[go: up one dir, main page]

JPH0698387B2 - Reducing residual stress in stainless steel welded pipe - Google Patents

Reducing residual stress in stainless steel welded pipe

Info

Publication number
JPH0698387B2
JPH0698387B2 JP25427788A JP25427788A JPH0698387B2 JP H0698387 B2 JPH0698387 B2 JP H0698387B2 JP 25427788 A JP25427788 A JP 25427788A JP 25427788 A JP25427788 A JP 25427788A JP H0698387 B2 JPH0698387 B2 JP H0698387B2
Authority
JP
Japan
Prior art keywords
pipe
residual stress
stress
stainless steel
reduction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25427788A
Other languages
Japanese (ja)
Other versions
JPH02104491A (en
Inventor
三雄 渡辺
敬 神馬
幸生 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Metal Industry Co Ltd
Original Assignee
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Metal Industry Co Ltd filed Critical Nippon Metal Industry Co Ltd
Priority to JP25427788A priority Critical patent/JPH0698387B2/en
Publication of JPH02104491A publication Critical patent/JPH02104491A/en
Publication of JPH0698387B2 publication Critical patent/JPH0698387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は比較的小径薄肉のステンレス鋼溶接管におい
て、その残留応力をOプレス成形装置を用いて軽減させ
るようにしたステンレス鋼溶接管の残留応力軽減方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a stainless steel welded pipe having a relatively small diameter and a thin wall, and the residual stress of the stainless steel welded pipe is reduced by using an O press molding apparatus. The present invention relates to a stress reducing method.

〔従来の技術〕[Conventional technology]

例えば小径薄肉の304ステンレス鋼溶接管は、水道配管
用として使われるようになってきた。
For example, small-diameter thin-wall 304 stainless steel welded pipes have come into use for water pipes.

このステンレス鋼溶接管は、所定幅で、且つ長尺のステ
ンレス帯板を、複数の成形用ロール間を通過させること
によって環状に折り曲げるとともに、この折り曲げた帯
板の両端を溶接して成形されるものである。
This stainless steel welded pipe is formed by bending a long stainless steel strip having a predetermined width into an annular shape by passing it between a plurality of forming rolls, and welding both ends of the folded strip. It is a thing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このようなステンレス鋼溶接管は、帯板を環状に折り曲
げて両端を溶接するものであるから、管の外周面には引
張りの残留応力が存在する。このように管に分布する引
張りの残留応力は応力腐食割れを引き起こし、これがし
ばしば問題となっている。
Since such a stainless steel welded pipe is one in which a strip is bent in an annular shape and both ends are welded, a tensile residual stress exists on the outer peripheral surface of the pipe. The tensile residual stress thus distributed in the pipe causes stress corrosion cracking, which is often a problem.

なお、圧縮残留応力は、理論的に応力腐食割れに引き起
こさない。応力値でマイナスは縮力を意味するが、圧縮
残留応力は単独で存在できず、引張り残留応力と対の関
係で存在する。つまり、通常は管の外面と内面とでバラ
ンスを保っており、管外面でのマイナスの数値が大きい
ことは、管内面にも大きな引張り残留応力が存在すると
いえる。本発明は、この引張り残留応力の観点からステ
ンレス鋼溶接管の残留応力軽減方法を創作したものであ
る。
The compressive residual stress theoretically does not cause stress corrosion cracking. In the stress value, minus means a contracting force, but the compressive residual stress cannot exist alone and exists in a paired relationship with the tensile residual stress. That is, normally, the outer surface and the inner surface of the pipe are balanced, and the large negative value on the outer surface of the pipe means that the inner surface of the pipe also has a large tensile residual stress. The present invention has created a method for reducing residual stress in a stainless steel welded pipe from the viewpoint of this tensile residual stress.

このような応力腐食割れの問題を解決するためには、前
記残留応力を減少させればよいことが知られており、従
来、溶接管に直径減少率(つまり、縮径率、以下同様)
を与えることにより、長手方向ののび、ひずみを与えて
残留応力を軽減させる矯正方法が試みられている。
In order to solve the problem of such stress corrosion cracking, it is known that the residual stress should be reduced. Conventionally, the diameter reduction rate of a welded pipe (that is, the diameter reduction rate, the same applies hereinafter).
A straightening method has been attempted in which the residual stress is reduced by imparting strain and strain in the longitudinal direction by applying the stress.

しかし、例えば矯正用のロール、プレスなどを用いた矯
正工程において、前述のように管に直径減少率を与えて
長手方向ののび、ひずみを与えたにもかかわらず、管の
溶接・冷却工程で生じた残留応力が必ずしも減少しない
ことは知られている。
However, in the straightening process using, for example, a straightening roll, press, etc., even though the pipe is reduced in diameter and stretched in the longitudinal direction and strained in the straightening process as described above, in the pipe welding / cooling process. It is known that the resulting residual stress does not always decrease.

本発明は前記従来の問題点に鑑み、ステンレス鋼溶接管
製造の溶接・冷却工程に注目して温度ならびに応力解
析、測定を行い、製造条件が残留応力に及ぼす影響を調
べた。そして、Oプレス成形装置を用いて溶接・冷却後
の管に直径絞りを与えて残留応力の軽減効果を調べる実
験を種々行った結果、満足する効果を得られたものであ
る。
In view of the above-mentioned conventional problems, the present invention focused on the welding / cooling process of stainless steel welded pipe production, conducted temperature and stress analysis and measurement, and investigated the influence of production conditions on residual stress. As a result of various experiments conducted by using an O press forming apparatus to give a diameter reduction to the welded and cooled pipe and examine the effect of reducing residual stress, a satisfactory effect was obtained.

よって、本発明は、管の残留応力を著しく軽減すること
のできるステンレス鋼溶接管の残留応力軽減方法を提供
することを目的とする。
Therefore, an object of the present invention is to provide a method for reducing the residual stress of a stainless steel welded pipe, which can remarkably reduce the residual stress of the pipe.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的を達成するため、本発明に係るステンレス鋼
溶接管の残留応力軽減方法は、Oプレス成形装置を用い
て、溶接・冷却後のステンレス鋼溶接管に直径絞りを与
えて管の残留応力を軽減させる方法において、ダイス長
さを前記管外径の1.3倍以上としたOプレス金型を用
い、且つ直径減少率が1.8%以上になるようにプレスす
ることを特徴とするものである。
In order to achieve the above-mentioned object, a method for reducing residual stress of a stainless steel welded pipe according to the present invention is to use an O press forming apparatus to apply a diameter reduction to a welded and cooled stainless steel welded pipe to give a residual stress of the pipe. In the method for reducing the above-mentioned problem, an O-press die having a die length of 1.3 times or more of the outer diameter of the pipe is used, and pressing is performed so that the diameter reduction rate is 1.8% or more.

〔作用〕[Action]

ダイス長さを管外径の1.3倍以上とし、且つ直径減少率
を1.8%以上としたことにより、ダイス長さ及び直径減
少率を必要最少限に押さえることができ、なお且つ管の
応力腐食割れの発生防止に必要な引張り残留応力を管の
長手方向、周方向ともに、100MPa以下に押さえるとがで
きるものである。
By setting the die length to 1.3 times the outer diameter of the pipe and the diameter reduction rate to 1.8% or more, the die length and diameter reduction rate can be suppressed to the necessary minimum, and the stress corrosion cracking of the pipe is possible. It is possible to suppress the residual tensile stress required to prevent the occurrence of 100 MPa or less in both the longitudinal and circumferential directions of the pipe.

〔実施例〕〔Example〕

本発明の実施例を実験に基づいて以下詳細に説明する。 Embodiments of the present invention will be described in detail below based on experiments.

すなわち・本発明においては、ステンレス鋼溶接管の溶
接・冷却後の管に直径絞りを与えて残留応力の軽減効果
を調べる実験を行った。
That is, in the present invention, an experiment was conducted to examine the effect of reducing residual stress by giving a diameter reduction to the pipe after welding and cooling the stainless steel welded pipe.

以下、項を分けて説明する。The sections will be described separately below.

実験条件 第1図に示す溶接・冷却後の管1を、第2図に示すOプ
レス金型2を用いて成形した。
Experimental Conditions The pipe 1 after welding and cooling shown in FIG. 1 was molded using the O-press die 2 shown in FIG.

この時のダイス穴型径Dd、ダイス長さLd、溶接管の板厚
t、管長さLpを表1に示す。また、溶接・冷却後の管1
の平均外周長から求めた管外径Dpは、22.5〜22.6mmであ
る。さらに、長手方向のひずみの変化を調べる実験のみ
で管長さLpを500mmとしたが、これ以外の実験では150mm
とした。
Table 1 shows the die hole die diameter Dd, the die length Ld, the plate thickness t of the welded pipe, and the pipe length Lp at this time. Also, pipe 1 after welding and cooling
The outer diameter Dp of the pipe obtained from the average outer peripheral length of is 22.5 to 22.6 mm. Furthermore, although the pipe length Lp was set to 500 mm only in the experiment for examining the change in strain in the longitudinal direction, it was 150 mm in other experiments.
And

実験結果 〔1〕板厚と直径減少率の関係 第3図に管1の板厚を変化させてOプレスを行なった時
の公称直径減少率Rnと、真直径減少率Rtの関係を示す。
これらは次の式により計算した。
Experimental Results [1] Relationship between Plate Thickness and Diameter Reduction Rate Fig. 3 shows the relationship between the nominal diameter reduction rate Rn and the true diameter reduction rate Rt when O-pressing was performed while changing the sheet thickness of the tube 1.
These were calculated by the following formula.

但し、Dd:ダイス穴型径 Dwc:溶接・冷却後の管平均外径 Dop:Oプレス後の管平均外径 第3図から、板厚の変化によらず、RtはRnよりやや低く
なっていることがわかる。また、Rnを小さく設定した場
合には、直径の減少を生じていない。
However, Dd: Die hole die diameter Dwc: Pipe average outer diameter after welding / cooling Dop: Pipe average outer diameter after O pressing From Fig. 3, it can be seen that Rt is slightly lower than Rn regardless of the change in plate thickness. You can see that Further, when Rn is set small, the diameter does not decrease.

この結果から、RnとRtとの間には、 Rt=0.846 Rn−0.306の関係があることがわかる。From this result, it is understood that there is a relation of Rt = 0.846 Rn−0.306 between Rn and Rt.

〔2〕真直径減少率の残留応力に及ぼす影響 第4図には板厚を1.0mmとし、Rtを変化させた時の管1
の長手方向ならびに周方向残留応力分布を示す。応力測
定にはX線回折装置を用いた。
[2] Effect of reduction rate of true diameter on residual stress In Fig. 4, the pipe thickness is 1.0 mm and the pipe 1 is when Rt is changed.
2 shows the residual stress distribution in the longitudinal and circumferential directions. An X-ray diffractometer was used for stress measurement.

第4図から、管周方向応力σθはRtによらず、応力の絶
対値が100MPa以内になっていることがわかる。
It can be seen from FIG. 4 that the circumferential stress σθ does not depend on Rt and the absolute value of the stress is within 100 MPa.

一方、管長手方向応力σzについてみると、Oプレスを
行うことにより、残留応力は減少しているが、Rtが小さ
い場合には、管底部3と溶接ビート4の近傍部に100〜2
00MPaの引張残留応力が存在する。そして、Rt=0の場
合、Rt=0.4%とほぼ同じ数値を確認したが、これを図
示すると、図が煩雑となるため省略した。つまり、Rt=
0.4%をRt=0と看做せば、Rt=0.8%における残留応力
の減少は明らかである。
On the other hand, regarding the longitudinal stress σz of the pipe, the residual stress is reduced by performing O-pressing, but when Rt is small, 100 to 2 near the pipe bottom 3 and the welding beat 4 are obtained.
There is a tensile residual stress of 00 MPa. Then, when Rt = 0, the same numerical value as Rt = 0.4% was confirmed, but when this is illustrated, it is omitted because the figure becomes complicated. That is, Rt =
If 0.4% is regarded as Rt = 0, the decrease in residual stress at Rt = 0.8% is clear.

しかし、Rtは大きく設定することにより、θzについて
も残留応力の絶対値が大幅に減少することが判明した。
また、この図θzにおいて直径減少率(縮径率)と残留
応力とが直線的な比例関係にならないのは直径減少率の
小さい範囲は残留応力軽減の効果は小さく、実験値のば
らつきの方が大きいためであり、統計的な目で見れば、
直径減少率の増加は残留応力減少の傾向と理解できる。
However, it was found that the absolute value of the residual stress also greatly decreases with respect to θz by setting Rt to a large value.
Further, in this figure θz, the diameter reduction rate (reduction rate) and the residual stress do not have a linear proportional relationship, that the residual stress reduction effect is small in the range where the diameter reduction rate is small, and the dispersion of the experimental values is smaller. Because it's big, and statistically,
The increase in diameter reduction rate can be understood as the tendency of residual stress reduction.

ところで、304ステンレス鋼では、引張応力が約100MPa
以下になれば、割れ発生時間が著しく長くなることが一
般に知られている。
By the way, the tensile stress of 304 stainless steel is about 100MPa.
It is generally known that the crack generation time becomes remarkably long under the following conditions.

しかして、一般配管用として用いられる小径のステンレ
ス鋼管では、150MPa程度の引張残留応力状態でも割れ発
生の危険性は無いと考えられるが、まだJISによる規定
がないので、実験では、応力腐食割れを生じないための
残留応力を100MPaと設定した。そして、第4図の結果か
ら、真直径減少率Rt=1.8%に設定すれば残留応力が10M
Pa以下となり、応力腐食割れの危険性がないことが確認
された。また、この第4図において、残留応力の挙動が
「180」のところで示される特異な挙動は溶接の影響で
あり、「45」の挙動は「135」の対称と考え測定を省略
した。「180」以上「360」までは機械の左右差はある
が、大同小異であり、「0」から「180」までと対称で
ある。
In the case of small diameter stainless steel pipes used for general piping, it is considered that there is no risk of cracking even under a tensile residual stress of about 150 MPa. The residual stress to prevent it from occurring was set to 100 MPa. From the results shown in Fig. 4, if the true diameter reduction rate Rt = 1.8% is set, the residual stress is 10M.
It became Pa or less, and it was confirmed that there was no risk of stress corrosion cracking. Further, in FIG. 4, the peculiar behavior indicated by the behavior of the residual stress of “180” is the effect of welding, and the behavior of “45” is considered to be the symmetry of “135” and the measurement was omitted. There is a left-right difference in the machine from "180" to "360", but it is almost the same, and it is symmetrical from "0" to "180".

その挙動が「0」と「90」とで大きく異なるのは、ロー
ル成形による溶接管は、通常10〜20スタンドのロールを
用いて連続的に帯板から管までに成形するため、帯板の
幅方向において、中央と端部とでは成形経路の長さが異
なり、長手方向の下そりとなる。一方、「180」の位置
では、溶接による熱膨張と冷却による収縮が起こり、長
手方向の上そりとなる。これに上下ロールによる曲げ戻
しが加わって残留応力が形成され、左右ロールが少ない
ために「90」の挙動が異なるのである。
The behavior is significantly different between "0" and "90" because the welded pipe by roll forming is usually formed continuously from the strip plate to the pipe by using rolls of 10 to 20 stands. In the width direction, the length of the molding path is different between the center and the end portion, which is a downward sled in the longitudinal direction. On the other hand, at the position of “180”, thermal expansion due to welding and contraction due to cooling occur, which results in an upward warpage in the longitudinal direction. The bending stress of the upper and lower rolls is added to this, and residual stress is formed. The behavior of "90" is different because there are few left and right rolls.

なお、この第4図に示された管板厚以外の他の管板厚の
場合、数値は異なるが挙動は同じで、第6図で管板厚を
4種類に変化させて、その影響を示している。
In addition, in the case of the tube sheet thickness other than the tube sheet thickness shown in FIG. 4, the behavior is the same though the numerical values are different, and the influence is changed by changing the tube sheet thickness to four types in FIG. Shows.

さらに、長手方向残留応力σzを減少させるためには、
周方向残留応力σθを減少させる場合よりも大きな真直
径減少率を必要とする理由として、真直径減少率に対す
る管1の長手方向ののびを調べた。これを第5図に示
す。
Furthermore, in order to reduce the longitudinal residual stress σz,
As a reason for requiring a larger true diameter reduction rate than in the case of reducing the circumferential residual stress σθ, the longitudinal extension of the tube 1 with respect to the true diameter reduction rate was investigated. This is shown in FIG.

図から、真直径減少率と長手方向ののびの関係は、εz
=0.178Rt+8.3×10-3 となり、与えられた真直径減少率のおよそ20%が長手方
向ののびになっていることがわかる。つまり、直径減少
率が1.8%であれば、長手方向ののびは約0.3%となって
耐力を越えることになり、長手方向の塑性のひずみを生
じる。したがって、残留応力を軽減することができるこ
とが確認された。
From the figure, the relationship between the true diameter reduction rate and the longitudinal spread is εz
= 0.178Rt + 8.3 × 10 -3 , which shows that about 20% of the given true diameter reduction rate is extended in the longitudinal direction. That is, if the diameter reduction rate is 1.8%, the elongation in the longitudinal direction is about 0.3%, which exceeds the proof stress, and plastic strain occurs in the longitudinal direction. Therefore, it was confirmed that the residual stress can be reduced.

〔3〕板厚の残留応力に及ぼす影響 第6図には、公称直径減少率Rn=2.2%とし、板厚を4
種類に変化させた時の残留応力軽減状況を示す。
[3] Effect of plate thickness on residual stress In Fig. 6, nominal diameter reduction rate Rn = 2.2% and plate thickness 4
The following shows the residual stress reduction status when changing to different types.

図に示すように、周方向残留応力σθは、全ての板厚で
100MPa以下となっているが、長手方向残留応力σzで
は、板厚が0.4〜0.6mmの場合には、十分な軽減効果が認
められないことがわかる。これは、同一のダイス穴型径
により直径絞りを行ったため、第3図において、公称直
径減少率Rn=2.2%付近での真直径減少率Rtが板厚が薄
くなるにつれて少ないためである。
As shown in the figure, the circumferential residual stress σθ is
Although it is 100 MPa or less, it can be seen that with the residual stress σz in the longitudinal direction, when the plate thickness is 0.4 to 0.6 mm, a sufficient reducing effect is not recognized. This is because the diameter reduction was performed with the same die hole die diameter, so that the true diameter reduction rate Rt near the nominal diameter reduction rate Rn = 2.2% in FIG. 3 decreases as the plate thickness decreases.

〔4〕ダイス長さの残留応力に及ぼす影響 ところで、Oプレス成形装置を用いることによる残留応
力軽減方法を、実際のステンレス鋼溶接管製造ラインへ
導入する場合、Oプレス金型2は、管1の製造速度と同
期して、圧縮・除荷・移動を繰返すことになる。ダイス
長さが長くなれば、圧縮回数が少なくなる一方で、移動
距離が長くなり成形荷重も大きくなる。また、ダイス長
さを短くすると、成形荷重が少なくてすみ、移動距離も
短いが、これまでの実験で採用したダイス長さ80mmの時
の残留応力軽減効果がどこまで適用できるか疑問であ
る。
[4] Effect of Die Length on Residual Stress By the way, when a residual stress reducing method using an O press molding apparatus is introduced into an actual stainless steel welded pipe manufacturing line, the O press mold 2 is a pipe 1 The compression, unloading, and movement are repeated in synchronization with the manufacturing speed of. If the die length is long, the number of times of compression is small, but the moving distance is long and the molding load is large. Also, if the die length is shortened, the forming load is small and the moving distance is short, but it is doubtful to what extent the residual stress reduction effect when the die length of 80 mm adopted in the experiments so far can be applied.

そこで、本発明の実験では、ダイス長さが80mmの場合に
加えて、10,20,30mmの各ダイス長さのものを準備してO
プレス後の残留応力分布を調べてみた。
Therefore, in the experiment of the present invention, in addition to the case where the die length is 80 mm, the die lengths of 10, 20, and 30 mm are prepared.
The residual stress distribution after pressing was examined.

その結果を第7図に示す。この場合、板厚は1.0mmと
し、真直径減少率はRt=1.8%とした。
The results are shown in FIG. In this case, the plate thickness was 1.0 mm and the true diameter reduction rate was Rt = 1.8%.

ダイス長さが10,20mmの場合には、σz・σθともに周
方向位置におけるばらつきが大きく、許容値よりもはず
れている。ダイス長さ30mmにおいては、各位置における
残留応力値が100MPa以内となり、ダイス長さ80mmの時の
結果に近ずいている。
When the die length is 10 and 20 mm, both σz and σθ have large variations in the circumferential position and deviate from the allowable values. When the die length is 30 mm, the residual stress value at each position is within 100 MPa, which is close to the result when the die length is 80 mm.

この理由として、ダイス長さが短い場合、Oプレス成形
された部分は前後の拘束を受けるため局部的な曲げ変形
などを受ける。そのために、ダイス長さに相当する良好
な平坦部が得られておらず、これが残留応力分布にも影
響を与えたものと考えられる。
The reason for this is that when the die length is short, the O-press-molded portion is subject to front and rear restraints, and is therefore locally bent and deformed. Therefore, a good flat portion corresponding to the die length was not obtained, and it is considered that this also affected the residual stress distribution.

しかして、前記の結果から、管の外径が22.5〜22.6mmに
対して、ダイス長さを30mmとしたものにより管の周方向
各位置における残留応力値が100MPaとなることから、応
力軽減効果を十分ならしめるためには、管外径の1.3倍
以上のダイス長さが必要であることが判明した。
From the above results, the outer diameter of the pipe is 22.5 to 22.6 mm, and the residual stress value at each position in the circumferential direction of the pipe is 100 MPa due to the die length of 30 mm. It was found that a die length of 1.3 times the outer diameter of the pipe or more is necessary to make the die sufficiently flat.

〔5〕Oプレス成形後の形状精度 Oプレス成形による残留応力軽減効果とともに、形状精
度の向上について測定を行い、1部ロール成形方と比較
した。
[5] Shape accuracy after O-press molding The residual stress reduction effect by O-press molding and improvement in shape accuracy were measured and compared with the one-part roll forming method.

板厚変化 第8図に周方向の板厚ひずみ分布を示す。Oプレス成形
において、真直径減少率が大きくなるとともに板厚が厚
くなり、特に管の側部でその傾向が著しい。なお、この
第8図において、左右のデータの差異は、機械の加工精
度、材料のばらつき、測定のばらつきが総合されたもの
であり、この得られたデータは、単一の実験に基づくも
のである。
Plate thickness change Fig. 8 shows the plate thickness strain distribution in the circumferential direction. In O press molding, the true diameter reduction rate increases and the plate thickness increases, and this tendency is particularly remarkable at the side portion of the tube. In FIG. 8, the difference between the left and right data is the sum of the machining accuracy of the machine, the variation of the material, and the variation of the measurement, and the obtained data is based on a single experiment. is there.

また、第5図の結果と照らし合わせてみると、真直径減
少率の過半量が板厚増加に変換されていることがわか
る。同一真直径減少率の場合には、ロール成形法の板厚
増加があまり見られないことがわかる。これはロールの
回転とともに、管の長手方向ののびが促進されるためで
ある。
In addition, when comparing it with the result of FIG. 5, it can be seen that the majority of the true diameter reduction rate is converted into the plate thickness increase. It can be seen that when the true diameter reduction rate is the same, the plate thickness increase by the roll forming method is not so large. This is because the longitudinal extension of the tube is promoted as the roll rotates.

周方向分布曲率 第9図の板厚0.4mmの場合のOプレス成形法とロール成
形法による周方向曲率分布を、また、第10図に板厚1.0m
mにおける各真直径減少率での周方向曲率分布を示す。
この第9図、第10図における横線は、計算上の曲線で、
数値はその時の管外径を意味する。これらの図は、ロー
ル成形とOプレス成形との縮径による周方向曲率分布の
比較を行ったデータであり、この縮径率が本発明の特許
請求の範囲内であれば、管の寸法精度が向上しているこ
とを示している。
Circumferential distribution curvature Fig. 9 shows the circumferential curvature distribution by O-press forming method and roll forming method when the plate thickness is 0.4 mm. Fig. 10 shows the plate thickness 1.0 m.
The curvature distribution in the circumferential direction at each true diameter reduction rate at m is shown.
The horizontal lines in FIGS. 9 and 10 are calculated curves,
The numerical value means the outer diameter of the pipe at that time. These figures are the data obtained by comparing the circumferential curvature distributions of the roll forming and the O press forming depending on the diameter reduction. If the diameter reduction ratio is within the scope of the claims of the present invention, the dimensional accuracy of the pipe is Is improving.

真直径減少率がほぼ同一の場合、成形法による差異は認
められない。また、同一減少率において、板厚1.0mmの
場合Oプレス成形法がやや曲率分布が悪いが、残留応力
が十分軽減される真直径減少率の範囲では、Oプレス成
形法による方が精度が著しく向上していることがわか
る。
When the true diameter reduction rates are almost the same, no difference due to the molding method is observed. Also, at the same reduction rate, when the plate thickness is 1.0 mm, the O press molding method has a slightly poor curvature distribution, but within the true diameter reduction rate range where residual stress is sufficiently reduced, the O press molding method is more accurate. You can see that it is improving.

管外径ならびに切口変形 第11図に管外径の縦横比ならびに管切断後の縦横比の変
化を示す。管周方向に管外径を測定していくと、溶接ビ
ードと管底間の外径が最も大きく、管の側部間の外径が
最も小さい。これを無次元化して縦横比として表した。
この図の切断は、実用上管を利用するとき、必要な長さ
に切ることがあり、残留応力が不均一に、かつ大きい場
合、切口変形という現象で管の精度が悪くなる問題を想
定したためであって、本発明のOプレス成形での管の精
度向上を立証するものである。
Pipe outer diameter and cut deformation Figure 11 shows the changes in the pipe outer diameter aspect ratio and the aspect ratio after pipe cutting. When the pipe outer diameter is measured in the pipe circumferential direction, the outer diameter between the weld bead and the pipe bottom is the largest, and the outer diameter between the side parts of the pipe is the smallest. This was made dimensionless and expressed as an aspect ratio.
The cutting in this figure may be cut to the required length when using the tube for practical purposes, and when residual stress is uneven and large, it is assumed that the accuracy of the tube will deteriorate due to the phenomenon of cut deformation. That is, it demonstrates the improvement of the accuracy of the pipe in the O press molding of the present invention.

Oプレス成形前は溶接・冷却の影響を受けて4〜5%の
楕円形であったが、成形後1%以下に精度が向上してい
る。真直径減少率Rtが約0.7%付近での縦横比が一番良
好であり、その後直径絞りを与えても必ずしも縦横比は
改善されていない。
Before O-press molding, the shape was 4-5% oval due to the influence of welding and cooling, but the accuracy is improved to 1% or less after molding. The aspect ratio is the best when the true diameter reduction rate Rt is about 0.7%, and the aspect ratio is not always improved even if the diameter reduction is applied thereafter.

周方向各位置における管外径の測定結果を調べてみる
と、減少率Rt=0.7%付近では、設定した穴型半径から
の弾性回復量が周方向各位置において一様である。
Examining the measurement results of the pipe outer diameter at each position in the circumferential direction, the elastic recovery amount from the set hole-shaped radius is uniform at each position in the circumferential direction near the reduction rate Rt = 0.7%.

一方、真直径減少率Rtが1%以上では、管側部はほぼ設
定した穴型径なのに対し、管底部とビード部間では、弾
性回復量が大きく設定穴型径から偏位している。
On the other hand, when the true diameter reduction rate Rt is 1% or more, the tube side portion has a substantially set hole die diameter, whereas the elastic recovery amount between the tube bottom portion and the bead portion is large and deviates from the set hole die diameter.

このことから、直径減少率が大きくなると、管の圧縮状
況が周方向位置により異なることがわかり、より高精度
の管をOプレス成形するためには、ダイス穴形状を真円
ではなく、やや横楕円形状にしなければならないことを
示している。
From this, it can be seen that when the diameter reduction rate becomes large, the compression state of the pipe differs depending on the circumferential position, and in order to perform O-press molding of the pipe with higher accuracy, the die hole shape should be slightly round rather than round. It indicates that the shape must be elliptical.

〔6〕応力腐食割れ試験 上記するように、ステンレス鋼溶接管は、引張り応力が
負荷され、塩化物環境に曝されると数カ月から数年とい
う単位で、応力腐食割れという金属破壊現象による事故
が発生し、社会問題となっている。本発明は、この観点
からのもので、残留応力軽減され、応力腐食割れ感受性
が小さくなったことを証明するため、応力腐食割れの加
速試験を行った。つまり、Oプレス成形を行って残留応
力が軽減された管を42%塩化マグネシウム沸騰液中143
℃へ漬ける応力腐食割れ試験を行い、割れ発生までの時
間を市販品と比較した。割れは顕微鏡とカラーチェック
により確認した。その結果を第12図に示す。
[6] Stress Corrosion Cracking Test As described above, when a stainless steel welded pipe is subjected to tensile stress and exposed to a chloride environment, an accident due to a metal fracture phenomenon called stress corrosion cracking occurs in units of several months to several years. Has occurred and has become a social problem. The present invention is based on this point of view. In order to prove that the residual stress is reduced and the stress corrosion cracking susceptibility is reduced, an accelerated stress corrosion cracking test is performed. In other words, a tube whose residual stress has been reduced by O press molding is used in a 42% magnesium chloride boiling solution.
A stress corrosion cracking test of dipping in ℃ was performed, and the time until the occurrence of cracking was compared with that of a commercial product. The crack was confirmed by a microscope and a color check. The result is shown in FIG.

市販品では、試験開始後30分で管全体にσzによる周方
向の横割れが発生した。またOプレスおよびサイジング
工程前、すなわち溶接・冷却後の管は管底部にσθによ
る長手方向の縦割れが発生した。このことは管底部外表
面に引張りの残留応力が分布しているという解析結果と
一致する。
In the commercially available product, circumferential cracking due to σz occurred in the entire pipe 30 minutes after the start of the test. Further, before the O-pressing and sizing steps, that is, after the welding / cooling, longitudinal cracks in the longitudinal direction due to σθ occurred at the bottom of the tube. This is consistent with the analysis result that tensile residual stress is distributed on the outer surface of the pipe bottom.

一方、ロール成形法によるサイジング工程後の管は、1
時間後に溶接ビード近傍のθ=135°〜160°ならびに45
°付近でσzによる割れが発生した。これに対し、Oプ
レス成形後の管は3時間経過後も割れ発生が見られず、
良好な結果であった。この結果は、縮径率と割れ発生時
間との関係から、本発明によるOプレス成形品が最も割
れ発生までの時間が長く、良好なことが確認できる。
On the other hand, the pipe after the sizing process by the roll forming method is 1
Θ = 135 ° to 160 ° and 45 near the weld bead after time
A crack due to σz occurred around °. On the other hand, the O-press-molded tube showed no cracking after 3 hours,
It was a good result. From this result, it can be confirmed that the O-press-formed product according to the present invention has the longest time until the occurrence of cracks and is favorable from the relationship between the diameter reduction ratio and the crack occurrence time.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、ステンレス鋼溶接管の溶
接・冷却後に生じる引張りの残留応力をOプレス成形に
より軽減する方法において、下記のような残留応力軽減
効果ならびに精度向上効果が得られたものである。
INDUSTRIAL APPLICABILITY As described above, the present invention provides the following residual stress reducing effect and accuracy improving effect in the method of reducing the residual tensile stress caused by welding and cooling of a stainless steel welded pipe by O press molding. Is.

引張りの残留応力が管の長手方向、周方向ともに10
0MPa以下になるためには、直径減少率が1.8%以上必要
であり、且つ管外径の1.3倍以上のダイス長さが必要で
あることが判明した。
Tensile residual stress is 10 in both longitudinal and circumferential direction
It was found that the diameter reduction rate must be 1.8% or more and the die length must be 1.3 times or more the outer diameter of the pipe in order to reach 0 MPa or less.

よって、本発明の方法は、前記の数値を満たすべく実施
することにより、必要最少限のダイス長さ及び直径減少
率でもって、長手方向、周方向ともに引張り残留応力を
100MPa以下に軽減した管を得ることができ、管に分布す
る引張りの残留応力による応力腐食割れをなくすことが
できる優れた効果を有する。
Therefore, the method of the present invention is carried out so as to satisfy the above-mentioned numerical values, and with the minimum necessary die length and diameter reduction rate, the tensile residual stress in both the longitudinal direction and the circumferential direction is determined.
It is possible to obtain a pipe reduced to 100 MPa or less, and it has an excellent effect of eliminating stress corrosion cracking due to residual tensile stress distributed in the pipe.

しかも、Oプレス成形を行った溶接管の形状精度
は、ロール成形法と比較して優れているとともに、Oプ
レス成形による管の矯正法は、耐応力腐食割れ性におい
ても、ロール成形法による矯正に比べて優れているなど
の効果を有する。
Moreover, the shape accuracy of the welded pipe subjected to O press molding is superior to that of the roll forming method, and the pipe straightening method by O press molding is straightened by the roll forming method even in terms of stress corrosion cracking resistance. It has advantages such as being superior to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施するステンレス鋼溶接管の
断面図、第2図AはOプレス金型の正面図、第2図Bは
側面図、第3図は管の板厚と直径減少率を示すグラフ、
第4図は残留応力分布を示すグラフ、第5図は管の直径
絞りによる長手方向ののびを示すグラフ、第6図は管の
板厚変化による残留応力分布を示すグラフ、第7図はダ
イス長さの変化による残留応力分布を示すグラフ、第8
図は板厚分布を示すグラフ、第9図はプレス成形法とロ
ール成形法による周方向曲率分布を示すグラフ、第10図
は各真直径減少率での周方向曲率分布を示すグラフ、第
11図は溶接管の縦横比を示すグラフ、第12図は管の応力
腐食割れ試験結果を示すグラフである。 1……ステンレス鋼溶接管、2……Oプレス金型、3…
…管底部、4……溶接ビード。
FIG. 1 is a sectional view of a stainless steel welded pipe for carrying out the method of the present invention, FIG. 2A is a front view of an O press die, FIG. 2B is a side view, and FIG. 3 is a plate thickness and diameter of the pipe. A graph showing the rate of decrease,
FIG. 4 is a graph showing the residual stress distribution, FIG. 5 is a graph showing the elongation in the longitudinal direction due to the diameter reduction of the pipe, FIG. 6 is a graph showing the residual stress distribution due to the change in the plate thickness of the pipe, and FIG. 7 is the die. Graph showing residual stress distribution due to change in length, No. 8
Fig. 9 is a graph showing the plate thickness distribution, Fig. 9 is a graph showing the circumferential curvature distribution by the press forming method and roll forming method, and Fig. 10 is a graph showing the circumferential curvature distribution at each true diameter reduction rate.
FIG. 11 is a graph showing the aspect ratio of the welded pipe, and FIG. 12 is a graph showing the results of stress corrosion cracking test of the pipe. 1 ... Stainless steel welded pipe, 2 ... O press mold, 3 ...
… Tube bottom, 4… Weld beads.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Oプレス成形装置を用いて溶接・冷却後の
ステンレス鋼溶接管に直径絞りを与えて管の残留応力を
軽減させる方法において、ダイス長さを前記管外径の1.
3倍以上としたOプレス金型を用い、且つ直径減少率が
1.8%以上になるようにプレスすることを特徴とするス
テンレス鋼溶接管の残留応力軽減方法。
1. A method of reducing the residual stress of a pipe by applying a diameter reduction to a welded and cooled stainless steel welded pipe by using an O press forming apparatus, wherein the die length is 1.
Uses an O-press die that is 3 times or more the diameter reduction rate.
A method for reducing residual stress in a stainless steel welded pipe, characterized by pressing to 1.8% or more.
JP25427788A 1988-10-08 1988-10-08 Reducing residual stress in stainless steel welded pipe Expired - Lifetime JPH0698387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25427788A JPH0698387B2 (en) 1988-10-08 1988-10-08 Reducing residual stress in stainless steel welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25427788A JPH0698387B2 (en) 1988-10-08 1988-10-08 Reducing residual stress in stainless steel welded pipe

Publications (2)

Publication Number Publication Date
JPH02104491A JPH02104491A (en) 1990-04-17
JPH0698387B2 true JPH0698387B2 (en) 1994-12-07

Family

ID=17262731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25427788A Expired - Lifetime JPH0698387B2 (en) 1988-10-08 1988-10-08 Reducing residual stress in stainless steel welded pipe

Country Status (1)

Country Link
JP (1) JPH0698387B2 (en)

Also Published As

Publication number Publication date
JPH02104491A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
JP5614324B2 (en) Steel pipe manufacturing method
TWI711498B (en) Formed material manufacturing method and formed material
CN100493762C (en) Mold, manufacturing method of stepped metal pipe, and stepped metal pipe
JP5444750B2 (en) Steel plate press forming method
JP5333401B2 (en) Metal double pipe manufacturing method
JP5672215B2 (en) Surface processing crack sensitivity evaluation method and apparatus
JP5796516B2 (en) Metal double pipe manufacturing method
JPH0698387B2 (en) Reducing residual stress in stainless steel welded pipe
JPH07265941A (en) Manufacture of welded tube excellent in workability by rolless tube manufacturing method
CN114250377A (en) Aging strength prediction method of high strength aluminum alloy
JP4213370B2 (en) Method for producing annealed wire rod for cold working
JP3690246B2 (en) Metal tube for hydrofoam and manufacturing method thereof
EP3960316B1 (en) Rolling-straightening machine and method for manufacturing pipe or bar using rolling-straightening machine
JP5949629B2 (en) Manufacturing method of extra-thick austenitic stainless steel plate with excellent internal properties and extra-thick austenitic stainless steel plate with excellent internal properties
WO2023276644A1 (en) Square steel tube, method for manufacturing same, and building structure
JPS60184424A (en) How to set the roll position of a roll type tube straightening machine
JP5036449B2 (en) Pipe bending method
JP3608489B2 (en) Drawing method
JP4975354B2 (en) Manufacturing method of high strength welded steel pipe
JPH08294727A (en) Production of uoe steel tube
JP2520538B2 (en) How to prevent pipe end deformation of ERW steel pipe
JPH10258312A (en) Manufacture of welded tube excellent in roundness
JP2004330297A (en) Steel pipe correction method for obtaining steel pipe excellent in circularity
JP2024028215A (en) Method for manufacturing press parts, metal plate for press processing, and method for manufacturing the same
JP2001096316A (en) Hydroforming method for steel pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20071207

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081207

EXPY Cancellation because of completion of term