JPH0697123B2 - Refrigeration equipment - Google Patents
Refrigeration equipmentInfo
- Publication number
- JPH0697123B2 JPH0697123B2 JP9159886A JP9159886A JPH0697123B2 JP H0697123 B2 JPH0697123 B2 JP H0697123B2 JP 9159886 A JP9159886 A JP 9159886A JP 9159886 A JP9159886 A JP 9159886A JP H0697123 B2 JPH0697123 B2 JP H0697123B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- temperature
- pipe
- heat exchanger
- intermediate heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は圧縮機を用いた冷凍装置、特に複数種の非共沸
混合冷媒を用いて極低温を得るための冷凍装置に関する
ものである。TECHNICAL FIELD The present invention relates to a refrigerating apparatus using a compressor, and more particularly to a refrigerating apparatus for obtaining a cryogenic temperature by using a plurality of non-azeotropic mixed refrigerants. .
(ロ)従来の技術 従来より理化学実験室等に於いて生体細胞の保存等に使
用される冷凍庫に用いる機械式冷凍装置は−80℃程度の
低温を得るのが限界であった。斯かる低温によれば細胞
の凍結保存は達成されるものの、時間の経過に従い、凍
結した細胞内の氷結晶の核が再結合して氷結晶の大きさ
が拡大し、細胞破壊現象が発生する。これは氷の再結晶
化と称されるものであるが、この氷の再結晶は再結晶化
点である−130℃より低い環境では発生しないことが知
られている。即ち−130℃より低い超低温下であれば細
胞の永久保存が達成でき、斯かる超低温を得る冷凍装置
が期待されていた。(B) Conventional technology Conventional mechanical refrigeration equipment used in freezers used for storage of living cells in physics and chemistry laboratories, etc. had a limit of obtaining a low temperature of about -80 ° C. Although cryopreservation of cells is achieved by such low temperature, over time, ice crystal nuclei in frozen cells are recombined with each other to enlarge the size of ice crystals and cause cell destruction phenomenon. . This is called ice recrystallization, but it is known that this ice recrystallization does not occur in an environment lower than the recrystallization point of −130 ° C. That is, permanent storage of cells can be achieved under ultra-low temperature lower than -130 ° C, and a refrigerating apparatus for obtaining such ultra-low temperature has been expected.
ここで此種冷凍装置、特に圧縮機を用いたものでは、圧
縮機から吐出された高温ガス状冷媒を凝縮器に流入せし
めて空気若しくは水と熱交換することによって液化せし
め、減圧装置によって圧力調整した後、蒸発器に流入せ
しめて蒸発せしめる。この時気化熱を周囲より吸収する
ことによって冷却作用を達成するものであるが、単一の
冷媒を用いた冷凍装置では、通常の圧縮機の場合、−40
℃程度の最低到達温度を達成するのが限度である。Here, in this type of refrigerating apparatus, especially in the case of using a compressor, the high temperature gaseous refrigerant discharged from the compressor is made to flow into a condenser and is liquefied by exchanging heat with air or water, and the pressure is adjusted by a decompressor. After that, it is allowed to evaporate by flowing into an evaporator. At this time, the cooling action is achieved by absorbing the heat of vaporization from the surroundings, but in a refrigeration system using a single refrigerant, in the case of a normal compressor, the
The maximum limit is to reach the lowest temperature of about ℃.
又、二つの独立した冷媒閉回路を用い、両者をカスケー
ド接続すると共に、低温を達成する側の冷媒閉回路によ
り低沸点の冷媒を封入することによって低温度を達成す
る所謂二元冷凍方式もあるが、これとて通常の圧縮機を
用いたものでは−80℃程度が限度である。There is also a so-called dual refrigeration system in which two independent closed refrigerant circuits are used, both are connected in cascade, and a low-boiling-point refrigerant is sealed in the closed refrigerant circuit on the side that achieves a low temperature to achieve a low temperature. However, in the case of using a normal compressor, the limit is about -80 ° C.
これらの問題を解決するものとして1973年10月3日付米
国特許第3,768,273号の如く、沸点の異なる複数種の混
合冷媒を用い、中間熱交換器でのより高い沸点の冷媒の
蒸発によって、より低い沸点の冷媒を次々に凝縮して行
くことにより、最終段の蒸発器で最も低い沸点の冷媒を
蒸発せしめ、単一の圧縮機によって低温度を得る所謂混
合冷媒冷凍方式もある。As a solution to these problems, as shown in US Pat. No. 3,768,273 dated October 3, 1973, a mixed refrigerant having a plurality of different boiling points is used, and a lower boiling point is obtained by evaporating the higher boiling point refrigerant in the intermediate heat exchanger. There is also a so-called mixed refrigerant refrigeration system in which the refrigerant having the lowest boiling point is evaporated in the final stage evaporator by condensing the refrigerant having the boiling point one after another, and a low temperature is obtained by a single compressor.
更に、1973年5月22日付米国特許第3,733,845号の如く
独立した二つの冷媒閉回路をカスケード接続し、低温側
の冷媒閉回路を前述の混合冷媒冷凍方式として極めて低
い温度を達成するものもある。これによれば通常用いら
れる圧縮機(例えば1.5HP程度)によって−130℃より低
い極めて低温を達成することが可能である。Furthermore, as in US Pat. No. 3,733,845 dated May 22, 1973, two independent closed refrigerant circuits are cascade-connected, and the closed refrigerant circuit on the low temperature side has the aforementioned mixed refrigerant refrigeration system to achieve an extremely low temperature. . According to this, it is possible to achieve an extremely low temperature lower than -130 ° C by a commonly used compressor (for example, about 1.5 HP).
(ハ)発明が解決しようとする問題点 斯かる混合冷媒冷凍方式の冷媒閉回路を用いたもので
は、最終到達温度が前述の如く−130℃下の極めて低い
温度となるため、冷却装置外部からの熱の侵入によって
最終段の減圧器内では容易に冷媒が蒸発気化してしまう
為、充分な量の液冷媒が蒸発器に供給できなくなって冷
却不足が発生する。(C) Problems to be solved by the invention In the case of using such a mixed refrigerant refrigeration type refrigerant closed circuit, since the final reached temperature is an extremely low temperature of −130 ° C. or less as described above, Since the refrigerant easily evaporates and vaporizes in the decompressor at the final stage due to the invasion of heat, a sufficient amount of liquid refrigerant cannot be supplied to the evaporator, resulting in insufficient cooling.
この様な事態を防止する為に冷却装置の蒸発器近傍は特
に厳重に断熱されるものであるが、それにも限界がある
と共に、斯かる冷却不足は充填される冷媒量のアンバラ
ンスによっても生起する。In order to prevent such a situation, the vicinity of the evaporator of the cooling device is particularly severely insulated, but there is a limit to that as well, and such lack of cooling also occurs due to the imbalance of the amount of refrigerant to be charged. To do.
即ち充填される冷媒量が過多であると、蒸発器で冷媒が
蒸発し切れずに液状のまま最終段の中間熱交換器に戻る
様になり、この中間熱交換器が蒸発器と同温度近くまで
冷却されてしまう。この様な事態になるとそこを通過し
て熱交換する冷媒が過冷却され、外部から侵入する熱に
よって最終段の減圧器内で蒸発し始める。これによって
減圧器内の冷媒の流通が阻害され、蒸発器に冷媒が供給
されなくなり、冷却不足が生ずる。That is, if the amount of refrigerant to be filled is too large, the refrigerant will not evaporate completely in the evaporator and will return to the final stage intermediate heat exchanger as a liquid, and this intermediate heat exchanger will be at the same temperature as the evaporator. Will be cooled down. In such a situation, the refrigerant passing therethrough and exchanging heat is supercooled, and the heat entering from the outside causes the refrigerant to start to evaporate in the decompressor at the final stage. As a result, the circulation of the refrigerant in the decompressor is obstructed, the refrigerant is not supplied to the evaporator, and insufficient cooling occurs.
又、逆に充填される冷媒量が過少であっても蒸発器での
十分なる冷媒蒸発が行なわれなくなるので、やはり冷却
不足が生じる。On the contrary, even if the amount of the refrigerant to be charged is too small, sufficient evaporation of the refrigerant cannot be performed in the evaporator, so that insufficient cooling still occurs.
本発明は斯かる問題点を解決するために成されたもので
ある。The present invention has been made to solve such problems.
(ニ)問題点を解決するための手段 実施例に沿って本発明の構成を説明する。低温側冷媒回
路(3)は電動圧縮機(10)、カスケードコンデンサ
(25A)(25B)、蒸発パイプ(47)、第1、第2及び第
3の中間熱交換器(32)(42)(44)を具備している。
各中間熱交換器には蒸発パイプ(47)からの帰還冷媒が
(44)(42)(32)の順で流通する様直列に接続する。
冷媒回路(3)には複数種の沸点の異なる(即ち蒸発温
度が異なる)冷媒を混合して封入し、カスケードコンデ
ンサ(25A)(25B)や中間熱交換器(32)(42)(44)
で凝縮した沸点の高い冷媒を複数の減圧器(36)(40)
(46)にて減圧して中間熱交換器(32)(42)に次々に
流入せしめて未凝縮の冷媒を凝縮して行き、沸点の最も
低いR50冷媒を最終段の減圧器(46)を介して蒸発パイ
プ(47)に流入せしめて蒸発させ、−150℃の極低温を
得る。この時減圧器(46)に流入する冷媒の温度即ち減
圧器(46)入口部(P1)の温度と減圧器(46)を出た後
の冷媒の温度即ち蒸発パイプ(47)入口部(P2)の温度
との差が10℃より大きく、且つ、カスケードコンデンサ
(25A)(25B)の温度(−50℃)と蒸発パイプ(47)の
温度(−150℃)の差100℃を減圧器(36)(40)(46)
の数で除した値33℃より小さくなる様に冷媒を封入する
ものである。(D) Means for Solving Problems The configuration of the present invention will be described along with examples. The low temperature side refrigerant circuit (3) includes an electric compressor (10), a cascade condenser (25A) (25B), an evaporation pipe (47), first, second and third intermediate heat exchangers (32) (42) ( 44).
Each intermediate heat exchanger is connected in series so that the return refrigerant from the evaporation pipe (47) flows in the order of (44), (42) and (32).
The refrigerant circuit (3) mixes and encloses a plurality of kinds of refrigerants having different boiling points (that is, different evaporation temperatures), and cascade condensers (25A) (25B) and intermediate heat exchangers (32) (42) (44).
Refrigerant with a high boiling point condensed in multiple decompressors (36) (40)
After decompressing at (46), they are successively introduced into the intermediate heat exchangers (32) (42) to condense uncondensed refrigerant, and the R50 refrigerant with the lowest boiling point is passed through the decompressor (46) at the final stage. It is made to flow through the evaporation pipe (47) and evaporated to obtain an extremely low temperature of -150 ° C. At this time, the temperature of the refrigerant flowing into the pressure reducer (46), that is, the temperature of the inlet portion (P 1 ) of the pressure reducer (46) and the temperature of the refrigerant after leaving the pressure reducer (46), that is, the inlet portion of the evaporation pipe (47) ( the difference between the temperature of the P 2) is greater than 10 ° C., and under reduced pressure differences 100 ° C. in a temperature (-150 ° C.) of the cascade condenser (25A) (the evaporation pipe temperature 25B) (-50 ℃) (47 ) Bowl (36) (40) (46)
The refrigerant is sealed so that the value becomes smaller than 33 ° C divided by the number of.
(ホ)作用 (P1)点と(P2)点の温度が近い時は冷媒封入量が過多
で液冷媒が第3の中間熱交換器(44)に多量に流入して
いる状態であり、又、温度差が大きい時は冷媒封入量が
過多で蒸発パイプ(47)入口付近でのみ蒸発している状
態であるので、10℃と33℃の間に設定する事によって適
正量を封入でき、それによって蒸発パイプ(47)温度の
脈動や、冷却不足を防止でき、安定した冷却性能を発揮
できると共に冷凍装置(R)に高い信頼性と寿命を与え
るものである。(E) Action When the temperatures at points (P 1 ) and (P 2 ) are close to each other, it means that there is too much refrigerant and the amount of liquid refrigerant is flowing into the third intermediate heat exchanger (44). Also, when the temperature difference is large, the amount of refrigerant filled is too large to evaporate only near the inlet of the evaporation pipe (47), so an appropriate amount can be filled by setting it between 10 ° C and 33 ° C. As a result, pulsation of the temperature of the evaporation pipe (47) and insufficient cooling can be prevented, stable cooling performance can be exhibited, and the refrigeration system (R) can be provided with high reliability and life.
(ヘ)実施例 次に図面に於いて本発明の実施例を説明する。第1図は
本発明の冷凍装置(R)の冷媒回路(1)を示してい
る。冷媒回路(1)はそれぞれ独立した第1の冷媒閉回
路としての高温側冷媒回路(2)と第2の冷媒閉回路と
しての低温側冷媒回路(3)とから構成されている。
(4)は高温側冷媒回路(2)を構成する一相若しくは
三相交流電源を用いる電動圧縮機であり、電動圧縮機
(4)の吐出側配管(4D)は補助凝縮器(5)に接続さ
れ、補助凝縮器(5)は更に後に詳述する冷凍庫の貯蔵
室開口縁を加熱する露付防止パイプ(6)に接続され、
次に電動圧縮機(4)のオイルクーラー(7)に接続さ
れた後、凝縮器(8)に接続される。(9)は凝縮器
(8)冷却用の送風機である。凝縮器(8)を出た冷媒
配管は乾燥器(12)を経た後、減圧器(13)を介して蒸
発器を構成する蒸発器部分としての第1蒸発器(14A)
と第2蒸発器(14B)を経てアキュムレータ(15)に接
続された後、低温側冷媒回路(3)を構成する電動圧縮
機(10)のオイルクーラー(11)を経て電動圧縮機
(4)の吸入側配管(4S)に接続される。第1蒸発器
(14A)と第2蒸発器(14B)は直列に接続され、全体と
して高温側冷媒回路(2)の蒸発器を構成している。(F) Example Next, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigerant circuit (1) of the refrigeration system (R) of the present invention. The refrigerant circuit (1) is composed of a high temperature side refrigerant circuit (2) as a first refrigerant closed circuit and a low temperature side refrigerant circuit (3) as a second refrigerant closed circuit, which are independent of each other.
(4) is an electric compressor using a one-phase or three-phase AC power source that constitutes the high temperature side refrigerant circuit (2), and the discharge side pipe (4D) of the electric compressor (4) is connected to the auxiliary condenser (5). The auxiliary condenser (5) is connected to a dew-prevention pipe (6) for heating the storage chamber opening edge of the freezer, which will be described in detail later.
Next, it is connected to the oil cooler (7) of the electric compressor (4) and then to the condenser (8). (9) is a blower for cooling the condenser (8). The refrigerant pipe exiting the condenser (8) passes through the dryer (12), and then the first evaporator (14A) as an evaporator portion constituting the evaporator via the pressure reducer (13).
After being connected to the accumulator (15) via the second evaporator (14B) and the second evaporator (14B), the electric compressor (4) is passed through the oil cooler (11) of the electric compressor (10) forming the low temperature side refrigerant circuit (3). Is connected to the suction side pipe (4S). The first evaporator (14A) and the second evaporator (14B) are connected in series, and constitute the evaporator of the high temperature side refrigerant circuit (2) as a whole.
高温側冷媒回路(2)には沸点の異なる冷媒R502とR12
(ジクロロジフルオロメタン)が充填され、その組成は
例えばR502が88.0重量%、R12が12.0重量%である。電
動圧縮機(4)から吐出された高温ガス状冷媒は、補助
凝縮器(5)、露付防止パイプ(6)、オイルクーラー
(7)及び凝縮器(8)で凝縮されて放熱液化した後、
乾燥器(12)で含有する水分を除去され、減圧器(13)
にて減圧されて第1及び第2蒸発器(14A)(14B)に次
々に流入して冷媒R502が蒸発し、気化熱を周囲から吸収
して各蒸発器(14A)(14B)を冷却し、冷媒液溜めとし
てのアキュムレータ(15)から低温側冷媒回路(3)の
電動圧縮機(10)のオイルクーラー(11)を経て電動圧
縮機(4)に帰還する動作をする。Refrigerants R502 and R12 having different boiling points are provided in the high temperature side refrigerant circuit (2).
(Dichlorodifluoromethane), and the composition thereof is, for example, 88.0% by weight of R502 and 12.0% by weight of R12. After the high temperature gaseous refrigerant discharged from the electric compressor (4) is condensed in the auxiliary condenser (5), the dew prevention pipe (6), the oil cooler (7) and the condenser (8) to be radiated as heat radiation. ,
Water contained in the dryer (12) is removed, and the decompressor (13)
The refrigerant R502 is decompressed by the first and second evaporators (14A) and (14B) one after another to evaporate the refrigerant R502, absorb the heat of vaporization from the surroundings, and cool each evaporator (14A) (14B). , And returns to the electric compressor (4) from the accumulator (15) as a refrigerant liquid reservoir via the oil cooler (11) of the electric compressor (10) of the low temperature side refrigerant circuit (3).
この時、電動圧縮機(4)の能力は例えば1.5HPであ
り、運転中の各蒸発器(14A)(14B)の最終到達温度は
−50℃になる。斯かる低温下では冷媒中のR12は各蒸発
器(14A)(14B)では蒸発せず液状態のままであり、従
って冷却には殆ど寄与しないが、電動圧縮機(4)の潤
滑油や乾燥器(12)で吸収し切れなかった混入水分をそ
の内に溶け込ませた状態で電動圧縮機(4)に帰還せし
める機能を奏する。即ち、R12冷媒はアキュムレータ(1
5)から出る配管(アキュムレータ(15)内に上方より
挿入されて下端部で折曲されて開口端は冷媒液位より上
方に臨んでいる。)の下端に通常形成されている油戻し
用の孔からアキュムレータ(15)より出て、前述の潤滑
油等を含んだ液体の状態で低温側冷媒回路(3)のオイ
ルクーラー(11)に流入する事になる。ここで電動圧縮
機(10)の温度が高い事によりR12は蒸発し、これによ
って電動圧縮機(10)の焼付きや潤滑油の劣化を防止す
る。即ち冷媒R12は高温側冷媒回路(2)中の潤滑油を
電動圧縮機(4)に戻す機能と、低温側冷媒回路(3)
の電動圧縮機(10)を冷却する機能を奏する。At this time, the capacity of the electric compressor (4) is, for example, 1.5 HP, and the final reached temperature of each evaporator (14A) (14B) in operation becomes -50 ° C. Under such a low temperature, R12 in the refrigerant does not evaporate in the evaporators (14A) and (14B) and remains in a liquid state, so that it hardly contributes to cooling, but it does not contribute to the cooling, but the lubricating oil and the drying of the electric compressor (4). It has the function of returning the mixed water, which has not been completely absorbed by the container (12), to the electric compressor (4) in a state of being dissolved therein. That is, the R12 refrigerant is the accumulator (1
5) For oil return that is usually formed at the lower end of the pipe (inserted from above into the accumulator (15) and bent at the lower end so that the open end faces above the refrigerant liquid level) It comes out of the accumulator (15) through the hole and flows into the oil cooler (11) of the low temperature side refrigerant circuit (3) in a liquid state containing the above-mentioned lubricating oil and the like. R12 evaporates due to the high temperature of the electric compressor (10), which prevents seizure of the electric compressor (10) and deterioration of the lubricating oil. That is, the refrigerant R12 has a function of returning the lubricating oil in the high temperature side refrigerant circuit (2) to the electric compressor (4) and a low temperature side refrigerant circuit (3).
It has the function of cooling the electric compressor (10).
低温側冷媒回路(3)を構成する電動圧縮機(10)の吐
出側配管(10D)は補助凝縮器(17)に接続された後油
分離器(18)に接続される。油分離器(18)からは電動
圧縮機(10)に戻る油戻し管(19)と乾燥器(20)に接
続される配管に分かれ、乾燥器(20)は分岐用三方管
(21)に接続される。三方管(21)から出た一方の配管
は低温側冷媒回路(3)の第2の吸入側熱交換器(22)
周囲を熱交換的に巻回した後第1蒸発器(14A)内に挿
入された高圧側配管としての第1凝縮パイプ(23A)に
接続される。三方管(21)から出た他方の配管は同様に
低温側冷媒回路(3)の第1の吸入側熱交換器(24)周
囲を熱交換的に巻回した後第2蒸発器(14B)内に挿入
された高圧側配管としての第2凝縮パイプ(23B)に接
続される。第1蒸発器(14A)と第1凝縮パイプ(23A)
及び第2蒸発器(14B)と第2凝縮パイプ(23B)はそれ
ぞれカスケードコンデンサ(25A)及び(25B)を構成し
ている。第1及び第2凝縮パイプ(23A)(23B)は集合
三方管(27)にて結合された後、乾燥器(28)を経て第
1の気液分離器(29)に接続される。気液分離器(29)
から出た気相配管(30)は第1の中間熱交換器(32)内
を通過して第2の気液分離器(33)に接続される。気液
分離器(29)から出た液相配管(34)は乾燥器(35)を
経た後減圧器(36)を経て第1の中間熱交換器(32)と
第2の中間熱交換器(42)の間に接続される。気液分離
器(33)から出た液相配管(38)は第3の中間熱交換器
(44)に熱交換的に配設した乾燥器(39)を経た後蒸発
器(40)を経て第2の中間熱交換器(42)と第3の中間
熱交換器(44)の間に接続される。気液分離器(33)か
ら出た気相配管(43)は第2の中間熱交換器(42)内を
通過した後、第3の中間熱交換器(44)内を通過し、同
様に第3の中間熱交換器(44)に熱交換的に配設した乾
燥器(45)を経て減圧器(46)に接続される。減圧器
(46)は蒸発器としての蒸発パイプ(47)に接続され、
更に蒸発パイプ(47)は第3の中間熱交換器(44)に接
続される。第3の中間熱交換器(44)は第2(42)及び
第1の中間熱交換器(32)に次々に接続された後、アキ
ュムレータ(49)に接続され、アキュムレータ(49)は
更に第1の吸入側熱交換器(24)に接続され、更に第2
の吸入側熱交換器(22)を経て電動圧縮機(10)の吸入
側配管(10S)に接続される。吸入側配管(10S)には更
に電動圧縮機(10)停止時に冷媒を貯留する膨張タンク
(51)が減圧器(52)を介して接続される。The discharge side pipe (10D) of the electric compressor (10) forming the low temperature side refrigerant circuit (3) is connected to the auxiliary oil separator (18) connected to the auxiliary condenser (17). The oil separator (18) is divided into an oil return pipe (19) returning to the electric compressor (10) and a pipe connected to the dryer (20), and the dryer (20) is a branch three-way pipe (21). Connected. One of the pipes extending from the three-way pipe (21) is the second suction side heat exchanger (22) of the low temperature side refrigerant circuit (3).
After the surroundings are wound by heat exchange, they are connected to a first condensing pipe (23A) as a high-pressure side pipe inserted in the first evaporator (14A). Similarly, the other pipe extending from the three-way pipe (21) is wound around the first suction side heat exchanger (24) of the low temperature side refrigerant circuit (3) in a heat exchange manner and then the second evaporator (14B). It is connected to the second condensing pipe (23B) as a high-pressure side pipe inserted inside. First evaporator (14A) and first condensing pipe (23A)
Also, the second evaporator (14B) and the second condensing pipe (23B) constitute cascade condensers (25A) and (25B), respectively. The first and second condensing pipes (23A) and (23B) are connected by the collecting three-way pipe (27) and then connected to the first gas-liquid separator (29) via the dryer (28). Gas-liquid separator (29)
The gas-phase pipe (30) exiting from the inside passes through the inside of the first intermediate heat exchanger (32) and is connected to the second gas-liquid separator (33). The liquid phase pipe (34) coming out of the gas-liquid separator (29) goes through the dryer (35) and then the pressure reducer (36), and then the first intermediate heat exchanger (32) and the second intermediate heat exchanger. Connected between (42). The liquid-phase pipe (38) coming out of the gas-liquid separator (33) goes through a dryer (39) arranged in heat exchange with a third intermediate heat exchanger (44) and then through an evaporator (40). It is connected between the second intermediate heat exchanger (42) and the third intermediate heat exchanger (44). The gas-phase pipe (43) exiting from the gas-liquid separator (33) passes through the second intermediate heat exchanger (42) and then through the third intermediate heat exchanger (44), and similarly. The third intermediate heat exchanger (44) is connected to the pressure reducer (46) via the dryer (45) arranged in a heat exchange manner. The decompressor (46) is connected to an evaporation pipe (47) as an evaporator,
Further, the evaporation pipe (47) is connected to the third intermediate heat exchanger (44). The third intermediate heat exchanger (44) is connected to the second (42) and the first intermediate heat exchanger (32) one after another, and then to the accumulator (49), and the accumulator (49) is further Connected to the suction side heat exchanger (24)
Is connected to the suction side pipe (10S) of the electric compressor (10) via the suction side heat exchanger (22). An expansion tank (51) that stores a refrigerant when the electric compressor (10) is stopped is further connected to the suction side pipe (10S) via a pressure reducer (52).
低温側冷媒回路(3)には沸点の異なる四種類の混合冷
媒が封入される。即ち、R12(ジクロロジフルオロメタ
ン)、R13B1(ブロモトリフルオロメタン)、R14(テト
ラフルオロメタン)及びR50(メタン)から成る混合冷
媒が予め混合された状態で封入される。各冷媒の組成は
例えばR50が4.0重量%、R14が22.0重量%、R13B1が39.0
重量%、R12が35.0重量%である。R50はメタンであり酸
素との結合にて爆発を生じるが上記割合の各フロン冷媒
と混合することによって爆発の危険性は無くなる。従っ
て混合冷媒の漏洩事故が発生したとしても爆発事故は発
生しない。The low temperature side refrigerant circuit (3) is filled with four kinds of mixed refrigerants having different boiling points. That is, a mixed refrigerant composed of R12 (dichlorodifluoromethane), R13B1 (bromotrifluoromethane), R14 (tetrafluoromethane) and R50 (methane) is sealed in a premixed state. The composition of each refrigerant is, for example, R50 4.0% by weight, R14 22.0% by weight, R13B1 39.0% by weight.
% By weight, R12 is 35.0% by weight. R50 is methane, which causes an explosion when combined with oxygen, but the danger of explosion disappears when mixed with each CFC refrigerant in the above proportion. Therefore, even if the mixed refrigerant leaks, no explosion will occur.
ここで実施例では高温側冷媒回路(2)の蒸発器を二つ
の蒸発器部分即ち第1第2蒸発器(14A)(14B)に分割
し、低温側冷媒回路(3)の高圧側配管を第1第2凝縮
パイプ(23A)(23B)に分割したことにより、二つのカ
スケードコンデンサ(25A)(25B)を構成したが、それ
に限られず、本発明の趣旨を逸脱しない範囲で更に多く
のカスケードコンデンサに分割しても何等差支えない。Here, in the embodiment, the evaporator of the high temperature side refrigerant circuit (2) is divided into two evaporator parts, that is, the first and second evaporators (14A) (14B), and the high pressure side piping of the low temperature side refrigerant circuit (3) is connected. Although the two cascade condensers (25A) and (25B) are configured by dividing the first and second condensing pipes (23A) and (23B), the present invention is not limited to this, and a larger number of cascade condensers can be used without departing from the spirit of the present invention. There is no problem even if it is divided into capacitors.
次に冷媒の循環を説明すると、電動圧縮機(10)から吐
出された高温高圧のガス状混合冷媒は補助凝縮器(17)
にて予冷された後、油分離器(18)にて冷媒と混在して
いる電動圧縮機(10)の潤滑油の大部分を油戻し管(1
9)にて電動圧縮機(10)に戻し、冷媒自体は乾燥器(2
0)を経て後、三方管(21)にて二分される。三方管(2
1)にて二分された冷媒はそれぞれ別々に吸入側熱交換
器(22)若しくは(24)にて予冷された後、それぞれカ
スケードコンデンサ(25A)若しくは(25B)にて第1
(14A)若しくは第2の蒸発器(14B)より冷却されて混
合冷媒中の沸点の高い一部の冷媒を凝縮液化した後、三
方管(27)に於いて合流する。この時混合冷媒は二分さ
れてそれぞれ量の少ない状態で別々にカスケードコンデ
ンサ(25A)若しくは(25B)に於いて冷却されるため、
十分なる熱交換が行なわれ、凝縮作用は良好に達成され
る。Next, the circulation of the refrigerant will be described. The high temperature and high pressure gaseous mixed refrigerant discharged from the electric compressor (10) is an auxiliary condenser (17).
After being pre-cooled by the oil separator (18), most of the lubricating oil of the electric compressor (10) mixed with the refrigerant in the oil separator (18) is returned to the oil return pipe (1
At 9), return it to the electric compressor (10) and remove the refrigerant itself from the dryer (2
After going through 0), it is divided into two by a three-way tube (21). Three-way tube (2
The refrigerant bisected in 1) is separately precooled in the suction side heat exchanger (22) or (24), and then is first cooled in the cascade condenser (25A) or (25B).
After being cooled by (14A) or the second evaporator (14B) to condense and liquefy a part of the high-boiling-point refrigerant in the mixed refrigerant, it joins in the three-way pipe (27). At this time, the mixed refrigerant is divided into two and cooled in the cascade condenser (25A) or (25B) separately in a small amount,
Sufficient heat exchange takes place and the condensation effect is achieved well.
三方管(27)を出た混合冷媒は乾燥器(28)を経て気液
分離器(29)に流入する。この時点では混合冷媒中のR1
4とR50は沸点が極めて低い為に未だ凝縮されておらずガ
ス状態であり、R12とR13B1のみが凝縮液化されている
為、R14とR50は気相配管(30)に、R12とR13B1は液相配
管(34)へと分離される。気相配管(30)に流入した冷
媒混合物は第1の中間熱交換器(32)と熱交換して凝縮
された後、気液分離器(33)に至る。ここで第1の中間
熱交換器(32)には蒸発パイプ(47)より帰還して来る
低温の冷媒が流入し、更に液相配管(34)に流入したR1
3B1が乾燥器(35)を経て減圧器(36)で減圧された
後、第1の中間熱交換器(32)に流入してそこで蒸発す
ることにより冷却に寄与する為、第1の中間熱交換器
(32)の温度は−80℃程となっている。従って気相配管
(30)を通過した混合冷媒中のR14の大部分は凝縮液化
され、R50は更に沸点が低い為に未だガス状態である。
よってR14は気液分離器(33)から液相配管(38)へ
又、R50は気相配管(43)へと分離され、R14は乾燥器
(39)を経て減圧器(40)にて減圧され第2の中間熱交
換器(42)と第3の中間熱交換器(44)の間に流入して
第2の中間熱交換器(42)内で蒸発する。第2の中間熱
交換器(42)には蒸発パイプ(47)からの帰還低温冷媒
が流入すると共にR14の蒸発が更に冷却に寄与するた
め、第2の中間熱交換器(42)の温度は−100℃程とな
っている。更に第3の中間熱交換器(44)には蒸発パイ
プ(47)からの帰還低温冷媒が直ぐに流入しているため
に、その温度は−120℃程の極めて低い温度となってい
るので、第2及び第3の中間熱交換器(42)(44)と熱
交換した気相配管(43)を通過する最も沸点の低い冷媒
R50は凝縮液化され、乾燥機(45)を経て減圧器(46)
にて減圧された後、蒸発パイプ(47)に流入してそこで
蒸発する。この時の蒸発パイプ(47)の温度は−150℃
に到達している。これが本発明の冷凍装置(R)の最終
到達温度であり、この蒸発パイプ(47)を後述する冷凍
庫の貯蔵室に熱交換的に配設することにより貯蔵室内を
−140℃の超低温の環境とすることが可能となる。蒸発
パイプ(47)から流出した冷媒(大部分がR50)は前述
の如く第3、第2、第1の中間熱交換器(44)(42)
(32)に次々に流入、流出し、各冷媒R14、R13B1、R12
と合流しながらアキュムレータ(49)にて未蒸発の冷媒
を分離した後吸入側熱交換器(24)(22)に次々に流入
して冷却した後、電動圧縮機(10)に吸入される。The mixed refrigerant discharged from the three-way pipe (27) flows into the gas-liquid separator (29) via the dryer (28). At this point R1 in the mixed refrigerant
4 and R50 are not condensed yet in a gas state because they have extremely low boiling points, and only R12 and R13B1 are condensed and liquefied, so R14 and R50 are in the gas phase pipe (30), and R12 and R13B1 are liquid. It is separated into phase piping (34). The refrigerant mixture flowing into the gas phase pipe (30) exchanges heat with the first intermediate heat exchanger (32) to be condensed, and then reaches the gas-liquid separator (33). Here, the low-temperature refrigerant returned from the evaporation pipe (47) flows into the first intermediate heat exchanger (32), and further flows into the liquid phase pipe (34) R1.
After 3B1 is decompressed by the decompressor (36) after passing through the dryer (35), it flows into the first intermediate heat exchanger (32) and evaporates there, thereby contributing to cooling. The temperature of the exchanger (32) is about -80 ° C. Therefore, most of R14 in the mixed refrigerant that has passed through the gas phase pipe (30) is condensed and liquefied, and R50 is still in a gas state because its boiling point is lower.
Therefore, R14 is separated from the gas-liquid separator (33) to the liquid-phase pipe (38) and R50 is separated to the gas-phase pipe (43), and R14 is decompressed by the decompressor (40) via the dryer (39). Then, it flows between the second intermediate heat exchanger (42) and the third intermediate heat exchanger (44) and evaporates in the second intermediate heat exchanger (42). Since the return low temperature refrigerant from the evaporation pipe (47) flows into the second intermediate heat exchanger (42) and the evaporation of R14 further contributes to cooling, the temperature of the second intermediate heat exchanger (42) is It is about -100 ℃. Furthermore, since the return low-temperature refrigerant from the evaporation pipe (47) immediately flows into the third intermediate heat exchanger (44), the temperature is extremely low, about -120 ° C. Refrigerant with the lowest boiling point that passes through the gas-phase pipe (43) that has exchanged heat with the second and third intermediate heat exchangers (42) (44)
R50 is condensed and liquefied, and goes through a dryer (45) and then a pressure reducer (46).
After being decompressed at, it flows into the evaporation pipe (47) and evaporates there. At this time, the temperature of the evaporation pipe (47) is -150 ° C.
Has reached. This is the final reached temperature of the refrigerating apparatus (R) of the present invention, and by disposing this evaporation pipe (47) in the storage chamber of the freezer described later in a heat exchange manner, the inside of the storage chamber becomes an environment of ultra-low temperature of -140 ° C. It becomes possible to do. The refrigerant (mostly R50) flowing out from the evaporation pipe (47) is the third, second and first intermediate heat exchangers (44) (42) as described above.
Refrigerants R14, R13B1, R12 flow into and out of (32) one after another.
While merging with the above, the non-evaporated refrigerant is separated by the accumulator (49) and then flows into the suction side heat exchangers (24) (22) one after another for cooling and then sucked into the electric compressor (10).
ここで第1の気液分離器(29)にて液相配管(34)に流
入したR12は第1の中間熱交換器(32)に流入するもの
の、既に極めて低い温度となっているため蒸発せず液状
態のままであり、従って冷却には何等寄与しないが、油
分離器(18)で分離し切れなかった残留潤滑油や各乾燥
器で吸収し切れなかった混入水分をその内に溶け込ませ
た状態で電動圧縮機(10)に帰環せしめる機能を奏す
る。電動圧縮機(10)の潤滑油が低温側冷媒回路(13)
内を循環すると超低温であることにより、各部に残留す
る現象が発生し、目詰りの原因となる。その為にR12で
略完全なる潤滑油の帰還を達成している。Here, R12 that has flowed into the liquid-phase pipe (34) in the first gas-liquid separator (29) flows into the first intermediate heat exchanger (32), but since it has already reached an extremely low temperature, it evaporates. It remains liquid and does not contribute to cooling, but the residual lubricating oil that could not be completely separated by the oil separator (18) and the mixed water that could not be completely absorbed by each dryer are dissolved in it. It has the function of returning to the electric compressor (10) in the closed state. The lubricating oil of the electric compressor (10) is the low temperature side refrigerant circuit (13).
When it circulates in the inside, the phenomenon that it remains in each part occurs due to the extremely low temperature, which causes clogging. Therefore, R12 has achieved almost complete return of lubricating oil.
以上を繰り返えすことにより冷媒回路(1)は定常状態
で蒸発パイプ(47)に−150℃の超低温を発生する様動
作するが、電動圧縮機(4)(10)は1.5HP程度の能力
で済み、格別大なる能力を必要としない。これはカスケ
ードコンデンサ(25A)(25B)部分の熱交換が良好に行
なわれている事と混合冷媒の選択が大きく寄与してい
る。これによって電動圧縮機による騒音の削減と低消費
電力が達成される。又、−150℃の達成によって後述す
る冷凍庫内の生体資料を氷の再結晶化点より低い温度に
冷却する事が可能となり、永久保存が達成されることに
なる。更に高温側冷媒回路(2)の冷媒は第1蒸発器
(14A)から第2蒸発器(14B)へと流れ、分流するもの
では無いので両蒸発器(14A)(14B)の温度バランスが
何等かの原因で崩れても、冷媒流量の偏りは発生し得
ず、従って低温側冷媒回路(3)の第1凝縮パイプ(23
A)と第2凝縮パイプ(23B)の相方の安定した冷却が達
成され、良好なる凝縮作用が達成される。By repeating the above, the refrigerant circuit (1) operates to generate an ultra-low temperature of -150 ° C in the evaporation pipe (47) in a steady state, but the electric compressor (4) (10) has a capacity of about 1.5 HP. It doesn't require any special ability. This is due to good heat exchange between the cascade condensers (25A) and (25B) and the selection of the mixed refrigerant. As a result, noise reduction and low power consumption by the electric compressor are achieved. Further, by achieving -150 ° C, it becomes possible to cool the biological material in the freezer described below to a temperature lower than the recrystallization point of ice, and permanent storage is achieved. Furthermore, since the refrigerant in the high temperature side refrigerant circuit (2) flows from the first evaporator (14A) to the second evaporator (14B) and does not split, the temperature balance between both evaporators (14A) (14B) is not whatsoever. Even if it collapses due to such a cause, the deviation of the refrigerant flow rate cannot occur, and therefore, the first condensing pipe (23) of the low temperature side refrigerant circuit (3)
Stable cooling between A) and the second condensing pipe (23B) is achieved, and good condensing action is achieved.
次に第2図は本発明の冷凍装置(R)の制御用電気回路
の概略を示す。(4M)は高温側冷媒回路(2)の電動圧
縮機(4)駆動用のモーターであり、一相若しくは三相
の交流電源(AC)(AC)間に接続される。即ちモーター
(4M)は電源(AC)(AC)が投入されている間は連続運
転とされる。(10M)は低温側冷媒回路(3)の電動圧
縮機(10)駆動用のモーターであり、電磁リレー(60)
の接点(60A)と直列に電源(AC)(AC)に接続され
る。接点(60A)は電磁リレー(60)のコイル(60C)に
通電されて閉じ、モーター(10M)を運転せしめる。(6
1)は後述する冷凍庫貯蔵室の温度調節器であり、電源
(AC)(AC)間に接続され、貯蔵室内の温度を実質的に
検出し、設定温度の上下に適当なディファレンシャルを
設定し、上限温度で出力端子(61A)(61B)間に電圧を
発生し、下限温度で発生を停止する。この設定温度は−
145℃乃至−150℃である。出力端子(61A)(61B)間に
は温調リレー(62)のコイル(62C)とタイマー(63)
の接点(63A)が直列接続される。温調リレー(62)は
コイル(62C)に通電されて接点(62A)を閉じる。(6
5)は第1図の低温側冷媒回路(3)の電動圧縮機(1
0)吐出側配管(10D)に、補助凝縮器(17)の前段側に
於いて設けられる高圧スイッチである。高圧スイッチ
(65)は電源(AC)(AC)に対してタイマー(63)と直
列に接続され、電動圧縮機(10)吐出側の圧力が上昇し
て圧縮機(10)に過大な負荷をかけるようになる、例え
ば26kg/cm2に上昇すると接点を開き、圧力が十分に安全
な状態例えば8kg/cm2に低下すると接点を閉じる。タイ
マー(63)は高圧スイッチ(63)の接点が閉じた後、3
乃至5分経過後に接点(63A)を閉じ、高圧スイッチ(6
5)が開いて接点(63A)を開く。(66)は低温始動サー
モスタットであり、高温冷媒回路(2)のアキュムレー
タ(15)の温度を感知する様に取り付けられている。ア
キュムレータ(15)には各蒸発器(14A)(14B)で蒸発
した冷媒及び未蒸発の冷媒が流入するため、蒸発器(14
A)(14B)と略同様の低温となるものであるが、低温始
動サーモスタット(66)はアキュムレータ(15)の温度
が例えば−35℃に低下して接点を閉じ、−10℃に上昇し
て接点を開く動作をする。低温始動サーモスタット(6
6)は両側に温調リレー(62)の接点(62A)及びタイマ
ー(68)とで直列回路を構成して電源(AC)(AC)に接
続される。タイマー(68)と低温始動サーモスタット
(66)間にはタイマー(68)の切換えスイッチ(69)の
コモン端子が接続され、切換えスイッチ(69)の端子
(69A)と電源(AC)間には電磁リレー(60)のコイル
(60C)が接続され、端子(69B)と電源(AC)間には第
1図の減圧器(46)の前後に交換的に設けられるヒータ
ー(70)(71)が並列に接続される。タイマー(68)は
常には切換えスイッチ(69)を端子(69A)に閉じてお
り、通電されて積算し、この積算が例えば12時間になる
とスイッチ(69)を端子(69B)に例えば15分間閉じて
再び端子(69A)に閉じる動作をする。Next, FIG. 2 shows an outline of an electric circuit for controlling the refrigerating apparatus (R) of the present invention. (4M) is a motor for driving the electric compressor (4) of the high temperature side refrigerant circuit (2), which is connected between one-phase or three-phase AC power supplies (AC) (AC). That is, the motor (4M) is continuously operated while the power (AC) (AC) is turned on. (10M) is a motor for driving the electric compressor (10) of the low temperature side refrigerant circuit (3), and an electromagnetic relay (60)
Is connected to the power supply (AC) (AC) in series with the contact (60A). The contact (60A) is energized and closed by the coil (60C) of the electromagnetic relay (60) to operate the motor (10M). (6
1) is a freezer storage room temperature controller described later, which is connected between the power supply (AC) (AC), detects the temperature inside the storage room substantially, and sets an appropriate differential above and below the set temperature, A voltage is generated between the output terminals (61A) and (61B) at the upper limit temperature and stopped at the lower limit temperature. This set temperature is −
145 ° C to -150 ° C. Between the output terminals (61A) and (61B), the coil (62C) of the temperature control relay (62) and the timer (63)
Contacts (63A) are connected in series. The temperature control relay (62) energizes the coil (62C) to close the contact (62A). (6
5) is the electric compressor (1) of the low temperature side refrigerant circuit (3) in FIG.
0) A high-pressure switch provided in the discharge side pipe (10D) in the front side of the auxiliary condenser (17). The high pressure switch (65) is connected to the power supply (AC) (AC) in series with the timer (63), and the pressure on the discharge side of the electric compressor (10) rises and the compressor (10) is overloaded. When the pressure becomes high, for example, 26 kg / cm 2 , the contact is opened, and when the pressure is sufficiently safe, for example, 8 kg / cm 2 , the contact is closed. After the contact of the high-voltage switch (63) is closed, the timer (63) is set to 3
After 5 minutes, the contact (63A) is closed and the high voltage switch (6
5) opens and the contact (63A) opens. (66) is a cold start thermostat, and is attached so as to detect the temperature of the accumulator (15) of the high temperature refrigerant circuit (2). Since the refrigerant evaporated in each evaporator (14A) (14B) and the refrigerant not yet evaporated flow into the accumulator (15), the evaporator (14
A) (14B) has almost the same low temperature, but the low temperature starting thermostat (66) closes the contacts when the temperature of the accumulator (15) drops to, for example, -35 ° C and rises to -10 ° C. Open the contact. Cold start thermostat (6
6) forms a series circuit with the contacts (62A) of the temperature control relay (62) and the timer (68) on both sides and is connected to the power supply (AC) (AC). The common terminal of the changeover switch (69) of the timer (68) is connected between the timer (68) and the cold start thermostat (66), and the electromagnetic switch is connected between the terminal (69A) of the changeover switch (69) and the power supply (AC). The coil (60C) of the relay (60) is connected, and the heaters (70) (71) exchangeably provided before and after the pressure reducer (46) of FIG. 1 are connected between the terminal (69B) and the power supply (AC). Connected in parallel. The timer (68) always closes the changeover switch (69) to the terminal (69A), energizes and integrates, and when this integration reaches 12 hours, closes the switch (69) to the terminal (69B) for 15 minutes, for example. To close the terminal (69A) again.
次に第3図のタイミングチャートを参照して動作を説明
する。冷凍装置(R)が据え付けられて時刻(t0)で電
源(AC)(AC)を投入するとモーター(4M)が起動し、
電動圧縮機(4)が動作して高温側冷媒回路(2)内を
冷媒が循環し始める。この時アキュムレータ(15)は常
温に近い状態であるから低温始動サーモスタット(66)
は開放状態であり、従って温度調節器(61)の如何に係
わらず、電磁リレー(60)のコイル(60C)には通電さ
れず、従って接点(60A)は開いているため、モーター
(10M)は起動せず、低温側冷媒回路(3)の電動圧縮
機(10)は動作しない。この様な高温側冷媒回路(2)
のみの冷却運転が継続され、第1及び第2蒸発器(14
A)(14B)に液状冷媒がたまることによって温度が低下
して行き、それに伴ってアキュムレータ(15)の温度が
低下して時刻(t1)に−35℃になると低温始動サーモス
タット(66)が接点を閉じる。この閉動作の寸前の時点
では電動圧縮機(10)は停止しているから当然高圧スイ
ッチ(65)は閉じており、又、電源投入から3乃至5分
は当然経過しているからタイマー(63)も接点(63A)
を閉じている。更に貯蔵室内の温度も当然設定温度より
高いから、温度調節器(61)も出力を発生しているので
温調リレー(62)の接点(62A)は閉じている。従って
低温始動サーモスタット(66)が閉じた時点で電磁リレ
ー(60)のコイル(60C)に通電されて接点(60A)が閉
じ、モーター(10M)が起動して電動圧縮機(10)より
混合冷媒が吐出され回路(3)内を循環され始める。こ
の時低温側冷媒回路(3)各部の温度は依然高く、従っ
て内部の冷媒は殆どがガス状となっているために回路内
の圧力は高い。その上電動圧縮機(10)から冷媒が押し
出されるために吐出側配管(10D)の圧力が急激に上昇
する。これを放置すると高圧力によって電動圧縮機(1
0)構成部品が損傷を受けるが、この圧力上昇のピーク
値が時刻(t2)で許容限界である26kg/cm2に達すると高
圧スイッチ(65)がそれを感知して接点を開くので接点
(63A)が開き、それによって温調リレー(62)の接点
(62A)が強制的に開放せられ、コイル(60C)が非通電
となって接点(60A)が開きモーター(10M)は停止す
る。これによって電動圧縮機(10)吐出側の圧力上昇は
阻止され、損傷は防止される。Next, the operation will be described with reference to the timing chart of FIG. When the refrigeration system (R) is installed and the power (AC) (AC) is turned on at time (t 0 ), the motor (4M) starts up,
The electric compressor (4) operates and the refrigerant starts to circulate in the high temperature side refrigerant circuit (2). At this time, the accumulator (15) is in a state close to room temperature, so the cold start thermostat (66)
Is in the open state, so the coil (60C) of the electromagnetic relay (60) is not energized regardless of the temperature controller (61), and therefore the contact (60A) is open, so the motor (10M) Does not start, and the electric compressor (10) of the low temperature side refrigerant circuit (3) does not operate. Such high temperature side refrigerant circuit (2)
Only the cooling operation is continued and the first and second evaporators (14
When the liquid refrigerant accumulates in A) (14B), the temperature decreases, and the temperature of the accumulator (15) decreases accordingly, and when it reaches −35 ° C at time (t 1 ), the low temperature starting thermostat (66) turns on. Close the contact. Immediately before this closing operation, the electric compressor (10) is stopped, so the high pressure switch (65) is naturally closed, and since 3 to 5 minutes have naturally passed since the power was turned on, the timer (63 ) Also contacts (63A)
Is closed. Further, since the temperature in the storage chamber is naturally higher than the set temperature, the temperature controller (61) also produces an output, so that the contact (62A) of the temperature control relay (62) is closed. Therefore, when the cold start thermostat (66) is closed, the coil (60C) of the electromagnetic relay (60) is energized, the contact (60A) is closed, the motor (10M) is activated, and the mixed refrigerant is fed from the electric compressor (10). Is discharged and begins to circulate in the circuit (3). At this time, the temperature of each part of the low temperature side refrigerant circuit (3) is still high, and therefore the internal refrigerant is mostly in a gaseous state, so that the pressure in the circuit is high. Moreover, since the refrigerant is pushed out from the electric compressor (10), the pressure in the discharge side pipe (10D) rapidly rises. If this is left unattended, the high pressure causes the electric compressor (1
0) The component is damaged, but when the peak value of this pressure rise reaches the allowable limit of 26 kg / cm 2 at time (t 2 ), the high pressure switch (65) senses it and opens the contact. (63A) opens, which forcibly opens the contact (62A) of the temperature control relay (62), de-energizes the coil (60C), opens the contact (60A), and stops the motor (10M). . This prevents pressure rise on the discharge side of the electric compressor (10) and prevents damage.
電動圧縮機(10)の停止によって吐出側配管(10D)の
圧力は低下して8kg/cm2まで下がるがチャタリング防止
用のタイマー(63)の存在によって高圧スイッチ(65)
の閉動作から3乃至5分間は接点は閉じず、従ってモー
ター(10M)は起動しない。この間に低温側冷媒回路
(3)内の圧力は第1若しくは第2蒸発器(14A)(14
B)から第1若しくは第2凝縮器(23A)(23B)に於い
て冷却された冷媒が多少なりとも循環されて蒸発する為
に、前回の起動時より温度が低下し、圧力も低下してい
る。タイマー(63)による遅延時間が時刻(t3)に経過
すると再び接点(63A)が閉ざされて前述同様にモータ
ー(10M)が起動されるが、吐出側配管(10D)の圧力が
26kg/cm2に達した時点で再び高圧スイッチ(65)が開放
してモーター(10)は停止する。この様なモーター(10
M)の起動と停止を繰り返えし、沸点の高い冷媒が蒸発
して徐々に冷却作用を発揮して行くことによって第1の
中間熱交換器(32)から徐々に温度が低下して行き、モ
ーター(10M)起動時の吐出側配管(10D)の圧力上昇の
ピーク値が26kg/cm2に達しなくなるとモーター(10M)
は連続運転に入る。When the electric compressor (10) is stopped, the pressure in the discharge side pipe (10D) drops to 8 kg / cm 2 , but due to the presence of the chattering prevention timer (63), the high pressure switch (65)
The contact does not close for 3 to 5 minutes after the closing operation of the motor, so the motor (10M) does not start. During this time, the pressure in the low temperature side refrigerant circuit (3) is set to the first or second evaporator (14A) (14A).
Since the refrigerant cooled from B) from the first or second condenser (23A) (23B) is circulated and evaporated to some extent, the temperature is lowered and the pressure is also reduced from the previous start. There is. When the delay time by the timer (63) has passed the time (t 3 ), the contact (63A) is closed again and the motor (10M) is started as described above, but the pressure in the discharge side pipe (10D) is
When the pressure reaches 26 kg / cm 2 , the high pressure switch (65) opens again and the motor (10) stops. Such a motor (10
M) is repeatedly started and stopped, the refrigerant with a high boiling point evaporates, and the cooling action is gradually exerted, whereby the temperature gradually decreases from the first intermediate heat exchanger (32). , When the peak value of the pressure rise in the discharge side pipe (10D) at the time of starting the motor (10M) does not reach 26 kg / cm 2 , the motor (10M)
Enters continuous operation.
電動圧縮機(10)が連続運転されることによって沸点の
低い冷媒も凝縮されて徐々に冷却作用を発揮し始め、各
中間熱交換器(32)(42)(44)と蒸発パイプ(47)の
温度が徐々に低下して行って前述の最終到達温度を得
る。その後貯蔵室の温度が温度調節器(61)で設定する
下限温度に達すると出力端子(61A)(61B)間の出力の
発生を停止するので接点(62A)が開き、更に接点(60
A)も開く為、モーター(10M)が停止し、冷却運転は停
止する。その後貯蔵室内の温度が徐々に上昇して、温度
調節器(61)で設定する上限温度に達すると再び接点
(62A)が閉じ、更に接点(60A)が閉じてモーター(10
M)が起動され再び冷却運転が開始される。以上を繰り
返して貯蔵室は平均して設定温度例えば−140℃に維持
されることになる。When the electric compressor (10) is continuously operated, the refrigerant having a low boiling point is also condensed and gradually begins to exert a cooling action, and each intermediate heat exchanger (32) (42) (44) and the evaporation pipe (47). The temperature is gradually decreased to obtain the final reached temperature. After that, when the temperature of the storage chamber reaches the lower limit temperature set by the temperature controller (61), the output between the output terminals (61A) and (61B) is stopped, so the contact (62A) opens and the contact (60A) opens.
Since A) also opens, the motor (10M) stops and the cooling operation stops. After that, when the temperature in the storage chamber gradually rises and reaches the upper limit temperature set by the temperature controller (61), the contact (62A) is closed again, and the contact (60A) is closed, and the motor (10A) is closed.
M) is started and the cooling operation is started again. By repeating the above, the storage chamber is maintained at the set temperature, for example, −140 ° C. on average.
ここでタイマー(68)は接点(62A)及び低温始動サー
モスタット(66)が閉じている間、即ちモーター(10
M)が運転されている時間を積算しており、この積算が1
2時間に達すると切換えスイッチ(69)を端子(69B)に
閉じるのでモーター(10M)の運転は禁止され、ヒータ
ー(70)(71)に通電されて発熱する。ここで第3の中
間熱交換器(44)を出て減圧器(46)に流入するR50は
−120℃以下の極めて低い温度に達している。従ってこ
の冷媒中に極めて微量の水分(これは冷媒の補充作業中
等に侵入するものである。)が混入していれば配管内に
氷結が発生する。ところで減圧器は通常細い径の配管に
て構成されるため、この減圧器(46)部分で氷結が成長
すると目詰りが発生し、冷媒が流れなくなってしまう
が、本発明ではヒーター(70)(71)によって定期的に
減圧器(46)を加熱する為、この氷結晶は融解されて成
長せず、従って斯かる事故は防止される。このヒーター
(70)(71)の発熱は15分で終了し、再び端子(69A)
にスイッチ(69)が閉じてモーター(10M)が起動され
前述同様低温側冷媒回路(3)の冷却運転が開始される
ことになる。Here, the timer (68) keeps the contact (62A) and the cold start thermostat (66) closed, that is, the motor (10).
M) is operating, and the total is 1
When it reaches 2 hours, the changeover switch (69) is closed to the terminal (69B), so the operation of the motor (10M) is prohibited, and the heaters (70) (71) are energized to generate heat. Here, R50 flowing out of the third intermediate heat exchanger (44) and flowing into the pressure reducer (46) has reached an extremely low temperature of −120 ° C. or lower. Therefore, if a very small amount of water (which enters during the replenishment work of the refrigerant, etc.) is mixed in this refrigerant, icing will occur in the pipe. By the way, since the decompressor is usually constituted by a pipe having a small diameter, if ice builds up in this decompressor (46), clogging occurs and the refrigerant stops flowing, but in the present invention, the heater (70) ( Because the pressure reducer (46) is heated regularly by 71), this ice crystal does not melt and grow, thus preventing such an accident. The heat generation of this heater (70) (71) ends in 15 minutes, and again the terminal (69A)
Then, the switch (69) is closed, the motor (10M) is started, and the cooling operation of the low temperature side refrigerant circuit (3) is started as described above.
次に第4図は本発明を適用せる冷凍庫(75)の前方斜視
図を示し、第5図はその要部断面図を示す。更に第6図
は冷凍装置(R)の冷媒回路(1)の具体的構成を説明
する図である。冷凍庫(75)は理化学実験室等に設置さ
れるものであり、(74)は上方開口の貯蔵室(76)を内
部に形成する本体であり、その上方開口は後辺を回動自
在に枢支された断熱扉(77)によって開閉自在に閉塞さ
れている。本体(74)側部には温度調節器(61)や電動
圧縮機(4)(10)等を収容設置する機械室(78)が形
成されており、その前面には貯蔵室(76)内の温度を感
知して記録紙にその時間推移を記録する自記温度記録計
(79)や貯蔵室(76)の異常高温で警報を発する衆知の
警報器(80)及び温度調節器(61)の設定変更用摘み
(81)が設けられる。又、(82)は通気用スリットであ
る。Next, FIG. 4 shows a front perspective view of a freezer (75) to which the present invention can be applied, and FIG. 5 shows a cross-sectional view of an essential part thereof. Further, FIG. 6 is a diagram illustrating a specific configuration of the refrigerant circuit (1) of the refrigeration system (R). The freezer (75) is installed in a physics and chemistry laboratory or the like, and (74) is a main body that internally forms a storage chamber (76) with an upper opening, the upper opening of which is pivotable at the rear side. It is openably and closably closed by a supported heat insulating door (77). A machine room (78) for accommodating and installing the temperature controller (61), the electric compressors (4), (10), etc. is formed on the side of the main body (74), and inside the storage room (76) is formed on the front surface. The temperature recorder (79) that senses the temperature of the sensor and records the change over time on the recording paper, and the publicly known alarm device (80) and temperature controller (61) that issues an alarm when the storage room (76) has an abnormally high temperature. A setting change knob (81) is provided. Further, (82) is a ventilation slit.
第5図は本体(74)部分の側断面図を示している。(8
3)は上方開口の鋼板製外箱、(84)は同様に上方開口
のアルミニウム製内箱であり、内箱(84)は外箱(83)
内に組み込まれ、両箱(83)(84)間にそれぞれ独立し
た上方に開口した箱状の外断熱材(85)及び内断熱材
(86)から成る二重の断熱層が形成されて両箱(83)
(84)の開口縁はブレーカ(87)で接続されている。内
箱(84)の外面には蒸発パイプ(47)が熱伝導的に配設
され、内断熱材(86)内に埋設されており、又、外箱
(76)開口縁内面には露付防止パイプ(6)が熱伝導的
に配設されている。内断熱材(86)は外断熱材(85)内
に載置されているのみで完全に分離しているため、蒸発
パイプ(47)の冷却作用によって内断熱材(86)が収縮
しても外断熱材(85)には何等影響を与えず、従って断
熱材の割れが発生せず、又、十分なる断熱性能も維持す
るものである。外箱(83)背面には開口(88)が形成さ
れ、又、外断熱材(85)にもそれに対応して切欠(89)
が形成されており、この切欠(89)内に開口(88)より
後述する如き断熱材(90)によってモールドされたカス
ケードコンデンサ(25A)(25B)等が収納配設され覆板
(91)にて覆われている。(92)は発泡スチロール製の
内蓋、(93)は断熱扉(77)内周面のガスケット、(9
4)は運搬用キャスターである。FIG. 5 is a side sectional view of the main body (74). (8
3) is a steel outer box with an upper opening, (84) is an aluminum inner box with an upper opening, and the inner box (84) is an outer box (83).
A double heat insulating layer, which is built into the inside of the box (83) (84) and has a box-like outer heat insulating material (85) and an inner heat insulating material (86) that are open upwards, is formed independently of each other. Box (83)
The opening edges of (84) are connected by a breaker (87). The evaporation pipe (47) is arranged in a heat conductive manner on the outer surface of the inner box (84) and is embedded in the inner heat insulating material (86), and the inner edge of the opening of the outer box (76) is exposed to dew. A protection pipe (6) is arranged in a heat-conducting manner. Even if the inner heat insulating material (86) contracts due to the cooling action of the evaporation pipe (47), the inner heat insulating material (86) is completely placed by being placed in the outer heat insulating material (85). The outer heat insulating material (85) is not affected in any way, so that the heat insulating material is not cracked and sufficient heat insulating performance is maintained. An opening (88) is formed on the back surface of the outer box (83), and a cutout (89) is also formed in the outer heat insulating material (85) correspondingly.
Is formed in the notch (89), the cascade capacitors (25A) (25B), etc., which are molded from the opening (88) by a heat insulating material (90) as described later, are housed in the cover plate (91). Covered. (92) is an inner cover made of Styrofoam, (93) is a gasket on the inner peripheral surface of the heat insulation door (77), (9)
4) is a transport caster.
次に第6図は冷凍装置(R)の冷媒回路(1)の具体的
構成を示すもので、図中第1図と同一符号は同一のもの
である。低温側冷媒回路(3)の補助凝縮器(17)は空
気吸引型の送風機(9)に対して高温側冷媒回路(2)
の凝縮器(8)の風上側に配置せられ同時に冷却される
様にしている。第1及び第2蒸発器(14A)(14B)は内
部中空のタンク状を成しており、この内部に上方より螺
旋状に巻回成形された第1及び第2凝縮パイプ(23A)
(23B)がそれぞれ挿入されている。(66A)はアキュム
レータ(15)に溶接固定された低温始動サーモスタット
(66)固定用の筒体である。(96)は後述する各中間熱
交換器(32)(42)(44)等から成りそれを断熱材(9
7)によってモールドして箱状と成した中間熱交換器部
を示している。蒸発パイプ(47)は内箱(84)外面に予
めアルミニウムテープ或いは接着剤等によって蛇行状に
固定されるものであるが、貯蔵室(76)内各部の温度分
布を出来る丈少なくするために、冷媒の流れる順序が、
内箱(84)の上部周囲から下部周囲へ回り、最後に底辺
を回る様に配設されている。Next, FIG. 6 shows a specific configuration of the refrigerant circuit (1) of the refrigeration system (R), and the same reference numerals as those in FIG. 1 are the same. The auxiliary condenser (17) of the low temperature side refrigerant circuit (3) is different from the high temperature side refrigerant circuit (2) with respect to the air suction type blower (9).
It is arranged on the windward side of the condenser (8) and is cooled at the same time. The first and second evaporators (14A) and (14B) are in the shape of a hollow tank, and the first and second condensing pipes (23A) are spirally wound inside the tank from above.
(23B) are inserted respectively. (66A) is a tubular body for fixing the low temperature starting thermostat (66) welded and fixed to the accumulator (15). (96) is composed of intermediate heat exchangers (32) (42) (44), etc., which will be described later, and the heat insulating material (9
It shows the intermediate heat exchanger part molded into a box shape by 7). The evaporation pipe (47) is fixed to the outer surface of the inner box (84) in advance in a meandering shape with an aluminum tape or an adhesive, but in order to reduce the temperature distribution in each part of the storage chamber (76) as much as possible, The order in which the refrigerant flows is
The inner box (84) is arranged so as to go from the upper part to the lower part and finally to the bottom.
第7図に中間熱交換器部(96)の構造を示す。点線で囲
む部分が第1、第2及び第3の中間熱交換器(32)(4
2)(44)、第2の気液分離器(33)、乾燥器(39)(4
5)、減圧器(40)及びアキュムレータ(49)を内包す
る中間熱交換器部(96)である。各中間熱交換器(32)
(42)(44)は比較的大径の外側配管(98)(99)(10
0)を螺旋状に複数段巻回して偏平としたものを相互に
重合し、その内側を間隔を存して各気相配管(30)(4
3)が内側配管となって通過する螺旋二重管構造で構成
されており、図中(A)部分が第1の中間熱交換器(3
2)を、(B)部分が第2の中間熱交換器(42)を、
又、(C)部分が第3の中間熱交換器(44)となる。こ
の螺旋の内側に第2の気液分離器(33)、乾燥器(39)
(45)、減圧器(40)及びアキュムレータ(49)が収納
されてデッドスペースを少なくし、寸法の小型化を図っ
ている。FIG. 7 shows the structure of the intermediate heat exchanger section (96). The portions surrounded by the dotted lines are the first, second and third intermediate heat exchangers (32) (4
2) (44), second gas-liquid separator (33), dryer (39) (4
5) An intermediate heat exchanger section (96) including a pressure reducer (40) and an accumulator (49). Each intermediate heat exchanger (32)
(42) (44) are outer pipes (98) (99) (10
0) spirally wound in multiple stages and flattened are superposed on each other, and the insides of the gas phase pipes (30) (4)
3) has a spiral double pipe structure that passes through as an inner pipe, and the part (A) in the figure is the first intermediate heat exchanger (3
2), (B) part is the second intermediate heat exchanger (42),
The portion (C) serves as the third intermediate heat exchanger (44). Inside this spiral, the second gas-liquid separator (33) and dryer (39)
(45), the decompressor (40) and the accumulator (49) are housed to reduce the dead space and reduce the size.
次に構成を説明する。(101)は乾燥器(28)と第1の
気液分離器(29)とを結ぶ配管である。第1の気液分離
器(29)から上方に出る気相配管(30)は封止した入口
(IN1)より外側配管(98)内に入り、内部を螺旋状に
周回して通過した後、出口(OUT1)より出て第2の気液
分離器(33)に入る。気相配管(30)内を流下するガス
状冷媒はこの通過の際に気相配管(30)と外側配管(9
8)の間隔を上昇する低温冷媒によって凝縮される。第
2の気液分離器(33)から出た気相配管(43)は入口
(IN2)より外側配管(99)内に入る。第1の気液分離
器(29)にて分離された液冷媒は減圧器(36)により減
圧された後、外側配管(98)の出口(OUT1)と(99)の
入口(IN2)を結ぶ連通管(102)途中に流入せられて外
側配管(98)内で蒸発し、蒸発パイプ(47)より帰還し
て来る冷媒と共に気相配管(30)内のガス状冷媒の凝縮
に寄与する。外側配管(99)内に入った気相配管(43)
は出口(OUT2)より出て再び入口(IN3)より外側配管
(100)内に入り、螺旋状に周回して出口(OUT3)より
出る。以上の各出口と入口部の外側配管は封止されてい
る。第2の気液分離器(33)で分離れされた液冷媒は外
側配管(100)と熱交換的に設けた乾燥器(39)を経て
減圧器(40)により減圧された後、外側配管(99)の出
口(OUT2)と(100)の入口(IN3)を結ぶ連通管(10
3)途中に流入せられて外側配管(99)内で蒸発し、蒸
発パイプ(47)より帰還して来る冷媒と共に気相配管
(43)内のガス状冷媒の凝縮に寄与する。気相配管(4
3)内を流下して来る冷媒R50は外側配管(100)内を通
下する際に更に凝縮されて殆ど液化し外側配管(100)
と熱交換的に設けた乾燥器(45)を経て減圧器(46)に
至る。(105)は蒸発パイプ(47)の出口側に接続され
る配管で外側配管(100)の出口(OUT3)に接続されて
気相配管(43)外側の間隔と連通される。又、(106)
は外側配管(98)の入口(IN1)に於いて気相配管(3
0)外側の間隔とアキュムレータ(49)とを連通する配
管である。即ち蒸発パイプ(47)からの帰還冷媒は配管
(105)より外側配管(100)と気相配管(43)との間隔
内に流入してそこを上昇し、気相配管(43)内を流下し
て来る冷媒を凝縮し、連通管(103)にて減圧器(40)
からの冷媒と合流して外側配管(99)と気相配管(43)
の間隔内に流入してそこを上昇し、気相配管(43)内の
冷媒を凝縮し、更に連通管(102)にて減圧器(36)か
らの冷媒と合流して外側配管(98)と気相配管(30)の
間隔内に流入してそこを上昇し、気相配管(30)内の冷
媒を凝縮した後、配管(106)を通過してアキュムレー
タ(49)に至り、配管(108)にて吸入側熱交換器(2
4)に流入する。以上の如く気相配管(30)或いは(4
3)内を流下する冷媒の流れと、蒸発パイプ(47)より
気相配管(30)或いは(43)と外側配管(100)(99)
(98)間を上昇して来る冷媒の流れとは相互に対向流と
なっている。Next, the configuration will be described. (101) is a pipe connecting the dryer (28) and the first gas-liquid separator (29). After the gas-phase pipe (30) that goes upward from the first gas-liquid separator (29) enters the outer pipe (98) through the sealed inlet (IN 1 ) and spirally circulates inside , Exits from the outlet (OUT 1 ) and enters the second gas-liquid separator (33). The gaseous refrigerant flowing down in the vapor-phase pipe (30) passes through the vapor-phase pipe (30) and the outer pipe (9
8) It is condensed by the low temperature refrigerant which rises the interval. The gas-phase pipe (43) from the second gas-liquid separator (33) enters the outer pipe (99) through the inlet (IN 2 ). The liquid refrigerant separated by the first gas-liquid separator (29) is decompressed by the pressure reducer (36), and then the outlet (OUT 1 ) of the outer pipe (98) and the inlet (IN 2 ) of (99). Contributes to the condensation of the gaseous refrigerant in the gas-phase pipe (30) together with the refrigerant that has flowed into the communication pipe (102) connecting the two and evaporates in the outer pipe (98) and returns from the evaporation pipe (47). To do. Gas phase piping (43) inside the outer piping (99)
Exits from the outlet (OUT 2 ), enters the outer pipe (100) from the inlet (IN 3 ) again, spirals around, and exits from the outlet (OUT 3 ). The outer pipes of the above outlets and inlets are sealed. The liquid refrigerant separated by the second gas-liquid separator (33) is reduced in pressure by the pressure reducer (40) through the dryer (39) provided in heat exchange with the outer pipe (100), and then the outer pipe. Communication pipe (10) that connects the (99) outlet (OUT 2 ) and (100) inlet (IN 3 )
3) Contributes to the condensation of the gaseous refrigerant in the gas-phase pipe (43) together with the refrigerant returned from the evaporation pipe (47) by flowing in the middle and evaporating in the outer pipe (99). Gas phase piping (4
3) Refrigerant R50 flowing down the inside is further condensed when passing through the inside of the outer pipe (100) and almost liquefied, and the outer pipe (100)
And a decompressor (46) via a dryer (45) provided in a heat exchange manner. (105) is a pipe connected to the outlet side of the evaporation pipe (47), which is connected to the outlet (OUT 3 ) of the outer pipe (100) and communicates with the space outside the vapor phase pipe (43). Also (106)
Is the gas phase piping (3) at the inlet (IN 1 ) of the outer piping (98).
0) A pipe that connects the outer space and the accumulator (49). That is, the return refrigerant from the evaporation pipe (47) flows into the space between the outer pipe (100) and the gas phase pipe (43) from the pipe (105), rises there, and flows down in the gas phase pipe (43). The incoming refrigerant is condensed and the communication pipe (103) is used to reduce the pressure (40).
Combined with the refrigerant from the outside pipe (99) and vapor phase pipe (43)
Of the gas phase pipe (43) to condense the refrigerant in the vapor phase pipe (43), and further joins with the refrigerant from the pressure reducer (36) in the communication pipe (102) to form the outside pipe (98). After flowing into the space between the gas phase pipe (30) and the gas phase pipe (30) and ascending there, the refrigerant in the gas phase pipe (30) is condensed, and then passes through the pipe (106) to reach the accumulator (49). 108) Intake side heat exchanger (2
Inflow into 4). As described above, vapor phase piping (30) or (4
3) The flow of the refrigerant flowing down and the vapor pipe (30) or vapor phase pipe (30) or (43) and the outer pipe (100) (99)
The flows of the refrigerant that rises between (98) are countercurrent to each other.
次に第8図に冷凍庫(75)の背方斜視図を示し、冷凍装
置(R)の組み込む手順を説明する。外箱(83)背面に
は開口(88)と並列して開口(110)が形成され、それ
に対応して外断熱材(85)にも切欠(111)が形成され
ている。断熱材(90)内にはカスケードコンデンサ(25
A)(25B)と共に吸入側熱交換器(22)(24)、アキュ
ムレータ(15)及び乾燥器(28)をモールドする。断熱
材(90)と(97)の成形方法は被モールド部品を樹脂袋
内に収容し、その状態で箱状の発泡型内に設置し、袋の
中にウレタン断熱材を発泡充填して成形するものであ
る。断熱材(97)からは減圧器(46)と配管(105)を
延出しておき、切欠(111)奥部の導出部(112)(11
2)より導出される蒸発パイプ(47)と溶接により接続
する。断熱材(90)から延在せしめた減圧器(13)等の
配管は切欠(89)の機械室(78)側の壁面より導出され
る配管と溶接接続する。第1の気液分離器(29)と乾燥
器(35)は断熱材(90)外側に位置せしめ、断熱材(9
0)と(97)も相互に配管接続した状態で切欠(89)(1
11)内に組み込み、隙間にはグラスウール等を装填した
後、覆板(91)で切欠(89)と(111)を覆う事により
組み込みを完了する。又、電動圧縮機(4)(10)、凝
縮器(8)、送風機(9)及び膨張タンク(51)等は機
械室(78)内に予め設置しておき、これによって冷凍庫
(75)は完成する。Next, FIG. 8 shows a rear perspective view of the freezer (75), and a procedure for incorporating the freezer (R) will be described. An opening (110) is formed on the back surface of the outer box (83) in parallel with the opening (88), and a corresponding notch (111) is formed in the outer heat insulating material (85). Inside the insulation (90) is a cascade capacitor (25
The suction side heat exchangers (22) and (24), the accumulator (15) and the dryer (28) are molded together with A) and 25B. The heat insulation materials (90) and (97) are molded by placing the molded parts in a resin bag, placing it in a box-shaped foam mold, and foam-filling the urethane insulation material in the bag to mold it. To do. The decompressor (46) and the pipe (105) are extended from the heat insulating material (97), and the lead-out parts (112) (11) at the inner part of the notch (111).
It is connected to the evaporation pipe (47) derived from 2) by welding. Pipes such as a decompressor (13) extended from the heat insulating material (90) are connected by welding to a pipe led out from the wall surface of the cutout (89) on the machine room (78) side. The first gas-liquid separator (29) and the dryer (35) are located outside the heat insulating material (90), and the heat insulating material (9
Notches (89) (1) with pipes (0) and (97) connected to each other
11), and the gap is filled with glass wool, etc., and then the cover plate (91) covers the notches (89) and (111) to complete the installation. Further, the electric compressors (4) and (10), the condenser (8), the blower (9), the expansion tank (51), and the like are installed in advance in the machine room (78), whereby the freezer (75) is Complete.
以上は本発明の冷凍装置(R)の理想的な運転状況につ
いて説明したが、最終段即ち第3の中間熱交換器(44)
から蒸発パイプ(47)までの領域は前述の如く−120℃
から−150℃等の極めて低い温度に冷却されるため、前
述の構成の如く厳重に断熱を行っても周囲からの熱侵入
によって第3の中間熱交換器(44)を通過した液冷媒が
減圧器(46)内で蒸発しようとする。ここで第2の気液
分離器(33)からの未凝縮冷媒には若干のR14冷媒が含
まれているが殆どはR50冷媒である。又、第9図にR50冷
媒の圧力と蒸発温度との関係を示す。前述の如く減圧器
(46)内でR50冷媒の蒸発が生ずると、減圧器(46)の
管内径は非常に小さいので(通常1mm以下)、減圧器(4
6)内はすぐにガス冷媒で満たされてしまい、通過抵抗
が過大となって液冷媒が流通できなくなり、蒸発パイプ
(47)の温度が上昇して貯蔵室(76)が十分に冷却され
なくなってしまう。The ideal operating conditions of the refrigeration system (R) of the present invention have been described above, but the final stage, that is, the third intermediate heat exchanger (44).
The area from to the evaporation pipe (47) is -120 ° C as described above.
Since it is cooled to an extremely low temperature such as -150 ° C, the liquid refrigerant that has passed through the third intermediate heat exchanger (44) is decompressed due to heat invasion from the surroundings even if the heat insulation is strictly performed as in the above-mentioned configuration. Attempts to evaporate in the vessel (46). Here, the uncondensed refrigerant from the second gas-liquid separator (33) contains some R14 refrigerant, but most of it is R50 refrigerant. FIG. 9 shows the relationship between the R50 refrigerant pressure and the evaporation temperature. As described above, when the R50 refrigerant vaporizes in the pressure reducer (46), the inside diameter of the pressure reducer (46) is very small (usually 1 mm or less).
The inside of 6) is immediately filled with gas refrigerant, the passage resistance becomes excessive and the liquid refrigerant cannot flow, the temperature of the evaporation pipe (47) rises, and the storage chamber (76) is not cooled sufficiently. Will end up.
しかし、減圧器(46)内の液冷媒の流通の阻害は、又、
減圧器(46)に入る前の部分の圧力上昇を引き起こすた
め、第9図の如くR50冷媒の蒸発温度も高くなり、それ
によって減圧器(46)内での蒸発は行なわれなくなり、
再び液冷媒が蒸発パイプ(47)に供給されて、正常な冷
却が行なわれる様になる。しかし乍ら、これによって温
度が低下すれば再び前述の如く減圧器(46)内での蒸発
が始まり、これを繰り返す事になる。この様な状況にな
ると貯蔵室(76)内の冷却不足が生ずるばかりでなく、
電動圧縮機(10)に加わる負荷が激しく変動して電動圧
縮機(10)の寿命を損うばかりでなく騒音も大きくな
る。そのために本願では乾燥器(45)を第3の中間熱交
換器(44)に熱交換的に配設し、第3の中間熱交換器
(44)を通過したR50冷媒を再び冷却し、周囲からの熱
侵入による温度上昇を抑制している。これによって減圧
器(46)内での冷媒の蒸発を防止し、前述の冷却不足を
解消している。However, the obstruction of the flow of the liquid refrigerant in the pressure reducer (46)
Since the pressure rises before entering the pressure reducer (46), the evaporation temperature of the R50 refrigerant also rises as shown in FIG. 9, and as a result, evaporation inside the pressure reducer (46) ceases.
The liquid refrigerant is again supplied to the evaporation pipe (47), and normal cooling is performed. However, if the temperature is lowered by this, evaporation in the decompressor (46) starts again as described above, and this is repeated. In such a situation, not only is there insufficient cooling in the storage room (76),
The load applied to the electric compressor (10) fluctuates drastically, which not only shortens the life of the electric compressor (10) but also increases noise. Therefore, in the present application, the dryer (45) is arranged in the third intermediate heat exchanger (44) in a heat-exchange manner, and the R50 refrigerant that has passed through the third intermediate heat exchanger (44) is cooled again, It suppresses the temperature rise due to heat intrusion from the. This prevents the refrigerant from evaporating in the decompressor (46) and eliminates the aforementioned insufficient cooling.
又、この様な異常な状況は低温側冷媒回路(3)内に充
填される冷媒の量が適正でない場合にも発生する。即ち
第9図に冷凍装置(R)に電源が投入された後の貯蔵室
(76)内の温度の時間推移を示し、(L1)は適正な冷媒
充填量である場合を、(L2)は冷媒充填量が過多である
場合を、又、(L3)は冷媒充填量が過少である場合を示
す。又、第10図には到達温度付近での冷媒充填量が過多
の場合の貯蔵室(76)内温度である(L2)と過少の場合
の温度である(L3)を示し、図中(L4)は冷媒充填量が
過多の場合の減圧器(46)に流入する冷媒の温度即ち第
1図中減圧器(46)入口部(P1)の温度を、(L5)は同
様に過多の場合の減圧器(46)を出た後の冷媒の温度即
ち第1図中蒸発パイプ(47)入口部(P2)の温度を、
(L6)は冷媒充填量が過少な場合の減圧器(46)入口部
(P1)の温度を、又、(L7)は同過少な場合の蒸発パイ
プ(47)入口部(P2)の温度を示す。Further, such an abnormal situation also occurs when the amount of the refrigerant filled in the low temperature side refrigerant circuit (3) is not appropriate. That is, FIG. 9 shows the time transition of the temperature in the storage chamber (76) after the refrigeration system (R) is powered on, and (L 1 ) shows the case where the refrigerant charging amount is appropriate (L 2 ) Indicates the case where the refrigerant charging amount is excessive, and (L 3 ) indicates the case where the refrigerant charging amount is excessive. Further, FIG. 10 shows the temperature (L 2 ) in the storage chamber (76) when the refrigerant charge amount is excessive near the ultimate temperature (L 2 ) and the temperature when it is too low (L 3 ). (L 4 ) is the temperature of the refrigerant flowing into the pressure reducer (46) when the refrigerant charge is excessive, that is, the temperature of the inlet (P 1 ) of the pressure reducer (46) in FIG. 1 , and (L 5 ) is the same. If the temperature is too high, the temperature of the refrigerant after leaving the pressure reducer (46), that is, the temperature of the inlet portion (P 2 ) of the evaporation pipe (47) in FIG.
(L 6 ) is the temperature of the inlet (P 1 ) of the pressure reducer (46) when the refrigerant filling amount is too small, and (L 7 ) is the inlet (P 2 ) of the evaporation pipe (47) when the amount is too small. ) Indicates the temperature.
冷媒充填量が過多である場合は、冷却運転の開始から貯
蔵室(76)の温度が低下して行く速度は、充填量が正常
な場合よりも速い。しかし乍ら、蒸発パイプ(47)に供
給される液冷媒の量が多過ぎるので、貯蔵室(76)内の
温度が到達温度まで低下すると、蒸発パイプ(47)内で
蒸発し切れない多量の液冷媒が第3の中間熱交換器(4
4)に流入してそこで蒸発する様になり、第3の中間熱
交換器(44)の温度は蒸発パイプ(47)と同等な値まで
冷却されて行く。これによって減圧器(46)入口部
(P1)の温度も低下して行くが、周囲との温度差が大き
くなるため、周囲からの熱侵入量が増加し、液冷媒の蒸
発を促す様になる。これにより減圧器(46)内では液冷
媒の蒸発が始まり、減圧器(46)内の圧力上昇によって
液冷媒の流通が阻害され、蒸発パイプ(47)への液冷媒
の供給が減少するので入口部(P2)の温度も上昇して来
る。それによって貯蔵室(76)内の温度も上昇する。即
ち、第13図のモリエル線図に示すように、蒸発パイプ
(47)にて最終段の冷媒R50が液化し終る理想的な冷凍
サイクルを→→→とした場合、充填される冷媒
の量が過多であると中間熱交換器(44)で液冷媒が過冷
却されることとなるため、この液の分だけ冷凍サイクル
の圧力差PdはPd1からPd2に、即ち、Pd1−Pd2分だけ減少
してしまう。この結果、冷凍サイクルは→→→
となり、減圧器(46)では圧力差Pdが低下した分だけ液
冷媒の流通が悪くなり、蒸発パイプ(47)への液冷媒の
供給が減少するのである。この現象は中間熱交換器(4
4)での過冷却が大きくほど液量が多くなるため顕著と
なる。即ち、過冷却が大きいほど圧力差Pdの低下が大き
くなる。尚、上述した現象は減圧器(46)に絞り量固定
のキャピラリーチューブ等を使用した場合には特に顕著
に現われる。減圧器(46)内での液冷媒の流通が阻害さ
れると液冷媒の圧力が前述の如く上昇するため蒸発温度
が上昇して液冷媒は蒸発しなくなり、再び減圧器(46)
を通過して正常な冷却が行なわれる様になるが、その後
の冷却によって液冷媒が蒸発パイプ(47)内で余れば再
び同様な状況が繰り返えされる。即ち第11図中(L2)
(L4)(L5)の如く各温度は脈動して不安定となる。こ
こで貯蔵室(76)内の温度は多少遅れた形となる。この
様な上況になると第9図の如く貯蔵室(76)内の温度は
周期的に正常状態(L1)を上回り冷却不足となると共
に、電動圧縮機(10)の振動騒音の増大、異常魔耗等を
引き起こす。When the refrigerant charge amount is excessive, the speed at which the temperature of the storage chamber (76) decreases from the start of the cooling operation is faster than when the charge amount is normal. However, since the amount of the liquid refrigerant supplied to the evaporation pipe (47) is too large, when the temperature in the storage chamber (76) drops to the ultimate temperature, a large amount of liquid refrigerant cannot be evaporated in the evaporation pipe (47). The liquid refrigerant is the third intermediate heat exchanger (4
It flows into 4) and evaporates there, and the temperature of the third intermediate heat exchanger (44) is cooled to a value equivalent to that of the evaporation pipe (47). As a result, the temperature of the inlet part (P 1 ) of the decompressor (46) also decreases, but the temperature difference from the surroundings increases, so the amount of heat intrusion from the surroundings increases and the evaporation of the liquid refrigerant is promoted. Become. As a result, the evaporation of the liquid refrigerant in the decompressor (46) starts, the flow of the liquid refrigerant is obstructed by the pressure increase in the decompressor (46), and the supply of the liquid refrigerant to the evaporation pipe (47) is reduced, so that the inlet The temperature of the part (P 2 ) also rises. As a result, the temperature in the storage room (76) also rises. That is, as shown in the Mollier diagram of Fig. 13, when the ideal refrigeration cycle in which the final stage refrigerant R50 is completely liquefied in the evaporation pipe (47) is → → →, the amount of the refrigerant to be charged is If the amount is excessive, the liquid refrigerant will be supercooled in the intermediate heat exchanger (44). Therefore, the pressure difference Pd of the refrigeration cycle from Pd 1 to Pd 2 by the amount of this liquid, that is, Pd 1 −Pd 2 It will decrease by the amount. As a result, the refrigeration cycle is → → →
Therefore, in the pressure reducer (46), the flow of the liquid refrigerant deteriorates as much as the pressure difference Pd decreases, and the supply of the liquid refrigerant to the evaporation pipe (47) decreases. This phenomenon occurs in the intermediate heat exchanger (4
The larger the amount of supercooling in 4), the greater the amount of liquid, which becomes more noticeable. That is, the greater the supercooling, the greater the decrease in the pressure difference Pd. Incidentally, the above-mentioned phenomenon is particularly remarkable when a capillary tube or the like having a fixed throttle amount is used for the decompressor (46). When the flow of the liquid refrigerant in the pressure reducer (46) is obstructed, the pressure of the liquid refrigerant rises as described above, the evaporation temperature rises and the liquid refrigerant does not evaporate, and the pressure reducer (46) again.
After that, normal cooling is performed, but if the liquid refrigerant remains in the evaporation pipe (47) due to the subsequent cooling, the same situation is repeated again. That is, in Fig. 11 (L 2 )
Like (L 4 ) and (L 5 ), each temperature pulsates and becomes unstable. Here, the temperature in the storage room (76) is slightly delayed. In such a situation, as shown in FIG. 9, the temperature in the storage chamber (76) periodically exceeds the normal state (L 1 ) to cause insufficient cooling, and the vibration noise of the electric compressor (10) increases. Causes abnormal wear and tear.
この様な状況では減圧器(46)に流入する冷媒の温度が
そこを出た後の冷媒の温度に近づく、即ち減圧器(46)
入口部(P1)の温度が低下して蒸発パイプ(47)入口部
(P2)の温度に近づき過ぎ、到達温度付近に於いて10℃
以下となっている事が実験的に確められている。そこで
本発明では点(P1)と(P2)との温度差が10℃より大き
くなる様に冷媒を充填する様にした。これによって冷媒
の過充填は防止され、以上の如き脈動を防止し、安定し
た冷却運転が行なわれる様になる。又、これと共に乾燥
器(45)を第3の中間熱交換器(44)に熱交換的に設け
て、熱侵入による影響を少なくしているので、更に温度
は安定することになる。In such a situation, the temperature of the refrigerant flowing into the pressure reducer (46) approaches the temperature of the refrigerant after leaving the pressure reducer (46), that is, the pressure reducer (46).
The temperature of the inlet part (P 1 ) drops and approaches the temperature of the inlet part (P 2 ) of the evaporation pipe (47) too much.
It is confirmed experimentally that the following is true. Therefore, in the present invention, the refrigerant is charged so that the temperature difference between points (P 1 ) and (P 2 ) is larger than 10 ° C. This prevents the refrigerant from being overfilled, prevents the above pulsation, and enables stable cooling operation. Along with this, a dryer (45) is provided in the third intermediate heat exchanger (44) for heat exchange to reduce the influence of heat intrusion, so that the temperature is further stabilized.
次に冷媒充填量が過少な場合は当然のことながら第9図
中(L3)の如く冷却速度も遅くなる。又、少量ではある
が冷媒は低温側冷媒回路(3)内を循環しているので減
圧器(46)からは少量の液冷媒が蒸発パイプ(47)に流
入して直ぐに蒸発し、それによって第10図(L7)の如く
蒸発パイプ(47)入口部(P2)の温度は降下するが、液
冷媒の量が少ないため、蒸発は直ぐに終了してしまい、
その後はガス状の冷媒が蒸発パイプ(47)から第3の中
間熱交換器(44)へと流れるのみとなる。これによって
貯蔵室(76)内は冷却不足となって温度は上昇し、
(L3)の如く高い値で安定する様になると共に、第3の
中間熱交換器(44)の温度も上昇すめため、それと熱交
換した後の冷媒が通る減圧器(46)入口部(P1)の温度
も(L6)の如く上昇し、(P1)点と(P2)点の温度差は
非常に大きくなる。Next, when the refrigerant charge amount is too small, the cooling rate is naturally slow as shown by (L 3 ) in FIG. Further, although a small amount of the refrigerant circulates in the low temperature side refrigerant circuit (3), a small amount of the liquid refrigerant flows into the evaporation pipe (47) from the pressure reducer (46) and immediately evaporates, whereby As shown in Fig. 10 (L 7 ), the temperature of the inlet part (P 2 ) of the evaporation pipe (47) drops, but since the amount of liquid refrigerant is small, evaporation ends immediately,
After that, the gaseous refrigerant only flows from the evaporation pipe (47) to the third intermediate heat exchanger (44). As a result, the inside of the storage chamber (76) becomes insufficiently cooled and the temperature rises,
The temperature of the third intermediate heat exchanger (44) rises as it stabilizes at a high value such as (L 3 ), so that the refrigerant after heat exchange with it passes through the inlet of the pressure reducer (46) ( The temperature at (P 1 ) also rises as at (L 6 ), and the temperature difference between points (P 1 ) and (P 2 ) becomes very large.
ここで本発明の冷凍装置(R)ではカスケードコンデン
サ(25A)(25B)の温度(−50℃)と蒸発パイプ(47)
の温度(−150℃)との差100℃を減圧器(36)(40)
(46)の前後でそれぞれ温度差を作り出す事によって段
階的に作り出している。即ち各減圧器(36)(40)(4
6)の前後に於いて受け持つ温度差は、等分したとして
も(通常は負荷を少しでも減らすために低温になるに従
って温度差は小さく設定する。)33℃であり、この温度
差よりも減圧器(46)入口部(P1)と蒸発パイプ(47)
入口部(P2)との温度差が到達温度付近で大きくなって
いる時は異常であり、その原因は前述の如き冷媒充填量
の過少にあると言う事ができる。従って本発明では点
(P1)と(P2)との温度差か33℃より小さくなる様に冷
媒を充填する事により、冷媒の充填不足による冷却不足
を解消する様にしている。Here, in the refrigerating apparatus (R) of the present invention, the temperature (−50 ° C.) of the cascade condenser (25A) (25B) and the evaporation pipe (47)
Temperature difference (-150 ℃) 100 ℃ decompressor (36) (40)
(46) is created stepwise by creating a temperature difference before and after. That is, each pressure reducer (36) (40) (4
Even if the temperature difference between before and after 6) is evenly divided, the temperature difference is usually set to 33 ° C as the temperature gets lower to reduce the load even if it is divided evenly. Vessel (46) inlet (P 1 ) and evaporation pipe (47)
It can be said that it is abnormal when the temperature difference with the inlet portion (P 2 ) is large near the reached temperature, and the cause is that the refrigerant charge amount is too small as described above. Therefore, in the present invention, by filling the refrigerant so that the temperature difference between points (P 1 ) and (P 2 ) becomes smaller than 33 ° C., the insufficient cooling due to the insufficient filling of the refrigerant is eliminated.
以上総合すると、減圧器(46)入口部(P1)の温度と蒸
発パイプ(47)入口部(P2)の温度により減圧器(46)
に流入する冷媒の温度とそこを出た後の冷媒の温度の差
を測定し、到達温度付近に於いて、その差が10℃より大
きく、且つカスケードコンデンサ(25A)(25B)と蒸発
パイプ(47)の温度差を減圧器(36)(40)(46)の数
で除した値即ち33℃より小さい範囲に入る様に冷媒を充
填する事により、適正な冷媒量を充填する事ができる。Summarizing the above, the pressure reducer (46) depends on the temperature of the inlet (P 1 ) of the pressure reducer (46) and the temperature of the inlet (P 2 ) of the evaporation pipe (47).
The difference between the temperature of the refrigerant flowing in and the temperature of the refrigerant after it is measured, and the difference is greater than 10 ° C near the reached temperature, and the cascade condensers (25A) (25B) and the evaporation pipe ( By filling the refrigerant so that the temperature difference of 47) is divided by the number of pressure reducers (36) (40) (46), that is, within the range smaller than 33 ° C, an appropriate amount of refrigerant can be filled. .
ここで冷凍装置(R)は、その設置された周囲の温度に
よっても影響を受ける。即ち周囲温度が高い状況を想定
して十分なる冷却能力を発揮する様に冷媒を充填したと
すると、周囲の温度が低くなった時にはカスケードコン
デンサ(25A)(25B)及び各中間熱交換器(32)(42)
(44)の温度も低下するため、それぞれの中間熱交換器
で凝縮されるべき冷媒の他に、後段の中間熱交換器で凝
縮されるべき冷媒も一部凝縮してしまい、電動圧縮機
(10)に帰還してしまうために、最終的に蒸発パイプ
(47)に流入するR50冷媒の量が減少するため冷却不足
が生じる。これを解消するために冷媒充填量を増加して
行くと、今度は周囲の温度が高い状態で前述の如き脈動
が発生する。Here, the refrigeration system (R) is also affected by the ambient temperature in which it is installed. That is, assuming that the ambient temperature is high and the refrigerant is filled so as to exert sufficient cooling capacity, when the ambient temperature becomes low, the cascade condensers (25A) (25B) and each intermediate heat exchanger (32 ) (42)
Since the temperature of (44) also drops, in addition to the refrigerant to be condensed in each intermediate heat exchanger, a part of the refrigerant to be condensed in the intermediate heat exchanger in the subsequent stage is also condensed, and the electric compressor ( Since it returns to 10), the amount of R50 refrigerant that finally flows into the evaporation pipe (47) decreases, resulting in insufficient cooling. When the refrigerant charge amount is increased in order to eliminate this, the pulsation as described above occurs this time in a state where the ambient temperature is high.
これに対して本発明の如く点(P1)と(P2)との温度差
を10℃より大きく33℃より小さくする様に冷媒を充填す
る事により、周囲温度が高い時から低い時に渡って安定
した冷却能力を発揮できる様になる。On the other hand, as in the present invention, by filling the refrigerant so that the temperature difference between the points (P 1 ) and (P 2 ) is larger than 10 ° C and smaller than 33 ° C, the temperature can be changed from high to low. And stable cooling capacity can be demonstrated.
ここで前記自記温度記録計(79)は貯蔵室(76)内の温
度を記録するもので、此種冷凍庫に於いては重要な構成
部品の一つである。ところで記録計(79)は一般に第11
図に示す如く衆知のアルキメデス螺旋形状のブルドン管
(120)と時間推移に伴って自動的に移動される図示し
ない記録紙等から構成される。第11図に於いて(121)
は貯蔵室(76)内の温度を感知する様に配設される感温
部であり、ブルドン管(120)と感温部(121)は細管
(122)にて連通接続されている。ブルドン管(120)の
例えば螺旋の中心(0)には駆動軸(123)が立設固定
され、この駆動軸(123)先端に記録用の指針(124)が
取付けられている。ブルドン管(120)は内部中空であ
り、内部には例えばエチルアルコールやノルマルプロピ
ルアルコール等の感温物質が液状で封入されている。ブ
ルドン管(120)は感温部(121)周囲の温度変化による
内部圧力の変化によって変形し、駆動軸(123)を軸方
向を中心として回転せしめるものであるが、この回転角
度(θ)はブルドン管(120)内の圧力変化に比例する
ことが知られており、これによって貯蔵室(76)内の温
度を指針(124)の位置に変換し記録するものである。Here, the self-recording temperature recorder (79) records the temperature in the storage room (76), and is one of the important components in this type of freezer. By the way, recorders (79) are generally
As shown in the figure, it is composed of a well-known Archimedes spiral Bourdon tube (120) and a recording sheet (not shown) that is automatically moved with time. In Figure 11 (121)
Is a temperature-sensing section arranged to sense the temperature in the storage chamber (76), and the Bourdon tube (120) and the temperature-sensing section (121) are connected by a thin tube (122) for communication. A drive shaft (123) is erected and fixed at the center (0) of the spiral of the Bourdon tube (120), and a pointer (124) for recording is attached to the tip of the drive shaft (123). The Bourdon tube (120) is hollow inside, and a temperature sensitive substance such as ethyl alcohol or normal propyl alcohol is enclosed in a liquid state inside. The Bourdon tube (120) is deformed by the change of the internal pressure due to the temperature change of the temperature sensing part (121), and rotates the drive shaft (123) about the axial direction. The rotation angle (θ) is It is known to be proportional to the pressure change in the Bourdon tube (120), and thereby the temperature in the storage chamber (76) is converted to the position of the pointer (124) and recorded.
ところで前記エチルアルコールやノルマルプロピルアル
コール等の一般的感温物質は例えば−80℃付近で使用さ
れるものであり、本発明の対象である−150℃等の超低
温では凍結してしまい、温度記録計として使用に供する
ことができない。そこで鋭意研究の結果、本発明では感
温物質として2−メチルペンタン(イソヘキサン)を封
入することによって−150℃等の超低温における温度を
記録する事を達成した。第12図に2−メチルペンタンを
ブルドン管(120)中に封入した場合の感温部(121)周
囲の温度(T)とブルドン管(120)内の圧力(P)の
関係を示す。図より明らかな如く圧力(P)は−150℃
から+50℃の温度範囲で温度(T)に略比例する。ここ
で指針(124)の回転角度(θ)は前述の如く圧力
(P)に比例するから温度(T)にも略比例し、これに
よって−150℃から+50℃の範囲で貯蔵室(76)内の温
度を記録することができる。By the way, the general temperature-sensitive substances such as ethyl alcohol and normal propyl alcohol are used at around -80 ° C, for example, and they are frozen at an extremely low temperature such as -150 ° C, which is the object of the present invention, and a temperature recorder. Cannot be used as Then, as a result of earnest research, in the present invention, by encapsulating 2-methylpentane (isohexane) as a temperature-sensitive substance, it was achieved to record the temperature at an ultralow temperature such as -150 ° C. FIG. 12 shows the relationship between the temperature (T) around the temperature sensing part (121) and the pressure (P) inside the Bourdon tube (120) when 2-methylpentane is enclosed in the Bourdon tube (120). As is clear from the figure, the pressure (P) is -150 ° C.
Is approximately proportional to temperature (T) in the temperature range from + 50 ° C. Here, since the rotation angle (θ) of the pointer (124) is proportional to the pressure (P) as described above, it is also substantially proportional to the temperature (T), whereby the storage chamber (76) is in the range of −150 ° C. to + 50 ° C. The temperature inside can be recorded.
尚、実施例では独立した二つの冷媒回路をカスケード接
続し、低温側の冷媒回路を混合冷媒冷凍方式としたもの
に適用したがそれに限られず、単一の冷媒回路による混
合冷媒冷凍方式のものにも本願は有効である。In the embodiment, two independent refrigerant circuits are connected in cascade, and the low temperature side refrigerant circuit is applied to a mixed refrigerant refrigeration system, but the invention is not limited to this, and a mixed refrigerant refrigeration system using a single refrigerant circuit is used. The present application is also effective.
(ト)発明の効果 本発明によれば非共沸混合冷媒を用いた冷媒回路から成
る冷凍装置に於いて、最終段の減圧器に流入する冷媒の
温度をそこを出た後の冷媒の温度の差を適正範囲即ち凝
縮器と蒸発器との温度差を減圧器の数で除した値より小
さく10℃より大きい範囲に入れる様にする事により、適
正な量の冷媒を充填する事ができるので、充填量が過多
である場合に生じる被冷却空間温度の脈動や、充填量が
過少である場合に生じる冷却不足を解消し、更に周囲温
度の影響を受けない安定した能力を発揮する冷却装置を
構成する事ができるものである。(G) Effect of the Invention According to the present invention, in a refrigerating apparatus including a refrigerant circuit using a non-azeotropic mixed refrigerant, the temperature of the refrigerant flowing into the final stage pressure reducer is the temperature of the refrigerant after leaving the temperature. It is possible to fill an appropriate amount of the refrigerant by setting the difference in the temperature range within a proper range, that is, smaller than a value obtained by dividing the temperature difference between the condenser and the evaporator by the number of pressure reducers and larger than 10 ° C. Therefore, the pulsation of the temperature of the space to be cooled that occurs when the filling amount is excessive, and the insufficient cooling that occurs when the filling amount is insufficient, and a cooling device that exhibits a stable capacity that is not affected by the ambient temperature. Can be configured.
第1図乃至第9図は本発明の実施例を示し、第1図は冷
凍装置の冷媒回路図、第2図は同制御用電気回路図、第
3図は冷凍装置の動作を説明するタイミングチャート、
第4図は冷凍庫の斜視図、第5図は冷凍庫本体の側断面
図、第6図は冷凍装置の冷媒回路の具体的構成を示す
図、第7図は中間熱交換器部の斜視図、第8図は冷凍庫
の後方斜視図、第9図は貯蔵室内の電源投入からの時間
推移を示す図であり、第10図は低温側冷媒回路の冷媒充
填量が過多若しくは過少な場合の到達温度付近に於ける
貯蔵室温度を示す図、第11図及び第12図は自記温度記録
計の実施例を示し、第11図は自記温度記録計を構成する
ブルドン管の斜視図、第12図は2−メチルペンタンを封
入したブルドン管の内部圧力と感温部温度の関係を示す
図、第13図は低温側冷媒回路への充填冷媒量が過多の場
合を示すモリエル線図である。 (R)……冷凍装置、(2)……高温側冷媒回路、
(3)……低温側冷媒回路、(4)(10)……電動圧縮
機、(25A)(25B)……カスケードコンデンサ、(32)
(42)(44)……中間熱交換器、(36)(40)(46)…
…減圧器、(47)……蒸発パイプ。1 to 9 show an embodiment of the present invention, FIG. 1 is a refrigerant circuit diagram of a refrigeration system, FIG. 2 is an electric circuit diagram for the same control, and FIG. 3 is a timing for explaining the operation of the refrigeration system. chart,
FIG. 4 is a perspective view of a freezer, FIG. 5 is a side sectional view of a freezer main body, FIG. 6 is a view showing a specific configuration of a refrigerant circuit of a refrigerating apparatus, FIG. 7 is a perspective view of an intermediate heat exchanger part, FIG. 8 is a rear perspective view of the freezer, FIG. 9 is a diagram showing a time transition after the power is turned on in the storage room, and FIG. 10 is an reached temperature when the refrigerant filling amount in the low temperature side refrigerant circuit is excessive or insufficient. Figures showing the temperature of the storage room in the vicinity, FIGS. 11 and 12 show an embodiment of the self-recording temperature recorder, FIG. 11 is a perspective view of a Bourdon tube constituting the self-recording temperature recorder, and FIG. 12 is FIG. 13 is a diagram showing the relationship between the internal pressure of a Bourdon tube in which 2-methylpentane is sealed and the temperature of the temperature sensing part, and FIG. 13 is a Mollier diagram showing the case where the amount of refrigerant charged into the low temperature side refrigerant circuit is excessive. (R) ... Refrigerator, (2) ... High temperature side refrigerant circuit,
(3) …… Low temperature side refrigerant circuit, (4) (10) …… Electric compressor, (25A) (25B) …… Cascade condenser, (32)
(42) (44) …… Intermediate heat exchanger, (36) (40) (46)…
… Decompressor, (47) …… Evaporation pipe.
Claims (1)
帰還冷媒を流通する様直列に接続された複数の中間熱交
換器、複数の減圧器を具備し、複数種の非共沸混合冷媒
を封入して成り、前記凝縮器を経た冷媒中の凝縮冷媒を
前記減圧器を介して前記中間熱交換器に合流せしめ、そ
こで前記冷媒中の未凝縮冷媒を冷却する事により、順次
より低い沸点の冷媒を凝縮せしめ、最終段の減圧器を介
して最低沸点の冷媒を前記蒸発器に流入せしめる事によ
り極低温を得る冷凍装置において、前記非共沸混合冷媒
の封入量を、前記最終段の減圧器に流入する冷媒とそれ
を出た後の冷媒の温度との差が、前記凝縮器と蒸発器と
の温度差を前記減圧器の数で除した値より小さく10℃よ
り大きい範囲となるような量に設定した事を特徴とする
冷凍装置。1. A compressor, a condenser, an evaporator, a plurality of intermediate heat exchangers connected in series so as to circulate the return refrigerant from the evaporator, and a plurality of pressure reducers, and a plurality of non-coexisting types. Containing a boiling mixed refrigerant, condensing the condensed refrigerant in the refrigerant that has passed through the condenser to the intermediate heat exchanger via the pressure reducer, by cooling the uncondensed refrigerant in the refrigerant there, sequentially. In a refrigerating apparatus for obtaining a cryogenic temperature by condensing a refrigerant having a lower boiling point and allowing a refrigerant having the lowest boiling point to flow into the evaporator through a decompressor at the final stage, the amount of the non-azeotropic mixed refrigerant enclosed is The difference between the temperature of the refrigerant flowing into the final stage pressure reducer and the temperature of the refrigerant after leaving it is smaller than the value obtained by dividing the temperature difference between the condenser and the evaporator by the number of the pressure reducers and is larger than 10 ° C. Refrigerating device characterized by setting the amount so as to fall within the range.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9159886A JPH0697123B2 (en) | 1986-04-21 | 1986-04-21 | Refrigeration equipment |
GB8621651A GB2180921B (en) | 1985-09-25 | 1986-09-09 | Refrigeration system |
DE19863631795 DE3631795A1 (en) | 1985-09-25 | 1986-09-18 | COOLING SYSTEM |
DE3645168A DE3645168C2 (en) | 1985-09-25 | 1986-09-18 | |
FR8613264A FR2587792B1 (en) | 1985-09-25 | 1986-09-23 | REFRIGERATION SYSTEM |
US06/910,881 US4788829A (en) | 1985-09-25 | 1986-09-24 | Low-temperature refrigeration system |
CN86106599.9A CN1023833C (en) | 1985-09-25 | 1986-09-25 | Refrigeration system |
FR9310292A FR2693541B1 (en) | 1985-09-25 | 1993-08-27 | Refrigeration system. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9159886A JPH0697123B2 (en) | 1986-04-21 | 1986-04-21 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62248962A JPS62248962A (en) | 1987-10-29 |
JPH0697123B2 true JPH0697123B2 (en) | 1994-11-30 |
Family
ID=14030993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9159886A Expired - Lifetime JPH0697123B2 (en) | 1985-09-25 | 1986-04-21 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0697123B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112351A (en) * | 2009-11-30 | 2011-06-09 | Sanyo Electric Co Ltd | Refrigerating device |
CN104848599B (en) * | 2015-05-26 | 2017-06-13 | 珠海格力电器股份有限公司 | Air conditioning system and control method thereof |
-
1986
- 1986-04-21 JP JP9159886A patent/JPH0697123B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62248962A (en) | 1987-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4788829A (en) | Low-temperature refrigeration system | |
US5372011A (en) | Air conditioning and heat pump system utilizing thermal storage | |
KR101312742B1 (en) | A beverage cooler, a refrigerator comprising such a beverage cooler and a method for cooling beverage | |
US4756164A (en) | Cold plate refrigeration method and apparatus | |
US6370892B1 (en) | Batch process and apparatus optimized to efficiently and evenly freeze ice cream | |
JP3965717B2 (en) | Refrigeration equipment and refrigerator | |
EP2545332B1 (en) | Refrigerant distribution apparatus and methods for transport refrigeration system | |
US6119472A (en) | Ice cream machine optimized to efficiently and evenly freeze ice cream | |
US4712387A (en) | Cold plate refrigeration method and apparatus | |
JP2006250378A (en) | Cooling storage | |
US5553457A (en) | Cooling device | |
US6915646B2 (en) | HVAC system with cooled dehydrator | |
US4862707A (en) | Two compartment refrigerator | |
WO1994005959A1 (en) | Refrigerator and freezer units | |
JPH0697123B2 (en) | Refrigeration equipment | |
US7062928B2 (en) | Cooling apparatus and method | |
JP3527592B2 (en) | Freezer refrigerator | |
JPS6273046A (en) | Refrigerator | |
JPS595812Y2 (en) | refrigerator | |
JPH0755273A (en) | Refrigeration system and refrigerator | |
JPH0760027B2 (en) | Refrigeration equipment | |
JPS62248968A (en) | Refrigerator | |
WO2023003611A1 (en) | Dual-mode ultralow and/or cryogenic temperature storage device | |
JPH0914768A (en) | Refrigerating unit | |
JPH11311467A (en) | Refrigerator |