実施例) 以下,本発明を実施例によりさらに具体的に説明する。(Examples) Hereinafter, the present invention will be described more specifically with reference to Examples.
なお,実施例中における引張破断強度,疲労特性,耐蝕
性,靭性及び形状は次のようにして評価した。The tensile rupture strength, fatigue property, corrosion resistance, toughness and shape in the examples were evaluated as follows.
(1) 疲労限(λe) 第1図に示すごとく,水平移動スライダー4及び回転円
板5を有するモデル屈曲疲労試験機(一方向の繰り返し
曲げ試験機)を用い,一定荷重W(単位断面積当り一定
荷重:4kg/mm2)1,一定サイクル数100回/分のもとで,
プーリー2の径を変更して試料3の表面歪(λ)を調整
し,第2図に示すごとく,S−N曲線(試料表面歪(λ)
を縦軸,繰り返し数Nを横軸とする。)を求め,S−N曲
線が水平になるところの試料表面歪をこの試料の疲労限
(λe)とした。(1) Fatigue limit (λe) As shown in FIG. 1, using a model bending fatigue tester (one-way repeated bending tester) having a horizontal slider 4 and a rotating disk 5, a constant load W (unit cross-sectional area) Constant load per load: 4 kg / mm 2 ) 1, under a fixed number of cycles of 100 times / min,
By adjusting the surface strain (λ) of the sample 3 by changing the diameter of the pulley 2, as shown in FIG. 2, the SN curve (sample surface strain (λ)
Is the vertical axis and the number of repetitions N is the horizontal axis. ) Was obtained, and the sample surface strain at which the S-N curve became horizontal was defined as the fatigue limit (λe) of this sample.
また,試料表面歪(λ)は,次式より求めた。The sample surface strain (λ) was calculated from the following equation.
(ただし,tは試料の直径,rはプーリーのの半径を表
す。) (2) 耐蝕性 重量減量法により測定した。 (However, t represents the diameter of the sample and r represents the radius of the pulley.) (2) Corrosion resistance Measured by the weight loss method.
すなわち,20℃で1Nの塩酸,硫酸,硝酸中に8時間浸漬
し,次式より試料の重量残存量(%)を求めた。That is, the sample was immersed in 1N hydrochloric acid, sulfuric acid, and nitric acid at 20 ° C. for 8 hours, and the weight residual amount (%) of the sample was determined by the following formula.
(ただし,ω0は処理前の試料重量,ωは処理後の試料
重量を表す。) (3) 試料の引張破断強度 インストロン型引張試験機を用いて,試料長12cm,歪速
度4.17×10-4/sで測定したS−S曲線より求めた。 (However, ω 0 represents the sample weight before the treatment and ω represents the sample weight after the treatment.) (3) Tensile breaking strength of the sample Using an Instron type tensile tester, sample length 12 cm, strain rate 4.17 × 10 It was determined from the SS curve measured at -4 / s.
(4) 靭性(切/2000m) 金属細線(測定試料3)を,第3図に示すプーリー2
(このときの細線にかかる表面歪を2.2%となるよう
に,細線の直径に応じてプーリーの径を変更する。)に
1回巻きつけ,細線に背応力(40kg/mm2)をかけなが
ら,連続的に送り出しローラ6から試料3を走行させて
巻取ローラ7で巻取ったとき,原線2000m当たりに破断
した数を測定し,評価した。細線にかかる表面歪は,疲
労試験の場合と同様の式で算出した。(4) Toughness (cutting / 2000m) Pulley 2 shown in Fig. 3 with thin metal wire (measurement sample 3)
(Change the pulley diameter according to the diameter of the thin wire so that the surface strain applied to the thin wire will be 2.2%.) Wrap it once and apply back stress (40 kg / mm 2 ) to the thin wire. When the sample 3 was continuously run from the feeding roller 6 and wound by the winding roller 7, the number of breaks per 2000 m of the original wire was measured and evaluated. The surface strain applied to the thin wire was calculated by the same formula as in the fatigue test.
ここでの評価は,撚ったり,織ったり,編んだりするよ
うな応力のかかる加工を行うときの目安になるものであ
る。The evaluation here is a reference when performing stressed processing such as twisting, weaving, or knitting.
(5) 靭性(切/2000m) 0.130mmφの直径を有する非晶質金属細線を,0.150mmφ
〜0.10mmφまで0.005mmピツチでダイヤモンドダイスを
複数個並べ,金属細線を直列に通すタイプの極細線伸線
機にて,100m/分の速度で0.10mmφまで伸線加工を行っ
た。このときの原線2000m当りの切断数を求め,評価し
た。(5) Toughness (cut / 2000m) 0.150mmφ of amorphous metal wire with a diameter of 0.130mmφ
Up to 0.10 mmφ, a plurality of diamond dies were arranged with a 0.005 mm pitch, and an ultrafine wire drawing machine of the type in which thin metal wires were passed in series was drawn to 0.10 mmφ at a speed of 100 m / min. At this time, the number of cuts per 2000 m of the original wire was obtained and evaluated.
ここでの評価は,伸線加工を行うときの目安になるもの
である。The evaluation here is a guide when performing wire drawing.
(6) 形 状 真円度は,同一断面の最長軸直径Rmaxと最短軸直径Rmin
の比とした。また,長さ方向の太さ斑の測定は,10m試料
長中ランダム10点直径を測定し,直径の最大と最小との
差を平均直径で割り,それを100倍して求めた。(6) Shape Roundness is the longest shaft diameter R max and the shortest shaft diameter R min of the same cross section.
And the ratio. The thickness variation in the length direction was determined by measuring the diameter at 10 random points in a 10 m sample length, dividing the difference between the maximum and minimum diameters by the average diameter, and multiplying it by 100.
実施例1〜14,比較例1〜13 表−1に示す種々の組成からなる合金をアルゴン雰囲気
中で溶融した後,アルゴンガス噴出圧4.5kg/cm2で,孔
径0.135mmφのルビー製紡糸ノズルより320r.p.mで回転
している内径600mmφの円筒ドラム内に形成された,温
度4℃,深さ3.0cmの冷却液体中に噴出して急冷固化さ
せ,平均直径1.13mmφの円形断面を有する均一な非晶質
金属細線を得た。Examples 1 to 14 and Comparative Examples 1 to 13 Alloys having various compositions shown in Table 1 were melted in an argon atmosphere, and then an argon gas jet pressure of 4.5 kg / cm 2 was applied to the ruby spinning nozzle having a hole diameter of 0.135 mmφ. Uniformly with a circular cross section with an average diameter of 1.13 mmφ, sprayed into a cooling liquid with an internal diameter of 600 mmφ rotating at 320 rpm and spun into a cooling liquid with a temperature of 4 ° C and a depth of 3.0 cm to solidify rapidly. A thin amorphous metal wire was obtained.
このときの紡糸ノズル先端と回転冷却液体表面との距離
を1mmに保持し,紡糸ノズルより噴出された溶融金属流
とその回転冷却液表面とのなす角は70゜とした。At this time, the distance between the tip of the spinning nozzle and the surface of the rotating cooling liquid was kept at 1 mm, and the angle between the molten metal flow ejected from the spinning nozzle and the surface of the rotating cooling liquid was 70 °.
なお,溶融金属流の紡糸ノズルからの噴出速度は,大気
中に一定の時間噴出して集められた金属重量から測定
し,約570m/分になるように噴出アルゴンガス圧を調整
した。The jetting speed of the molten metal flow from the spinning nozzle was measured from the weight of metal collected by jetting into the atmosphere for a certain period of time, and the jetting argon gas pressure was adjusted to about 570 m / min.
得られた非晶質金属細線の引張破断強度,疲労特性及び
靭性を,温度20℃,相対湿度65%大気中で測定した。Tensile rupture strength, fatigue properties and toughness of the obtained amorphous metal wires were measured in the atmosphere at a temperature of 20 ° C and a relative humidity of 65%.
その結果を表−1にまとめて示す。The results are summarized in Table-1.
また,得られた代表的な非晶質金属細線の耐蝕性を,20
℃で1N濃度の塩酸,硫酸又は硝酸液中に8時間浸漬させ
る重量減量法で測定した。In addition, the corrosion resistance of the obtained typical amorphous metal thin wire was
It was measured by a weight loss method in which it was immersed in a 1N hydrochloric acid, sulfuric acid or nitric acid solution at 8 ° C for 8 hours.
その結果を表−2にまとめて示す。The results are summarized in Table-2.
なお,比較のため,一般に現在使用されている耐蝕線材
SUS304(130μmφ)について同一方法で測定した結果
も示す。For comparison, generally used corrosion-resistant wire
The results obtained by the same method for SUS304 (130 μmφ) are also shown.
表−1及び表−2より,比較例1はCrの添加量が0であ
るため,疲労性能及び耐蝕性が低く,靭性も十分でな
く,比較例2,3はCoを含有しないため,靭性が十分でな
いことが明らかである。 From Table-1 and Table-2, in Comparative Example 1, the amount of Cr added was 0, so the fatigue performance and corrosion resistance were low, and the toughness was not sufficient. In Comparative Examples 2 and 3, Co Is clearly not enough.
また,比較例4はCrの添加量の割にはCoの添加量が多
く,従って,Feの添加量が少ないため,0.025c+0.25≦b/
(a+b)≦0.012c+0.73を満足していないため(a=
6,b=65,c=7より,b/(a+b)=0.92,0.012c+0.73
=0.81となり,上式を満足しない。),靭性は十分でな
い。これに対して比較例5及び比較例7は,逆にCrの添
加量の割にはFeの添加量が多すぎ,従って,Co含量が少
ないため,0.025c+0.25≦b/(a+b)≦0.012c+0.73
を満足していないため(比較例5においては,a=60,b=
11,c=7より,0.025c+0.25=0.43,b/(a+b)=0.15
となり,上式を満足しない。また,比較例7において
は,a=30,b=34,c=14より,0.025c+0.25=0.60,b/(a
+b)=0.53となり,上式を満足しない。),靭性は十
分でない。比較例6はCrの添加量が少ないため,疲労特
性及び靭性が十分でなく,比較例8はCrの添加量が多す
ぎるため,靭性が十分でない。In Comparative Example 4, the amount of Co added was large relative to the amount of Cr added, and therefore the amount of Fe added was small, so that 0.025c + 0.25 ≦ b /
(A + b) ≦ 0.012c + 0.73 is not satisfied (a =
6, b = 65, c = 7, b / (a + b) = 0.92,0.012c + 0.73
= 0.81, which does not satisfy the above formula. ), The toughness is not sufficient. On the other hand, in Comparative Examples 5 and 7, on the contrary, the amount of Fe added was too large for the amount of Cr added, and therefore the Co content was small, so 0.025c + 0.25 ≦ b / (a + b) ≦ 0.012c + 0.73
Is not satisfied (in Comparative Example 5, a = 60, b =
From 11, c = 7, 0.025c + 0.25 = 0.43, b / (a + b) = 0.15
Therefore, the above equation is not satisfied. In Comparative Example 7, since a = 30, b = 34, c = 14, 0.025c + 0.25 = 0.60, b / (a
+ B) = 0.53, which does not satisfy the above formula. ), The toughness is not sufficient. In Comparative Example 6, since the amount of Cr added is small, the fatigue characteristics and toughness are not sufficient, and in Comparative Example 8, the amount of Cr added is too large, and the toughness is not sufficient.
さらに,比較例9はSiの添加量が少なすぎ,比較例10は
逆にSiの添加量が多すぎ,比較例11はSiとBの和が多す
ぎ,比較例12はBの添加量が少なすぎるので,いずれも
連続した(約2000m)金属細線が得られなかった。比較
例13はBの添加量が多いため,靭性が十分ではない。Further, in Comparative Example 9, the amount of Si added was too small, in Comparative Example 10, the amount of Si added was too large, in Comparative Example 11, the sum of Si and B was too large, and in Comparative Example 12, the amount of B added was too large. Since it was too small, no continuous (approximately 2000 m) thin metal wire was obtained. In Comparative Example 13, the toughness is not sufficient because the amount of B added is large.
これに対して実施例1〜14は,靭性が優れていることが
明らかである。そして,表−1及び表−2より明らかな
ごとく,疲労限及び耐蝕性はCrの添加量とともに向上傾
向を示している。しかし,疲労限はCr量が約9原子%程
度(実施例3で疲労限1.20)でほぼ平衡となり,それ以
上添加しても(実施例8で疲労限は1.30),それほど疲
労限の向上は期待できない。On the other hand, it is clear that Examples 1 to 14 have excellent toughness. As is clear from Tables 1 and 2, the fatigue limit and corrosion resistance tend to improve with the amount of Cr added. However, the fatigue limit is almost equilibrium when the Cr content is about 9 atomic% (fatigue limit 1.20 in Example 3), and even if more Cr is added (fatigue limit 1.30 in Example 8), the fatigue limit is not so much improved. I can't expect.
一方,耐蝕性はCr7原子%程度(実施例2)の添加量で
は十分でなく,Cr9原子%にMo2原子%(実施例12)併用
添加又はCr12.5原子%(実施例6)以上添加することに
より,SUS304位上の優れた耐蝕性を示し,Cr12.5原子%に
Mo2原子%併用添加した実施例13で,非常に耐蝕性の優
れた非晶質金属細線が得られた。On the other hand, the corrosion resistance is not sufficient with the addition amount of about 7 atomic% of Cr (Example 2), and 9 atomic% of Cr is added together with 2 atomic% of Mo (Example 12) or more than 12.5 atomic% of Cr (Example 6) is added. It shows excellent corrosion resistance on SUS304, and it has a Cr content of 12.5 atomic%.
In Example 13 in which Mo2 atom% was added in combination, an amorphous metal thin wire having extremely excellent corrosion resistance was obtained.
すなわち,疲労特性と耐蝕性を同時に満足させるために
は,Crを10原子%以上添加することがわかった。That is, it was found that Cr is added in an amount of 10 atomic% or more in order to satisfy both fatigue properties and corrosion resistance.
次に,実施例4で得られた非晶質金属細線をプラネタリ
ー型撚線機を用い,7本撚の撚線を50cm/分の速度で1000m
作製したところ,加工中の切断は0であった。このとき
の撚数は195ターン/mであった。Next, using the planetary type twisting machine, the amorphous metal thin wire obtained in Example 4 was twisted into 7 strands at a speed of 50 cm / min for 1000 m.
When manufactured, the cutting during processing was 0. The twist number at this time was 195 turns / m.
また,比較のため,比較例1及び3で得られた非晶質金
属細線で上記と同様に撚加工を試みたが,切断が多発し
てできなかった。For comparison, the amorphous metal thin wires obtained in Comparative Examples 1 and 3 were twisted in the same manner as described above, but the cutting was frequently caused, which failed.
(発明の効果) 本発明の非晶質金属細線は,疲労特性又は耐蝕性に優れ
ているとともに,靭性が改良されているので,加工の途
中で切断がほとんど生じず,伸線加工などあらゆる加工
が工業的な規模で効率よく行うことができる。(Effects of the Invention) The amorphous metal fine wire of the present invention has excellent fatigue characteristics or corrosion resistance, and has improved toughness, so that cutting hardly occurs during processing, and any processing such as wire drawing is performed. Can be efficiently performed on an industrial scale.
第1図は疲労特性を測定するためのモデル屈曲疲労試験
機の概略図,第2図は第1図の装置を用いて測定したS
−N曲線を示す図,第3図は靭性を測定するモデル試験
機の概略図である。 1:単位断面積(mm2)当り一定荷重(4kg/mm2)をかける
ための荷重 2:試料の表面歪を調整するためのプーリー 3:測定試料 4:水平移動スライダー 5:回転円板 6:送り出しローラ 7:巻取りローラFIG. 1 is a schematic diagram of a model bending fatigue testing machine for measuring fatigue characteristics, and FIG. 2 is S measured using the apparatus of FIG.
-N curve and FIG. 3 are schematic views of a model testing machine for measuring toughness. 1: unit area (mm 2) per constant load (4 kg / mm 2) load for applying a 2: pulley for adjusting the surface strain of the sample 3: Measurement Sample 4: horizontal movement slider 5: rotating disk 6 : Feed roller 7: Take-up roller
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 良尚 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 佐々木 みゆり 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 審査官 前田 仁志 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihisa Yamada 23 Uji Kozakura, Uji City, Kyoto Prefecture Central Research Institute of Unitika Co., Ltd. (72) Inventor Miyuri Sasaki 23 Koji Sakura Uji, Uji City, Kyoto Unitika Co., Ltd. Central Research In-house examiner Hitoshi Maeda
Claims (1)
%で,かつ0.025c+0.25≦b/(a+b)≦0.012c+0.73
を満足し,5原子%≦x≦15原子%で,5原子%≦y≦15原
子%で,17原子%≦x+y≦27原子%である。)で示さ
れる組成よりなり,靭性に優れた,断面が円形な非晶質
金属細線。1. A by the composition formula Fe a Co b Cr c Si x B y (53 atomic% ≦ a + b ≦ 80 atomic%, 3 at% ≦ c ≦ 20 atomic%, and 0.025c + 0.25 ≦ b / (a + b ) ≤ 0.012c + 0.73
5 atomic% ≤ x ≤ 15 atomic%, 5 atomic% ≤ y ≤ 15 atomic%, and 17 atomic% ≤ x + y ≤ 27 atomic%. ) Amorphous metal wires with a circular cross section, which have excellent toughness and have the composition shown in).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP87306093A EP0253580B1 (en) | 1986-07-11 | 1987-07-10 | Fine amorphous metal wire |
US07/071,823 US4806179A (en) | 1986-07-11 | 1987-07-10 | Fine amorphous metal wire |
DE8787306093T DE3777478D1 (en) | 1986-07-11 | 1987-07-10 | FINE AMORPHE METAL WIRE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16431086 | 1986-07-11 | ||
JP61-164310 | 1986-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63145742A JPS63145742A (en) | 1988-06-17 |
JPH07103439B2 true JPH07103439B2 (en) | 1995-11-08 |
Family
ID=15790702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13087087A Expired - Lifetime JPH07103439B2 (en) | 1986-07-11 | 1987-05-27 | Amorphous metal wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07103439B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3364299B2 (en) * | 1993-11-02 | 2003-01-08 | ユニチカ株式会社 | Amorphous metal wire |
CN104087877A (en) * | 2014-07-29 | 2014-10-08 | 上海理工大学 | Co-Fe-Si-B-Cr amorphous alloy and preparation method thereof |
CN115786823B (en) * | 2022-12-02 | 2025-05-06 | 新疆大学 | A high entropy bulk amorphous alloy with obvious plasticity and excellent corrosion resistance and preparation method thereof |
-
1987
- 1987-05-27 JP JP13087087A patent/JPH07103439B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63145742A (en) | 1988-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4806179A (en) | Fine amorphous metal wire | |
US4495691A (en) | Process for the production of fine amorphous metallic wires | |
US5535612A (en) | Method and apparatus for drawing wire through a plurality of standard dies at the die positions | |
US6137060A (en) | Multifilament drawn radiopaque highly elastic cables and methods of making the same | |
JP3274504B2 (en) | Wire drawing method and apparatus | |
JPH0461066B2 (en) | ||
EP0147937B1 (en) | Iron-base amorphous alloys having improved fatigue and toughness characteristics | |
US3955390A (en) | Twist drawn wire, process and apparatus for making same | |
JPH0147541B2 (en) | ||
JPH08311788A (en) | Ultra high strength steel wire and steel cord for rubber reinforcement | |
JPH08269647A (en) | Ni-based amorphous metallic filament | |
US3961514A (en) | Twist drawn wire, process and apparatus for making same | |
JPH08253847A (en) | Titanium-zirconium amorphous metal filament | |
JPH07103439B2 (en) | Amorphous metal wire | |
JP2708410B2 (en) | Amorphous metal wire | |
JP2920474B2 (en) | Ultra-high strength steel wire and steel cord for rubber reinforcement | |
JP2906025B2 (en) | High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel | |
JPH07316755A (en) | Al-base amorphous metallic filament | |
JPH0469224B2 (en) | ||
US4415529A (en) | Mn-Based alloy of nonequilibrium austenite phase | |
WO2022030090A1 (en) | Iron alloy, iron alloy wire, and iron alloy stranded wire | |
JP2881648B2 (en) | Stranded wire | |
JP2003526177A (en) | Multifilament nickel-titanium alloy drawn superelastic wire | |
JPH0147540B2 (en) | ||
JPH11269620A (en) | Al base amorphous alloy filament |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071108 Year of fee payment: 12 |