[go: up one dir, main page]

JPH0697238A - Semiconductor mounting equipment - Google Patents

Semiconductor mounting equipment

Info

Publication number
JPH0697238A
JPH0697238A JP24090692A JP24090692A JPH0697238A JP H0697238 A JPH0697238 A JP H0697238A JP 24090692 A JP24090692 A JP 24090692A JP 24090692 A JP24090692 A JP 24090692A JP H0697238 A JPH0697238 A JP H0697238A
Authority
JP
Japan
Prior art keywords
thermocompression
semiconductor
bonding
thermocompression bonding
semiconductor mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24090692A
Other languages
Japanese (ja)
Inventor
Takayuki Maruyama
隆幸 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24090692A priority Critical patent/JPH0697238A/en
Publication of JPH0697238A publication Critical patent/JPH0697238A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Wire Bonding (AREA)

Abstract

(57)【要約】 【構成】 本発明の半導体実装装置は、半導体上に形成
された熱圧着部8a〜8iの総合重心位置14に熱圧着
用ツ−ル2に設けられた加圧部11に1点集中加圧力を
受ける様に設定し、なおかつ前記加圧力がかけられる時
に前記熱圧着部8a〜8iと回路パタ−ン4a〜4iの
面に対して前記熱圧着用ツ−ル2が3次元方向にー定の
自由運動が行える様に構成されている。 【効果】 本発明によれば、絶縁テ−プ5上に形成され
た回路パタ−ン4a〜4iと熱圧着部8a〜8iの熱圧
着作業を熱圧着用ツ−ル2に形成された加圧部11によ
り前記熱圧着部8a〜8iの総合重心位置14を1点集
中して加圧することにより数ミクロンレベルで安定した
熱圧着作業ができるという効果を有する。
(57) [Summary] [Construction] In the semiconductor mounting apparatus of the present invention, the pressing portion 11 provided on the thermocompression-bonding tool 2 is provided at the total center of gravity position 14 of the thermocompression-bonding portions 8a to 8i formed on the semiconductor. Is set so as to receive a 1-point concentrated pressurizing force, and when the pressurizing force is applied, the thermocompression-bonding tool 2 is attached to the surfaces of the thermocompression-bonding portions 8a to 8i and the circuit patterns 4a to 4i. It is designed to allow a certain free movement in the three-dimensional direction. According to the present invention, the thermocompression bonding work of the circuit patterns 4a to 4i and the thermocompression bonding portions 8a to 8i formed on the insulating tape 5 is applied to the thermocompression bonding tool 2. The pressure portion 11 concentrates and pressurizes the total gravity center position 14 of the thermocompression-bonding portions 8a to 8i at one point, so that the thermocompression-bonding work can be stably performed at a level of several microns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数の回路パタ−ンを形
成した基板叉はテ−プに半導体上に形成された複数の熱
圧着部を熱圧着する半導体実装装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor mounting device for thermocompression bonding a plurality of thermocompression bonding parts formed on a semiconductor on a substrate or tape having a plurality of circuit patterns formed thereon.

【0002】[0002]

【従来の技術】従来の技術では、複数の回路パタ−ンを
形成した基板叉はテ−プと、半導体上に設けられた複数
の熱圧着部を、熱圧着する熱圧着用ツ−ル面との数ミク
ロンレベルでの平行度出しは、図5に示すように前記熱
圧着用ツ−ル2が加圧力を伝える固定部1に設置された
可動円周面を有する調整部17、18を、ネジ20で動
かすことにより3次元方向調整出しを熱圧着作業前に行
い、固定しておくことで対応していた。
2. Description of the Related Art In the prior art, a thermocompression-bonding tool surface for thermocompression bonding a substrate or tape having a plurality of circuit patterns and a plurality of thermocompression bonding portions provided on a semiconductor. As shown in FIG. 5, the adjustment of the parallelism between the and is performed by adjusting parts 17 and 18 having a movable circumferential surface installed on the fixed part 1 through which the thermocompression-bonding tool 2 transmits a pressing force. The three-dimensional adjustment was performed by moving the screw 20 before the thermocompression bonding work, and it was fixed.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述の従来方
法では複数の回路パタ−ンを形成した基板叉はテ−プ
と、半導体上に形成された複数の熱圧着部とを熱圧着用
ツ−ルで熱圧着するのに必要な前記複数の回路パタ−ン
と前記複数の熱圧着用ツ−ル面との数ミクロンレベルで
の平行度出しは、調整者の感覚による条件設定のバラツ
キにより、熱圧着強度不足や熱圧着ミス等の品質不良を
発生するばかりか、時間の経過によるミクロレベルの3
次元方向での前記熱圧着用ツ−ル加圧面の位置ズレが発
生するという問題を有していた。
However, in the above-mentioned conventional method, a substrate or tape having a plurality of circuit patterns and a plurality of thermocompression bonding portions formed on a semiconductor are bonded to each other by thermocompression bonding. -The parallelism at the several micron level between the plurality of circuit patterns and the plurality of thermocompression-bonding tool surfaces required for thermocompression bonding with a tool is caused by the variation in condition setting depending on the sense of the adjuster. , Not only quality defects such as insufficient thermo-compression bonding strength and mistakes in thermo-compression bonding, but also micro level 3 due to the passage of time.
There is a problem in that the tool pressure surface for thermocompression bonding is displaced in the dimensional direction.

【0004】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは前記複数の回路パタ
−ンを形成した基板叉はテ−プと半導体上に形成された
前記複数の熱圧着部と前記熱圧着用ツ−ル面の平行度を
加圧力の1点集中加圧によるなじみ構造により安定的に
しかも簡単に行なうことができる半導体実装装置を提供
するとこにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to solve the above problems by forming the plurality of circuit patterns on the substrate or tape and the plurality of semiconductors formed on the semiconductor. It is an object of the present invention to provide a semiconductor mounting device capable of stably and easily performing parallelism between a thermocompression bonding portion and the thermocompression-bonding tool surface by a familiar structure by one-point concentrated pressurization.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1の半導
体実装装置は、熱圧着用ツ−ル面と半導体上に形成され
た複数の熱圧着部との平行度出しを熱圧着用ツ−ル側に
形成したなじみ構造により行い、複数の回路パタ−ンと
半導体上に形成された複数の熱圧着部を熱圧着すること
を特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor mounting apparatus in which the parallelism between a thermocompression-bonding tool surface and a plurality of thermocompression-bonding portions formed on a semiconductor is measured. It is characterized in that it is performed by a familiar structure formed on the loop side, and a plurality of circuit patterns and a plurality of thermocompression bonding portions formed on the semiconductor are thermocompression bonded.

【0006】本発明の請求項2の半導体実装装置は、熱
圧着用ツ−ル面と半導体上に形成された複数の熱圧着部
との平行度出しを、加圧力の1点集中加圧力方法による
なじみ構造により行なうことを特徴とする。
According to a second aspect of the semiconductor mounting apparatus of the present invention, the parallelism between the thermocompression-bonded tool surface and the plurality of thermocompression-bonded portions formed on the semiconductor is measured by a one-point concentrated pressure method. It is characterized by performing a familiar structure.

【0007】本発明の請求項3の半導体実装装置は、熱
圧着用ツ−ル面と半導体上に形成された複数の熱圧着部
の平行度出しを行なうための1点集中加圧力の加圧位置
が半導体上に形成された複数の熱圧着部の総合重心位置
に設けられていることを特徴とする。
According to a third aspect of the present invention, there is provided a semiconductor mounting apparatus in which a single point pressurizing force is applied for parallelization of a thermocompression-bonding tool surface and a plurality of thermocompression-bonding portions formed on a semiconductor. It is characterized in that the position is provided at the position of the total center of gravity of a plurality of thermocompression bonding portions formed on the semiconductor.

【0008】本発明の請求項4の半導体実装装置は、半
導体上に形成された複数の熱圧着部の総合重心位置に設
けられた1点集中加圧力の加圧部が、熱圧着用ツ−ルに
予めツ−ル加工時に設定されていることを特徴とする。
According to a fourth aspect of the present invention, there is provided a semiconductor mounting apparatus in which a pressure-applying portion for one-point concentrated pressurization provided at a total center of gravity of a plurality of thermocompression-bonding portions formed on a semiconductor is a thermocompression-bonding tool. It is characterized in that the tool is preset at the time of tool processing.

【0009】本発明の請求項5の半導体実装装置は、半
導体上に形成された複数の熱圧着部の総合重心位置に設
けられた1点集中加圧部の位置が前記熱圧着用ツ−ルの
加圧面に対して平面方向に微調整できる構造を有するこ
とを特徴とする。
According to a fifth aspect of the semiconductor mounting apparatus of the present invention, the position of the one-point concentrated pressurizing portion provided at the total center of gravity of the plurality of thermocompression-bonding portions formed on the semiconductor is the thermocompression-bonding tool. It has a structure that can be finely adjusted in the plane direction with respect to the pressure surface of the.

【0010】[0010]

【作用】本発明の構成によれば、基板叉はテ−プ上に形
成された複数の回路パタ−ンと半導体上に形成された複
数の熱圧着部の熱圧着作業を熱圧着用ツ−ルに形成され
た加圧部を頂点とした力の三角錘形の底辺が、複数の回
路パタ−ンと複数の熱圧着部に接した時に前記複数の熱
圧着部の総合重心位置から垂直軸線上に熱圧着用ツ−ル
に形成された加圧部位置がくるようななじみ構造により
数ミクロンレベルでの平行度出しが自動的に行える。さ
らに、前記力の三角錘形の頂点が半導体上に形成された
前記複数の熱圧着部の総合重心位置と前記熱圧着用ツ−
ルに形成された加圧部と一致しているため、加圧部に加
えられた加圧力は全ての熱圧着部と回路パタ−ンを均一
に加圧することができる。
According to the structure of the present invention, the thermocompression bonding work of the plurality of circuit patterns formed on the substrate or the tape and the plurality of thermocompression bonding portions formed on the semiconductor is performed. When the base of the triangular pyramid of force with the pressing portion formed at the top as the apex is in contact with a plurality of circuit patterns and a plurality of thermocompression bonding parts, a vertical axis from the total gravity center position of the plurality of thermocompression bonding parts The parallel structure at the level of several microns can be automatically achieved by the familiar structure in which the position of the pressing portion formed on the line for the thermocompression bonding tool is located. Further, the total gravity center position of the plurality of thermocompression-bonded portions in which the triangular pyramid-shaped vertices of the force are formed on the semiconductor and the thermocompression-bonding tool.
Since it corresponds to the pressurizing portion formed on the ring, the pressurizing force applied to the pressurizing portion can uniformly press all the thermocompression-bonding portions and the circuit pattern.

【0011】[0011]

【実施例】以下、本発明について図面に基づいて詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0012】図1は、本発明の半導体実装装置の熱圧着
作業前のヘッド部分の構造を示した正面図。ここに述べ
たヘッド部分とは、1点集中加圧部を有した熱圧着用ツ
−ル2と機械本体に固定された前記熱圧着用ツ−ル2を
加圧するためのプッシャ−1を指す。この熱圧着作業前
の状態においては、機械本体に保持され上下に作動する
プッシャ−1に保持された熱圧着用ツ−ル2の中心軸9
bは、半導体乗せ台6上に保持された半導体7の垂直軸
9aとは一致していない。つまり半導体7上に形成され
た熱圧着部8a〜8iの上面と熱圧着用ツ−ル2の加圧
面の平行度が出ていない状態にある。図2は、半導体実
装装置の熱圧着作業中のヘッド部分を示した正面図。機
械本体の上下動力によりプッシャ−1に保持された熱圧
着用ツ−ル2は、回路パタ−ン4a〜4iを挟み込み半
導体上に形成された熱圧着部8a〜8iを加圧する。こ
の時、作業前には一致していなかった熱圧着用ツ−ル2
の中心軸9bは、熱圧着用ツ−ル2の加圧面が熱圧着部
8a〜8iと回路パタ−ン8a〜8iに接した後プッシ
ャ−1により熱圧着用ツ−ル2に設けられた加圧部11
を設定加圧することで前記熱圧着用ツール2の加圧面が
熱圧着部に接した所はその位置を保ち、まだ熱圧着部に
接していない加圧面は、加圧部11を頂点とする力の三
角錘形13の底辺が全ての熱圧着部に接した力の三角錘
形を形成するまでなじみ機能により変位し、半導体7上
に形成された熱圧着部8a〜8iの上面の垂直軸9aと
一致して釣り合う。釣り合った状態の後、加圧部11を
頂点とする力の三角錘形を回路パタ−ン4a〜4iと熱
圧着部8a〜8i上に形成し設定した加圧力と熱伝対1
0によりコントロ−ルされた熱をー定時間加えると回路
パタ−ン4a〜4iと熱圧着部8a〜8iの接合部に共
晶合金が形成され、熱圧着用ツ−ル2は上昇し熱圧着作
業が終了する。このように、熱圧着用ツ−ル2に1点集
中加圧部11を設けそこを頂点とする力の三角錘形を回
路パタ−ン4a〜4iと半導体7上に形成された熱圧着
部8a〜8i上面に熱圧着作業ごとに構成するなじみ構
造によれば、従来方法のように回路パタ−ンを形成した
基板叉はテ−プと、半導体上に設けられた熱圧着用ツ−
ル面との数ミクロンレベルでの平行度出しは、調整者の
感覚によらず安定して行なうことができ、熱圧着強度及
び熱圧着ミス等の不良が発生することなく安定した熱圧
着品質を確保することができる。図3は、半導体7上に
形成された熱圧着部8a〜8iとその総合重心位置14
の相関平面図。加圧部11の位置は、図3に示すよう
に、熱圧着部8a〜8iの総合重心位置14に一致させ
るとよい。その理由は、半導体7上に設けられた熱圧着
部8a〜8iは、機種ごとによつて個数、配置及びパタ
−ンの大きさが異なるため、全ての熱圧着部8a〜8i
及び回路パタ−ン4a〜4iを考慮して均一に加力を加
えることができる総合重心点14の1点に集中して加え
ることにより均一な共晶合金を形成し、熱圧着強度及び
熱圧着ミス等の品質不良の発生を防止することができ
る。この場合、総合重心位置14は、次に示す計算式に
より求めることができる。(なお、ma〜miは、半導
体7上に形成された熱圧着部8a〜8iの質量を表わ
す。)
FIG. 1 is a front view showing a structure of a head portion of a semiconductor mounting apparatus of the present invention before thermocompression bonding work. The head portion described here refers to a thermocompression-bonding tool 2 having a one-point concentrated pressurizing section and a pusher-1 for pressing the thermocompression-bonding tool 2 fixed to the machine body. . In the state before the thermocompression bonding work, the central shaft 9 of the thermocompression bonding tool 2 held by the pusher -1, which is held by the machine body and operates up and down.
b does not coincide with the vertical axis 9a of the semiconductor 7 held on the semiconductor platform 6. That is, there is no parallelism between the upper surfaces of the thermocompression bonding portions 8a to 8i formed on the semiconductor 7 and the pressing surface of the thermocompression bonding tool 2. FIG. 2 is a front view showing a head portion during the thermocompression bonding work of the semiconductor mounting device. The thermocompression-bonding tool 2 held by the pusher-1 by the vertical power of the machine body sandwiches the circuit patterns 4a-4i and presses the thermocompression bonding portions 8a-8i formed on the semiconductor. At this time, the tools for thermocompression bonding 2 that did not match before the work
The central axis 9b of the thermocompression-bonding tool 2 is provided on the thermocompression-bonding tool 2 by a pusher 1 after the pressing surface of the thermocompression-bonding tool 2 contacts the thermocompression-bonding portions 8a to 8i and the circuit patterns 8a to 8i. Pressure unit 11
The position where the pressing surface of the thermocompression-bonding tool 2 is in contact with the thermocompression-bonding portion is maintained by setting and pressing, and the pressing surface not yet in contact with the thermocompression-bonding portion has a force with the pressing portion 11 as the apex. The base of the triangular pyramid 13 is displaced by a familiar function until it forms a triangular pyramid of forces contacting all the thermocompression bonding parts, and the vertical axis 9a on the upper surface of the thermocompression bonding parts 8a to 8i formed on the semiconductor 7 is formed. Match and balance. After the equilibrium state, the triangular pyramid shape of force having the pressing portion 11 as the apex is formed on the circuit patterns 4a to 4i and the thermocompression bonding portions 8a to 8i and the set pressing force and thermocouple 1 are formed.
When the heat controlled by 0 is applied for a fixed time, a eutectic alloy is formed at the joints between the circuit patterns 4a to 4i and the thermocompression bonding portions 8a to 8i, and the thermocompression bonding tool 2 rises to generate heat. The crimping work is completed. In this way, the thermocompression-bonding tool 2 is provided with the one-point concentrated pressurizing portion 11, and the triangular pyramid shape of the force having the apex thereof is formed on the circuit patterns 4a to 4i and the semiconductor 7 in the thermocompression-bonding portion. According to the familiar structure formed on the upper surfaces of 8a to 8i for each thermocompression bonding operation, the substrate or tape having the circuit pattern formed as in the conventional method and the thermocompression bonding tool provided on the semiconductor are used.
The parallelism at the level of a few microns with the contact surface can be stably performed regardless of the sense of the adjuster, and stable thermocompression bonding quality can be obtained without causing defects such as thermocompression bonding strength and thermocompression bonding errors. Can be secured. FIG. 3 shows the thermocompression bonding portions 8a to 8i formed on the semiconductor 7 and the position 14 of the total center of gravity thereof.
FIG. As shown in FIG. 3, it is preferable that the position of the pressurizing unit 11 be aligned with the total gravity center position 14 of the thermocompression bonding units 8a to 8i. The reason is that the thermocompression bonding parts 8a to 8i provided on the semiconductor 7 have different numbers, arrangements, and pattern sizes depending on the models, and therefore all the thermocompression bonding parts 8a to 8i.
Also, by considering the circuit patterns 4a to 4i and applying the force uniformly to one point of the total center of gravity 14 to which the force can be uniformly applied, a uniform eutectic alloy is formed, and the thermocompression bonding strength and the thermocompression bonding are performed. It is possible to prevent the occurrence of quality defects such as mistakes. In this case, the total barycentric position 14 can be obtained by the following calculation formula. (Note that ma to mi represent the mass of the thermocompression bonding portions 8a to 8i formed on the semiconductor 7.)

【0013】[0013]

【数1】 [Equation 1]

【0014】さらに、前述の計算式で求められた総合重
心位置14に加圧部11を熱圧着用ツ−ル2を製作する
過程で加工により設定しておくことにより、機械の条件
出し時叉は機種切り替え時叉は熱圧着用ツール交換時の
条件出しが不要になる。図4は、半導体7上に形成され
た熱圧着部8a〜8iの総合重心位置14に設けられた
1点集中加圧部11の位置を半導体上面に対して平面方
向に微調整できる方法のー実施例を示した正面図、平面
図である。前述の加圧部11に1点集中加圧力を加えて
回路パタ−ン4a〜4iと熱圧着部8a〜8i上に加圧
部11を頂点とする力の三角錘形を形成するなじみ構造
においては、熱圧着用ツ−ル2の加圧面から加圧部11
までの高さが大きいとヒ−タ−3や熱伝対10の配線の
こわさによる外部抵抗力が影響してなじみ構造による数
ミクロンレベルでの平行度出しを行なう加圧位置が、総
合重心位置14と一致しない現象がおきる場合がある。
このような場合は、総合重心位置14にこだわらず、な
じみが一番確実に行なわれる位置に加圧部11を位置出
し調整すればヒ−タ−3や熱伝対10の配線のこわさに
よる外部抵抗力を考慮に入れて加圧部11の位置を最適
な位置に微調整するとよい。
Further, by setting the pressurizing portion 11 at the total center of gravity position 14 obtained by the above-mentioned calculation formula in the process of manufacturing the thermocompression-bonding tool 2, the condition of the machine can be adjusted. Eliminates the need to set conditions when changing models or exchanging thermocompression bonding tools. FIG. 4 shows a method in which the position of the one-point concentrated pressurizing portion 11 provided at the total gravity center position 14 of the thermocompression bonding portions 8a to 8i formed on the semiconductor 7 can be finely adjusted in the plane direction with respect to the semiconductor upper surface. It is the front view and the top view which showed the example. In the familiar structure in which one point concentrated pressure is applied to the pressurizing portion 11 to form a triangular pyramid shape of force having the apex of the pressurizing portion 11 on the circuit patterns 4a to 4i and the thermocompression bonding portions 8a to 8i. From the pressing surface of the thermocompression-bonding tool 2 to the pressing portion 11
If the height is too high, the external resistance force due to the rigidity of the heater-3 and the wiring of the thermocouple 10 will affect the parallel position at the level of several microns due to the familiar structure. There may be a phenomenon that does not match 14.
In such a case, if the pressurizing portion 11 is positioned and adjusted to a position at which the fitting is most surely performed without depending on the total center-of-gravity position 14, the external force due to the rigidity of the wiring of the heater-3 and the thermocouple 10 The position of the pressurizing unit 11 may be finely adjusted to an optimum position in consideration of the resistance force.

【0015】[0015]

【発明の効果】以上述べたように本発明によれば、絶縁
テ−プ5上に形成された回路パタ−ン4a〜4iと熱圧
着部8a〜8iの熱圧着作業を熱圧着用ツ−ル2に形成
された加圧部11を頂点とした力の三角錘形の底辺が全
ての熱圧着部8a〜8iと回路パタ−ン4a〜4i上に
接した時に熱圧着部8a〜8iの総合重心位置14かの
垂直軸線上に加圧部11位置がくるように設定したなじ
み構造により、数ミクロンレベルでの平行度出しが自動
的に行なえれる。さらに、前記力の三角錘形の頂点が前
記熱圧着部8a〜8i総合重心点14と熱圧着用ツ−ル
2に形成された加圧部11と一致しているため加圧部1
1に加えられた加圧力は全ての熱圧着部8a〜8iと回
路パタ−ン4a〜4iを均一に加圧することができ安定
した半導体実装作業ができるという効果を有する。
As described above, according to the present invention, the thermocompression bonding work of the circuit patterns 4a to 4i and the thermocompression bonding portions 8a to 8i formed on the insulating tape 5 is performed by the thermocompression bonding tool. When the base of the triangular pyramid of force with the pressing portion 11 formed on the rule 2 as the apex contacts all the thermocompression bonding portions 8a to 8i and the circuit patterns 4a to 4i, the thermocompression bonding portions 8a to 8i With the familiar structure in which the pressing portion 11 is positioned on the vertical axis of the total center of gravity position 14, parallelism can be automatically obtained at the level of several microns. Further, the apex of the triangular pyramid shape of the force coincides with the total gravity center point 14 of the thermocompression bonding parts 8a to 8i and the pressing part 11 formed on the thermocompression bonding tool 2, so that the pressing part 1 is formed.
The pressing force applied to 1 has an effect that all the thermocompression bonding parts 8a to 8i and the circuit patterns 4a to 4i can be uniformly pressed and stable semiconductor mounting work can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 半導体実装装置の作業前のヘッド部分を示し
た正面図である。
FIG. 1 is a front view showing a head portion of a semiconductor mounting device before work.

【図2】 半導体実装装置の作業中のヘッド部分を示し
た正面図である。
FIG. 2 is a front view showing a head portion of the semiconductor mounting device during work.

【図3】 半導体上に形成された熱圧着部の相関位置拡
大平面図である。
FIG. 3 is an enlarged plan view of correlation positions of a thermocompression bonding portion formed on a semiconductor.

【図4】 加圧部11をプッシャ−側に設けた場合のー
実施例を示した正面図、平面図である。
4A and 4B are a front view and a plan view showing an embodiment in the case where the pressure unit 11 is provided on the pusher side.

【図5】従来方法を示したー実施例の正面図、側面図で
ある。
FIG. 5 is a front view and a side view of an embodiment showing a conventional method.

【符号の説明】[Explanation of symbols]

1 プッシャ− 2 熱圧着用ツ−ル 4a〜4i 回路パタ−ン 5 絶縁テ−プ 6 半導体の乗せ台 7 半導体 8a〜8i 熱圧着部 9a 重心軸 10 熱伝対 11 加圧部 14 総合重心位置 15a〜15d ネジ 16 調整板 DESCRIPTION OF SYMBOLS 1 Pusher 2 Thermocompression bonding tool 4a-4i Circuit pattern 5 Insulation tape 6 Semiconductor mounting stand 7 Semiconductor 8a-8i Thermocompression bonding part 9a Center of gravity axis 10 Thermocouple 11 Pressurizing part 14 Total center of gravity position 15a to 15d Screw 16 Adjustment plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の回路パタ−ンを形成した基板叉はテ
−プに半導体を熱圧着する半導体実装装置において熱圧
着用ツ−ル面と半導体上に形成した複数の熱圧着部との
平行度出しを行なうためのなじみ構造を前記熱圧着用ツ
−ル側に設けることにより、前記複数の回路パタ−ン
と、前記半導体上の複数の熱圧着部を熱圧着することを
特徴とする半導体実装装置。
1. A semiconductor mounting device for thermocompression bonding a semiconductor to a substrate or tape on which a plurality of circuit patterns are formed. The tool surface for thermocompression bonding and a plurality of thermocompression bonding parts formed on the semiconductor. By providing a familiar structure for providing parallelism on the side of the thermocompression bonding tool, the plurality of circuit patterns and the plurality of thermocompression bonding portions on the semiconductor are thermocompression bonded. Semiconductor mounting equipment.
【請求項2】前記熱圧着用ツ−ル面と前記半導体上に形
成された複数の熱圧着部の平行度出しを、加圧力の1点
集中加圧方式によるなじみ構造により行なうことを特徴
とする半導体実装装置。
2. The parallelization of the thermocompression-bonding tool surface and a plurality of thermocompression-bonding portions formed on the semiconductor is performed by a familiar structure using a one-point concentrated pressurizing method of pressing force. Semiconductor mounting device.
【請求項3】前記熱圧着用ツ−ル面と、前記半導体上に
形成された複数の熱圧着部との平行度出しを行なうため
の前記1点集中加圧力の加圧位置が、半導体上に形成さ
れた複数の熱圧着部の総合重心位置に設けられているこ
とを特徴とする半導体実装装置。
3. The pressing position of the one-point concentrated pressurizing force for performing parallelization between the thermocompression-bonding tool surface and a plurality of thermocompression-bonding portions formed on the semiconductor is on the semiconductor. A semiconductor mounting device, wherein the semiconductor mounting device is provided at a position of a total center of gravity of a plurality of thermocompression-bonded portions formed on the.
【請求項4】前記半導体上に形成された複数の熱圧着部
の総合重心位置に設けられた前記1点集中加圧力の加圧
部が、前記熱圧着用ツ−ルに予めツ−ル加工時に設定さ
れていることを特徴とする半導体実装装置。
4. A pressure-applying portion for the one-point concentrated pressurizing force, which is provided at the position of the total center of gravity of a plurality of thermocompression-bonding portions formed on the semiconductor, is pre-tooled on the thermocompression-bonding tool. A semiconductor mounting device characterized by being set at times.
【請求項5】前記半導体上に形成された複数の熱圧着部
の総合重心位置に設けられた前記1点集中加圧部の位置
が、熱圧着ツ−ル面に対しての平面方向に微調整できる
構造を有することを特徴とする半導体実装装置。
5. The position of the one-point concentrated pressurizing portion provided at the total center of gravity of a plurality of thermocompression-bonding portions formed on the semiconductor is fine in the plane direction with respect to the thermocompression-bonding tool surface. A semiconductor mounting device having an adjustable structure.
JP24090692A 1992-09-09 1992-09-09 Semiconductor mounting equipment Pending JPH0697238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24090692A JPH0697238A (en) 1992-09-09 1992-09-09 Semiconductor mounting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24090692A JPH0697238A (en) 1992-09-09 1992-09-09 Semiconductor mounting equipment

Publications (1)

Publication Number Publication Date
JPH0697238A true JPH0697238A (en) 1994-04-08

Family

ID=17066438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24090692A Pending JPH0697238A (en) 1992-09-09 1992-09-09 Semiconductor mounting equipment

Country Status (1)

Country Link
JP (1) JPH0697238A (en)

Similar Documents

Publication Publication Date Title
US6555764B1 (en) Integrated circuit contactor, and method and apparatus for production of integrated circuit contactor
US6503127B2 (en) Apparatus and methods for substantial planarization of solder bumps
JP3578232B2 (en) Electrical contact forming method, probe structure and device including the electrical contact
US7285430B2 (en) Connection device and test system
JPH0845994A (en) Bonding method to flip chip substrate
US5707000A (en) Apparatus and method for removing known good die using hot shear process
US7325298B2 (en) Pressure apparatus and chip mounter
JPH03506103A (en) Equipment for bonding leads to non-coplanar substrates
JPH02111029A (en) Formation of bump and apparatus therefor
JPH0697238A (en) Semiconductor mounting equipment
JP2659630B2 (en) Connection method between chip components and substrate
JP2885283B2 (en) Circuit element for flip chip connection
US20030159274A1 (en) Bump forming system employing attracting and compressing device
JP2837145B2 (en) Connection method and connection device between chip component and substrate
JPH05291260A (en) Forming method for bump
JP3237306B2 (en) Solder pressing device
JP2002270630A (en) Planarizing device and head
JP2000183138A (en) Wax bonding jig
JP3766362B2 (en) Manufacturing method of semiconductor device
JPH10242631A (en) Method of flattening solder bump and its device
JP2021125572A (en) Cutting device, bonding material transcribing device, and mounting device
JPH025425A (en) Flattening device for bump
JPH04275489A (en) Soldering method
JP2000090616A (en) Method and apparatus for mounting magnetic head
JPH01152793A (en) Processing of packaging surface of printed circuit board