JPH07103423B2 - Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability - Google Patents
Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workabilityInfo
- Publication number
- JPH07103423B2 JPH07103423B2 JP2158586A JP15858690A JPH07103423B2 JP H07103423 B2 JPH07103423 B2 JP H07103423B2 JP 2158586 A JP2158586 A JP 2158586A JP 15858690 A JP15858690 A JP 15858690A JP H07103423 B2 JPH07103423 B2 JP H07103423B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- temperature
- less
- steel sheet
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車外板などで特に超深絞り性が必要とさ
れる用途に適した極めて優れた深絞り加工性を有する極
低炭素冷延鋼板を効率的に製造する方法に係わる。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an ultra-low carbon cold material having extremely excellent deep drawing workability, which is particularly suitable for applications such as automobile outer panels where ultra deep drawing performance is required. The present invention relates to a method for efficiently manufacturing a rolled steel sheet.
(従来の技術) 冷延鋼板の規定であるJIS G 3141SPCE級を超える超深絞
り用冷延鋼板として、極低炭素Ti添加冷延鋼板が発明さ
れ、特公昭44−18066号公報)、冷延鋼板の用途が飛躍
的に広がった。それとともにこの鋼の改善・改良がその
後大いに進められた。現在では、Ti,Nbの複合添加によ
る加工性特に深絞り性の一層の向上やB添加による耐二
次加工性向上等が図られている。これらに対する先行技
術としては、例えば特開昭59−140333号、特開昭61−11
3724号、特開昭61−113725号公報等がある。(Prior Art) An ultra-low carbon Ti-added cold-rolled steel sheet was invented as a cold-rolled steel sheet for ultra-deep drawing exceeding JIS G 3141 SPCE class, which is the standard for cold-rolled steel sheet, and Japanese Patent Publication No. 44-18066). The applications of steel sheets have expanded dramatically. Along with that, the improvement and improvement of this steel has been greatly promoted since then. At present, the workability by adding Ti and Nb in combination, particularly the deep drawability, is further improved, and the secondary workability is improved by adding B. As prior art to these, for example, JP-A-59-140333 and JP-A-61-11.
3724, JP-A-61-113725 and the like.
(発明が解決しようとする課題) この極低炭素Ti添加鋼の冷延・焼鈍後の特性は、高純化
を主とした成分とともに熱延条件の影響が極めて大き
く、そのためその変動による材質のバラツキが生じ、そ
れが歩留まり落ちとなり経済性を損なうという、自動車
用鋼板のような大量消費材にとっては、致命的な欠点が
あった。これはそもそも製鋼で真空脱ガス等が必要で費
用を要する該鋼にあっては極めて大きな問題点であっ
た。(Problems to be solved by the invention) The properties of this ultra-low carbon Ti-added steel after cold rolling / annealing are significantly influenced by the hot rolling conditions as well as the components mainly for high purification. However, this is a fatal drawback for mass-consumable materials such as steel sheets for automobiles, which causes a decrease in yield and impairs economic efficiency. This is an extremely serious problem in the case of the steel, which is costly because it requires vacuum degassing and the like in the first place.
これら極低炭素冷延鋼板はそもそもかなり加工性に優れ
たものであるが、本発明ではそのうちのランクフォード
値(以下値という)で示される深絞り性がより一層向
上した超深絞り性を付与させるとともに、つぎに示す工
業上の安定性を増す製造方法を提供するものである。These ultra-low carbon cold-rolled steel sheets have excellent workability in the first place, but in the present invention, the deep drawability represented by the Rankford value (hereinafter referred to as the value) of them is further improved to give the ultra-deep drawability. In addition to the above, the present invention provides the following manufacturing method for increasing the industrial stability.
(課題を解決するための手段) 本発明はこのような課題に対して、特定成分の高純度鋼
を特定の熱延、特に仕上圧延条件〜巻取までを従来にな
い条件をとることで解決しようとするもので、その骨子
とすところは、mass%で、C:0.0040%以下、N:0.0040%
以下、Mn:0.05〜0.4%、S:0.015%以下、酸可溶Al(以
下sol.Al):0.005〜0.100%、Ti:0.04〜0.085%、B:0.0
001〜0.0010%を含有し、残部不可避的不純物元素から
なる鋼を、1200℃以下に加熱後熱延するにあたり、粗仕
上厚みを45mm以上とし、次式で示される有効ひずみをε
effを45%以上とり、880℃以上の温度で仕上圧延を終了
した後、1s以内に冷却を開始し20℃/s以上の平均冷却速
度で830℃以下まで冷却を行い、続いて680〜800℃の温
度で巻取り、引続き75〜90%の冷延率で冷延を行い、78
0〜870℃の温度で連続焼鈍を行うことを特徴とする加工
性を極めて優れた冷延鋼板の高効率な製造方法である。(Means for Solving the Problem) The present invention solves such a problem by taking a specific hot rolling of a high-purity steel having a specific component, particularly finishing rolling conditions to winding, which are unprecedented. The main point is mass%, C: 0.0040% or less, N: 0.0040%
Below, Mn: 0.05-0.4%, S: 0.015% or less, acid-soluble Al (hereinafter sol.Al): 0.005-0.100%, Ti: 0.04-0.085%, B: 0.0
When steel containing 001 to 0.0010% and the balance unavoidable impurity elements is heated to 1200 ° C or lower and hot-rolled, the rough finish thickness is set to 45 mm or more, and the effective strain represented by the following formula is ε.
After finishing rolling at a temperature of 880 ° C or higher with an eff of 45% or higher, cooling is started within 1 s, cooled to 830 ° C or lower at an average cooling rate of 20 ° C / s or higher, and then 680-800. It is wound at a temperature of ℃, and then cold rolled at a cold rolling rate of 75 to 90%.
This is a highly efficient method for producing a cold-rolled steel sheet having extremely excellent workability, which is characterized by performing continuous annealing at a temperature of 0 to 870 ° C.
ここに、 εeff=最終パス圧下率(%) +1/2最終1段前パス圧下率(%) +1/4最終2段前パス圧下率(%) とする。Here, ε eff = final pass rolling reduction (%) + 1/2 final 1st-stage preceding pass rolling reduction (%) + 1/4 final 2nd-stage preceding pass rolling reduction (%).
すなわち、成分的には通常使用されるNbは使用せずTiを
炭素および窒素の化学量論的等量よりかなり多めに添加
する。これは固溶Tiをある量確保しようとするものであ
る。さらに、熱延にあたり、比較的低温で加熱した後粗
仕上厚を厚くすることで、全仕上圧下率を大きくし、仕
上後段の最終に近いほど圧延の効果が発揮されるような
特定の後段圧下をとる熱延を行った後、その効果をなる
べく凍結すべく速やかに冷却を開始し、かつ高温で巻取
る。That is, Nb which is usually used as a component is not used, and Ti is added in a much larger amount than the stoichiometric equivalents of carbon and nitrogen. This is to secure a certain amount of solid solution Ti. Furthermore, in hot rolling, by heating at a relatively low temperature and increasing the rough finish thickness, the overall finish reduction rate is increased, and a specific post-stage reduction in which the rolling effect is exerted closer to the final finish stage After performing hot rolling, cooling is started immediately to freeze the effect as much as possible, and it is wound at a high temperature.
この効果の機構はいまだ定かではないが、このような高
純度鋼の前処理として熱延板に期待される要件は、細粒
でかつ不純物の極度に少ないマトリックスの提供にある
と考えられる。Although the mechanism of this effect is not yet clear, it is thought that the requirement expected for hot-rolled sheet as a pretreatment for such high-purity steel is to provide a fine-grained matrix with extremely few impurities.
この両者はそもそも相反するもので、また、その制御は
極めて微妙である。しかしながら、全仕上圧下率を大き
くすることで、析出物のひずみ誘起析出が促進されγ中
での析出処理は完全となる。そして仕上終段域を高圧下
とすることで、安定して微細な再結晶γ粒が得られる。The two are in the first place conflicting with each other, and their control is extremely delicate. However, by increasing the total finishing reduction rate, strain-induced precipitation of precipitates is promoted and the precipitation treatment in γ becomes complete. By setting the finishing final stage region under high pressure, fine recrystallized γ grains can be stably obtained.
そして、γ粒の成長、γ−α変態、α粒の成長を通じて
形成される熱延板結晶粒を、圧延後即急冷することによ
り、圧延ままの状態で凍結する。最後にもはやα粒の成
長がほとんどなくなる温度域で巻取り、α中の溶解度の
低いことを利用した析出物の析出・粗大化の徹底をはか
る。Then, the hot-rolled plate crystal grains formed through the growth of the γ grains, the γ-α transformation, and the growth of the α grains are rapidly cooled immediately after rolling, so that the as-rolled state is frozen. Finally, the product is wound in a temperature range where the α-grains are almost no longer grown, and the precipitation and coarsening of the precipitates are thoroughly made by utilizing the low solubility in α.
析出物の粗大化はこのようにγ中およびα中の両方で行
い、熱延細粒化を仕上終段圧下を高め飽和する領域で行
うことで、熱延板での状態を安定して好ましい状態にす
る。Coarsening of the precipitate is thus performed both in γ and in α, and hot rolling grain refinement is performed in a region where the final final stage reduction is increased and saturated, so that the state in the hot rolled sheet is stable and preferable. Put in a state.
(作用) つぎに各要件の作用および数値限定理由について述べ
る。(Operation) Next, the operation of each requirement and the reason for limiting the numerical value will be described.
C,N:C,Nは侵入型固溶元素で集合組織形成に有害とされ
る。したがって通常の極低炭素鋼よりもさらに極力低下
させる必要がある。そのため各々0.0040%以下とする。
好ましくはC:0.0025%、N:0.0020%である。C, N: C, N is an interstitial solid solution element and is harmful to the texture formation. Therefore, it is necessary to further reduce it as much as possible compared with ordinary ultra low carbon steel. Therefore, each is set to 0.0040% or less.
C: 0.0025% and N: 0.0020% are preferable.
Mn:置換型固溶体元素であり、多すぎると鋼を硬化して
延性を害する。しかし、鋼中のSとMnSを形成しSによ
る熱間脆性を避ける役割もあり、そのため0.05〜0.4%
とする。低Mnとしたほうが延性、値ともに向上させる
ので0.15%以下とすることが好ましい。Mn: Substitution type solid solution element. If it is too much, it hardens the steel and impairs ductility. However, it also has the role of forming S and MnS in steel and avoiding hot embrittlement due to S, and therefore 0.05-0.4%
And Low Mn improves both ductility and value, so 0.15% or less is preferable.
S:MnSとなり、有害介在物となるため極力低減した方が
よい。そのため0.015%以下とした。好ましくは、Mnを
0.15%以下、Sを0.008%以下とすることである。Since it becomes S: MnS and becomes a harmful inclusion, it is better to reduce it as much as possible. Therefore, 0.015% or less. Preferably Mn
0.15% or less and S is 0.008% or less.
sol.Al:Alは脱酸に必要でそのため鋼中に0.005〜0.10%
残存する。下限値未満では十分な脱酸ができず、また上
限値超では介在物が増加し鋼の延性を害する。sol.Al:Al is necessary for deoxidation, so 0.005-0.10% in steel
To remain. If it is less than the lower limit, sufficient deoxidation cannot be achieved, and if it exceeds the upper limit, inclusions increase and the ductility of the steel is impaired.
Ti:Tiは0.04〜0.085%必要である。まずTiはNをTiNの
形に固定し固溶Nの悪影響をさける。また、大部分のC
もTiCの形で固定する。さらに固溶Tiは熱延板の再結晶
に影響し、これを再粒化する作用を有しそのため本発明
では、この固溶Tiを確保するために多量にTiを添加す
る。0.04%未満の添加ではこれらの効果がない。しか
し、0.085%を超える添加では上記作用以上に不純物の
悪影響が出る。そのため加工性が劣化する。Ti: Ti needs to be 0.04 to 0.085%. First, Ti fixes N in the form of TiN to avoid the adverse effect of solid solution N. Also, most of C
Also fixed in the form of TiC. Further, solid solution Ti has an effect of affecting recrystallization of the hot rolled sheet and re-granulating it. Therefore, in the present invention, a large amount of Ti is added to secure the solid solution Ti. Addition of less than 0.04% does not have these effects. However, if added in excess of 0.085%, the adverse effect of impurities will be more than the above effect. Therefore, the workability deteriorates.
B:Bは二次加工性向上のため添加する。本鋼のような高
純極低炭素鋼にあっては粒界強化元素である固溶炭素が
なくそのため粒界強度が低い。これは本発明鋼主加工形
式である超深絞り加工を受けた後、口広げのような二次
加工を行った場合に縦割れの形態で発生する。Bはこの
二次加工脆性を防止するために添加する。1ppm未満では
その効果がなく、10ppmを超える添加では固溶Bによる
悪影響が出て、値を劣化させる。B: B is added to improve secondary workability. In a high-purity ultra-low carbon steel such as this steel, there is no solid solution carbon that is a grain boundary strengthening element, and therefore the grain boundary strength is low. This occurs in the form of vertical cracks when secondary processing such as mouth widening is performed after undergoing ultra-deep drawing which is the main processing type of the present invention. B is added to prevent this secondary processing brittleness. If it is less than 1 ppm, it has no effect, and if it exceeds 10 ppm, the solid solution B has an adverse effect and deteriorates the value.
熱延加熱温度:1200℃以下とする。この温度以上で加熱
すると圧延前γ粒が大きくなりすぎ、本法にしたがって
熱延後でも熱延板粒が混粒となり、所定の組織ならず、
さらにまた種々の析出をむやみに溶解させることで、後
の熱延工程での析出・粗大化処理を困難なものにする。
この意味からは、熱延加熱温度は1100℃以下とすること
が好ましい。Hot rolling heating temperature: 1200 ° C or less. If heated above this temperature, the γ-grains before rolling become too large, and the hot-rolled sheet grains become mixed grains even after hot-rolling according to this method, which does not have a predetermined structure,
Furthermore, by dissolving various precipitates unnecessarily, it becomes difficult to carry out the precipitation / coarsening treatment in the subsequent hot rolling step.
From this point of view, the hot rolling heating temperature is preferably 1100 ° C. or lower.
粗仕上厚:45mm以上の厚みとする。これにより仕上圧延
という比較的低い温度域での圧延率を高め、種々の析出
物のひずみ誘起析出を促進させ粗大化させる。通常の40
mm程度ではこの効果は完全ではなく、ひいては材質劣化
やバラツキをもたらす。好ましくは55mm以上とすべきで
ある。Rough finish thickness: 45mm or more. As a result, the rolling ratio in the relatively low temperature range called finish rolling is increased, and the strain-induced precipitation of various precipitates is promoted and coarsened. Normal 40
At about mm, this effect is not perfect, which eventually leads to material deterioration and variation. It should preferably be 55 mm or more.
εeff:本鋼では、上記の効果のため、その粒界および粒
内は不純物の少ない、清浄化されたものである。したが
って通常の圧延では細粒の結晶粒が得られない。これを
克服するのが特定の仕上圧延条件で、特に仕上後段の3
パスの圧延率は非常に重要であることを知見し、この後
段圧下率の効果を工業的に示す指標として種々検討した
結果、次式で示されるεeffを導出するに至った。すな
わち、 εeff=最終パス圧下率(%) +1/2最終1段前パス圧下率(%) +1/4最終2段前パス圧下率(%) である。ε eff : In the present steel, due to the above effect, the grain boundary and the inside of the grain are cleaned with few impurities. Therefore, ordinary rolling cannot obtain fine crystal grains. It is a specific finishing rolling condition that overcomes this, especially 3 in the latter stage of finishing.
It was found that the rolling rate of the pass is very important, and as a result of various studies as an index showing the effect of this post-stage reduction rate industrially, ε eff shown in the following equation was derived. That is, ε eff = final pass rolling reduction (%) +1/2 final one-stage preceding pass rolling reduction (%) +1/4 final two-stage preceding pass rolling reduction (%).
第1図は仕上圧延終了温度とεeffの関係において、冷
延・焼鈍後の値をプロットした図である。FIG. 1 is a diagram in which the values after cold rolling and annealing are plotted in the relationship between the finish rolling finish temperature and ε eff .
成分は、C:15〜23ppm、N:12〜20ppm、Mn:0.08〜0.14
%、S:0.003〜0.007%、sol.Al:0.02〜0.035%、Ti:0.0
43〜0.083%、B:0.0003〜0.0006%で、熱延加熱温度:11
00〜1130℃、粗仕上厚:55〜60mm、仕上終了後0.3〜0.4s
後に平均30〜40℃/sで約800〜780℃まで急冷し730〜760
℃で巻取った。続いて80%冷延後850℃で連続焼鈍を行
い、0.3%の調圧を施して試験に供した。Ingredients are C: 15-23ppm, N: 12-20ppm, Mn: 0.08-0.14
%, S: 0.003 to 0.007%, sol.Al: 0.02 to 0.035%, Ti: 0.0
43 ~ 0.083%, B: 0.0003 ~ 0.0006%, hot rolling heating temperature: 11
00 ~ 1130 ℃, rough finish thickness: 55 ~ 60 mm, 0.3 ~ 0.4 s after finishing
After that, it is rapidly cooled to about 800-780 ℃ at an average of 30-40 ℃ / s and 730-760.
It was wound up at ℃. Subsequently, after 80% cold rolling, continuous annealing was performed at 850 ° C., a 0.3% pressure was applied, and the test was performed.
図から明らかなようにεeffが45%以上で仕上圧延終了
温度の広い範囲で安定して値が2.2以上程度の極めて
高い値を示す。より安定して高値を示すにはεeffは6
0%以上が好ましい。As can be seen from the figure, when ε eff is 45% or more, the value is stable over a wide range of finish rolling end temperature and shows an extremely high value of about 2.2 or more. Ε eff is 6 for more stable and higher price
0% or more is preferable.
仕上圧延終了温度:950〜880℃とする。これを超える温
度では第1図からわかるように、いかにεeffを高めよ
うと安定して高加工特性が得られない。また、880℃を
下回る温度では一部α域圧延となる場合があり、材質が
出ないばかりでなく、肌荒れ等の欠陥も発生する。Finish rolling finish temperature: 950 to 880 ° C. As shown in FIG. 1, if the temperature exceeds this value, stable high processing characteristics cannot be obtained no matter how high ε eff is increased. Further, if the temperature is lower than 880 ° C., it may be partially rolled in the α region, and not only the material does not come out, but also defects such as rough skin occur.
圧延後の冷却条件:上述のようにして得られた熱延の組
織を、特に結晶粒度を粗大化させないため、1s以内に冷
却を開始し、平均20℃/s以上で830℃以下まで冷却す
る。この条件をはずすと結晶が粗大化し、一定の材質が
得られない。この場合特に冷却開始までの時間が重要で
1s以内、好ましくは0.5s以内とすべきである。冷却速度
が20℃/s未満では冷却中に粒の粗大化が生じる。830℃
以下ではもはや結晶粒成長は起こりにくいのでこの冷却
の終点は830℃とする。Cooling conditions after rolling: The hot-rolled structure obtained as described above is cooled within 1 s so as not to coarsen the grain size, and is cooled to 830 ° C or less at an average of 20 ° C / s or more. . If this condition is removed, the crystal becomes coarse and a constant material cannot be obtained. In this case, the time to start cooling is especially important.
It should be within 1 s, preferably within 0.5 s. If the cooling rate is less than 20 ° C / s, coarsening of grains occurs during cooling. 830 ° C
Since the grain growth is less likely to occur below, the end point of this cooling is 830 ° C.
巻取温度:巻取後の保温効果で析出の促進および析出物
の粗大化を図る。680℃未満ではこの効果が少なく、800
℃を超えると圧延組織の凍結が十分でなく結晶粒の粗大
化が起こる可能性があるので、巻取温度は680〜800℃と
した。析出粗大化を十分に行うには巻取温度は720℃以
上とすることが好ましい。Winding temperature: The effect of heat retention after winding promotes precipitation and coarsens the precipitate. Below 680 ℃, this effect is less than 800
If the temperature exceeds ℃, the rolling structure may not be sufficiently frozen and the crystal grains may become coarse, so the coiling temperature was set to 680 to 800 ℃. The winding temperature is preferably 720 ° C. or higher in order to achieve sufficient precipitation coarsening.
冷延率:冷延率は高値とするため75%以上必要であ
る。好ましくは78%以上である。一方、本鋼においては
圧下率は93%程度まで増してもは向上するところであ
るが、工業的に困難な領域であるので上限を90%とし
た。Cold rolling rate: The cold rolling rate must be 75% or more to achieve a high value. It is preferably 78% or more. On the other hand, in this steel, although the rolling reduction is about to improve even if it is increased to about 93%, it is an industrially difficult region, so the upper limit was set to 90%.
焼鈍温度:連続焼鈍の焼鈍温度は十分軟質で高値集合
組織とするため780℃は必要である。一方、上限は870℃
とする。これを超える高温での焼鈍では、本鋼のように
粒成長しやすい鋼では、製品としての結晶粒が大きくな
り過ぎてプレス成形後に肌荒れを生じる。焼鈍温度とし
ては、連続焼鈍では比較的高い830℃以上の高温焼鈍が
好ましい。Annealing temperature: The annealing temperature for continuous annealing is 780 ° C because it is sufficiently soft and has a high value texture. On the other hand, the upper limit is 870 ℃
And In annealing at a high temperature exceeding this, in the steel such as the present steel in which grain growth is likely to occur, the crystal grains as a product become too large, and roughening occurs after press forming. As the annealing temperature, high temperature annealing of 830 ° C. or higher which is relatively high in continuous annealing is preferable.
以上本発明の構成要件と作用について述べたが、本発明
の鋼の溶製は通常転炉で行いRH等の真空脱ガスにて極低
炭素とする。そして通常連続鋳造にて鋼片とされる。熱
延は圧延5台以上のタンデム圧延機で仕上圧延される。
全仕上圧下率を本発明にしたがって高め、かつ仕上終了
温度を本発明にしたがって守るために、仕上圧延前に所
定の温度となるようにディレーを行ってもよい。Although the constituent features and functions of the present invention have been described above, the melting of the steel of the present invention is usually carried out in a converter to obtain ultra-low carbon by vacuum degassing such as RH. Then, it is usually made into a billet by continuous casting. Hot rolling is finish rolling by a tandem rolling mill having five or more rolling mills.
In order to increase the total finishing reduction ratio according to the present invention and to protect the finishing finish temperature according to the present invention, a delay may be performed to reach a predetermined temperature before finish rolling.
熱延後高温巻取を行うが、熱延コイル両端部は急冷され
るためこれを補う意味で端部がさらに高温となるような
U字状の巻取温度パターンをとることは好ましい。熱延
コイルは酸洗後冷延され、続いて連続焼鈍される。連続
焼鈍の均熱温度については上述のごとくであるが、保持
時間については通常とられる40s〜180sでよい。After hot rolling, high-temperature winding is performed. Since both ends of the hot-rolled coil are rapidly cooled, it is preferable to take a U-shaped winding temperature pattern in which the ends become even hotter in order to compensate for this. The hot rolled coil is pickled, cold rolled, and then continuously annealed. The soaking temperature of continuous annealing is as described above, but the holding time may be 40s to 180s which is usually taken.
焼鈍後の冷却条件についても特に規定するところではな
く、また通常過時効帯が設けられているが、その温度条
件についても特に規定するところではない。焼鈍後の調
圧は形状矯正のためのやむを得ない範囲にとどめるべき
である。材質からは調圧をしないことが好ましいが、形
状矯正の点を考慮して0.2〜0.8%、好ましくは0.2〜0.5
%が適正調圧率である。The cooling conditions after annealing are also not specified, and the overaging zone is usually provided, but the temperature conditions are not specified either. The pressure adjustment after annealing should be limited to the unavoidable range for shape correction. From the material, it is preferable not to regulate the pressure, but considering the shape correction, 0.2-0.8%, preferably 0.2-0.5%
% Is the proper pressure regulation rate.
(実 施 例) 第1表に示す成分の鋼を転炉に溶製し連続鋳造にてスラ
ブとした。このさい、RH真空脱ガスを用いた。(Examples) Steels having the components shown in Table 1 were melted in a converter and continuously cast into slabs. At this time, RH vacuum degassing was used.
続いて第2表に示す熱延および冷延・連続焼鈍条件にて
処理を行い、各コイルの代表部分を材質試験に供した。Subsequently, treatment was performed under the hot rolling, cold rolling and continuous annealing conditions shown in Table 2, and a representative portion of each coil was subjected to a material test.
引張試験はJIS Z 2201,5号試験片を用い、同Z 2241記載
の方法にしたがって行った。The tensile test was performed according to the method described in Z 2241 using JIS Z 2201,5 test piece.
また、耐二次加工性は、まず、一次加工として50mm平底
ポンチで絞り比2.2の深絞り加工を行い、続いてこの口
を広げる加工を種々温度をかえて行い、脆性−延性破壊
の遷移温度を求めた。In addition, the secondary work resistance is as follows: first, a 50 mm flat bottom punch is used to perform deep drawing with a drawing ratio of 2.2, and subsequently, the process of expanding this mouth is performed at various temperatures, and the transition temperature of brittle-ductile fracture is measured. I asked.
第3表にコイル長手中心部位の材質試験結果を示す。Table 3 shows the material test results of the central portion of the coil longitudinal direction.
本表においてnとは加工硬化指数で、10%および20%ひ
ずみの応力からn乗則にのっとったとして計算した。ま
たraveはで面内平均温度ランクフォード値で、r45は
圧延方向に対し45゜の方向のランクフォード値である。In this table, n is a work hardening index, which was calculated from the stresses of 10% and 20% strain according to the nth power law. In rave showy plane average temperature Lankford value, r 45 is the Lankford value of 45 ° direction to the rolling direction.
本発明にしたがった処理No.1,7,9,13,14および15の鋼は
55%以上の伸び、0.27以上のn値と極めて高い延性を示
すとともに、≧2.45,r45≧2.15というこれまた極めて
高い深絞り性を示すことがわかる。しかも耐二次加工性
を十分低い遷移温度である。The steels of treatment Nos. 1, 7, 9, 13, 14 and 15 according to the invention are
It can be seen that the elongation is 55% or more and the n value is 0.27 or more, which is extremely high ductility, and the extremely high deep drawability of ≧ 2.45 and r 45 ≧ 2.15. Moreover, the transition temperature is sufficiently low for secondary workability.
これに対し、成分、熱延条件あるいは冷延・連続焼鈍条
件が本発明条件と異なるその他の処理No.の鋼では、本
鋼の目的とする高い特性は得られていない。On the other hand, the steels of other treatment Nos. In which the composition, the hot rolling conditions or the cold rolling / continuous annealing conditions are different from the conditions of the present invention, do not have the desired high properties of the present steel.
また、第2図は、第2表、処理No.14(本発明条件)お
よび同表処理No.16(比較条件)のコイル長手方向材質
分布を示す。前者において仕上終了温度は、895〜940
℃、また巻取温度はコイル端部で770〜780℃、それ以外
での部位で740〜755℃であった。また後者においてはそ
れぞれ885〜930℃、760〜785℃および745−760℃であっ
た。Further, FIG. 2 shows the material distribution in the coil longitudinal direction of Table 2, Treatment No. 14 (condition of the present invention) and Treatment No. 16 of the same table (comparison condition). In the former case, the finishing temperature is 895 to 940.
The coiling temperature was 770 to 780 ℃ at the coil end and 740 to 755 ℃ at other parts. In the latter case, the temperatures were 885 to 930 ℃, 760 to 785 ℃ and 745 to 760 ℃, respectively.
図から明らかなように、本発明にしたがったNo.14のコ
イルでは、全長にわたり安定して高いと伸びが得られ
ているのに対し、比較コイルではかなり高い水準にある
ものの材質変動が大きい。As is clear from the figure, in the No. 14 coil according to the present invention, stable and high elongation can be obtained over the entire length, whereas in the comparative coil, the material variation is large although it is at a considerably high level.
(発明の効果) 本発明鋼は冷延鋼板として用いられてもよいし、連続焼
鈍後電気メッキや電気系複合メッキを施したメッキ鋼板
として用いられてもよい。また、本鋼成分は溶融亜鉛メ
ッキ性あるいはその後のメッキ層の合金化特性を特に阻
害するものではない。したがって、連続焼鈍条件が満た
される限り、連続焼鈍溶融亜鉛メッキ鋼板あるいは合金
化溶融亜鉛メッキ鋼板としてもよい。 (Effects of the Invention) The steel of the present invention may be used as a cold-rolled steel sheet, or may be used as a plated steel sheet that has been subjected to electroplating or electrical composite plating after continuous annealing. Further, the present steel component does not particularly impair the hot dip galvanizing property or the alloying property of the subsequent plated layer. Therefore, as long as the continuous annealing conditions are satisfied, a continuous annealed hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet may be used.
第1図は、冷延・連続焼鈍後の値を、仕上圧延終了温
度および仕上圧延有効ひずみεeffとの関係において示
した図表、第2図は実施例に用いたコイルの長手方向の
材質分布を示す図表である。FIG. 1 is a table showing the values after cold rolling and continuous annealing in relation to the finish rolling finish temperature and the finish rolling effective strain ε eff, and FIG. 2 is the material distribution in the longitudinal direction of the coil used in the examples. FIG.
Claims (1)
熱後熱延するにあたり、粗仕上厚みを45mm以上とし、次
式で示される有効ひずみεeffを45%以上とり、950℃〜
880℃以上の温度で仕上圧延を終了した後、1s以内に冷
却を開始し20℃/s以上の平均冷却速度で830℃以下まで
冷却を行い続いて680〜800℃の温度で巻取り、引続き75
〜90%の冷延率で冷延を行い、780〜870℃の温度で連続
焼鈍を行うことを特徴とする加工性を極めて優れた冷延
鋼板の高効率な製造方法。 ただし、 εeff=最終パス圧下率(%) +1/2最終1段前パス圧下率(%) +1/4最終2段前パス圧下率(%)[Claim 1] C: 0.0040% or less, N: 0.0040% or less, Mn: 0.05 to 0.4%, S: 0.015% or less, acid soluble Al: 0.005 to 0.100%, Ti: 0.04 to 0.085% , B: 0.0001 to 0.0010%, when heating steel consisting of the balance unavoidable impurity elements after heating to 1200 ° C or lower and hot rolling, the rough finish thickness is set to 45 mm or more, and the effective strain ε eff shown by the following formula is 45% or more. 950 ℃ ~
After finishing rolling at a temperature of 880 ° C or higher, start cooling within 1 s, cool to 830 ° C or lower at an average cooling rate of 20 ° C / s or higher, and then wind at a temperature of 680 to 800 ° C, and continue. 75
A highly efficient method for producing a cold rolled steel sheet with extremely excellent workability, which comprises performing cold rolling at a cold rolling rate of up to 90% and performing continuous annealing at a temperature of 780 to 870 ° C. However, ε eff = Final pass reduction rate (%) + 1/2 Final 1st stage preceding pass reduction rate (%) +1/4 Final 2nd stage previous pass reduction rate (%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2158586A JPH07103423B2 (en) | 1990-06-19 | 1990-06-19 | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2158586A JPH07103423B2 (en) | 1990-06-19 | 1990-06-19 | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0452229A JPH0452229A (en) | 1992-02-20 |
JPH07103423B2 true JPH07103423B2 (en) | 1995-11-08 |
Family
ID=15674930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2158586A Expired - Fee Related JPH07103423B2 (en) | 1990-06-19 | 1990-06-19 | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07103423B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5997664A (en) * | 1996-04-01 | 1999-12-07 | Nkk Corporation | Method for producing galvanized steel sheet |
KR100530059B1 (en) * | 2001-11-26 | 2005-11-22 | 주식회사 포스코 | Method for Manufacturing Cold Rolled Steel Sheet with Superior Drawability, Bake Hardenability and Secondary Working Embrittlement Resistance |
KR100530057B1 (en) * | 2001-11-26 | 2005-11-22 | 주식회사 포스코 | Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance |
JP4214036B2 (en) | 2003-11-05 | 2009-01-28 | 新日本製鐵株式会社 | Thin steel plate excellent in surface properties, formability and workability, and method for producing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276930A (en) * | 1985-05-31 | 1986-12-06 | Kawasaki Steel Corp | Production of cold rolled dead soft steel sheet having good elongation and deep drawability |
JPH0753889B2 (en) * | 1986-10-15 | 1995-06-07 | 川崎製鉄株式会社 | Method for manufacturing cold rolled steel sheet for thick ultra deep drawing |
JPH01191748A (en) * | 1988-01-26 | 1989-08-01 | Nippon Steel Corp | Method for manufacturing cold-rolled steel sheets for press forming with excellent material uniformity inside the coil |
-
1990
- 1990-06-19 JP JP2158586A patent/JPH07103423B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0452229A (en) | 1992-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03277741A (en) | Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture | |
JPH0756055B2 (en) | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability | |
JPH08176735A (en) | Steel plate for can and method of manufacturing the same | |
JP3280692B2 (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
JPH07103423B2 (en) | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability | |
JPH0570836A (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
JP2581887B2 (en) | High strength cold rolled steel sheet excellent in cold workability and method for producing the same | |
JP3793253B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent workability | |
JPH06179922A (en) | Production of high tensile strength steel sheet for deep drawing | |
JP3043901B2 (en) | Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability | |
KR960005236B1 (en) | Manufacturing method of high strength cold rolled steel sheet for high processing with excellent resistance to low temperature brittleness | |
JP3718987B2 (en) | Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same | |
JP3593728B2 (en) | Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability | |
JP3446001B2 (en) | Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability | |
JP2669188B2 (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
JP2790369B2 (en) | Manufacturing method of cold rolled steel sheet with excellent workability | |
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
JP3142975B2 (en) | Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability | |
JP2004068040A (en) | High-strength steel pipe excellent in workability and method for producing the same | |
JPS59123721A (en) | Production of cold rolled steel sheet having excellent processability | |
JP2793323B2 (en) | Manufacturing method of cold rolled mild steel sheet with excellent stretch formability | |
JP3300639B2 (en) | Cold rolled steel sheet excellent in workability and method for producing the same | |
JPH0699759B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing | |
JPS62185834A (en) | Manufacture of cold rolled steel sheet superior in press workability | |
JPS6152217B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071108 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081108 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081108 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091108 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |