[go: up one dir, main page]

JPH0696947A - Thin belt-like iron nitride material - Google Patents

Thin belt-like iron nitride material

Info

Publication number
JPH0696947A
JPH0696947A JP24299392A JP24299392A JPH0696947A JP H0696947 A JPH0696947 A JP H0696947A JP 24299392 A JP24299392 A JP 24299392A JP 24299392 A JP24299392 A JP 24299392A JP H0696947 A JPH0696947 A JP H0696947A
Authority
JP
Japan
Prior art keywords
iron nitride
shaped
film
less
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24299392A
Other languages
Japanese (ja)
Inventor
Hiromasa Takahashi
宏昌 高橋
Matahiro Komuro
又洋 小室
Katsuya Mitsuoka
勝也 光岡
Hiroyuki Hoshiya
裕之 星屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24299392A priority Critical patent/JPH0696947A/en
Publication of JPH0696947A publication Critical patent/JPH0696947A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • H01F10/147Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel with lattice under strain, e.g. expanded by interstitial nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

(57)【要約】 【構成】大面積,膜厚のFe162 を作製するために、
蒸着装置中で可撓性基板を回転させながらFeを蒸着、
この上に膜厚100nm以上に鉄窒化物を蒸着し、これ
を200℃で熱処理することによりFe162 を膜中に
析出させ飽和磁束密度を増加させる。 【効果】飽和磁束密度が最大2.8T の材料を可撓性の
基板上に作製したテープ状の材料が得られる。これによ
り、Fe162 を変圧器のコア等に利用できる。
(57) [Summary] [Structure] In order to produce Fe 16 N 2 having a large area and film thickness,
Fe is vapor-deposited while rotating the flexible substrate in the vapor deposition device.
An iron nitride film having a film thickness of 100 nm or more is vapor-deposited thereon and heat-treated at 200 ° C. to precipitate Fe 16 N 2 in the film to increase the saturation magnetic flux density. [Effect] It is possible to obtain a tape-like material in which a material having a maximum saturation magnetic flux density of 2.8 T is formed on a flexible substrate. As a result, Fe 16 N 2 can be used for the core of a transformer or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高飽和磁束密度材料Fe
162 を含有する窒化鉄を薄帯形状に作製する方法、お
よび、この方法にて作製したる薄帯状窒化鉄材料に関す
る。
FIELD OF THE INVENTION The present invention relates to a high saturation magnetic flux density material Fe.
The present invention relates to a method for producing iron nitride containing 16 N 2 in a ribbon shape, and a ribbon-shaped iron nitride material produced by this method.

【0002】[0002]

【従来の技術】窒化鉄Fe162は、N2あるいはN2
NH3雰囲気中の高真空蒸着装置中で蒸着することで単
相かつ単結晶の状態で作製され、飽和磁束密度が2.8
T〜3.0Tと、既存の物質中で最大の飽和磁束密度を
もつことが知られている。しかし、これはInGaAs系で格
子定数が5.653Å以上6.058Å以下の基板上に直
接成長あるいは、下地にFeを蒸着した後からFe16
2 を作製することができるものである。作製可能なFe
162 膜は膜厚が100nm程度で大きさが直径2イン
チ円盤程度であり、変圧器材料や磁石材料としての実用
には適さなかった。この原因は,Fe162 が基板や膜
成長速度,温度,雰囲気に非常に敏感で作製がかなり困
難なこと。および、一般の蒸着装置では蒸着する物質の
成長速度が一定となる領域が限られるため、蒸着中に基
板が蒸着室内の1ヶ所に固定されている構造を持つため
である。
2. Description of the Related Art Iron nitride Fe 16 N 2 is N 2 or N 2 +
It is produced in a single-phase and single-crystal state by vapor deposition in a high vacuum vapor deposition apparatus in an NH 3 atmosphere, and has a saturation magnetic flux density of 2.8.
It is known to have the maximum saturation magnetic flux density of T-3.0T among existing materials. However, this direct growth or lattice constant to 6.058Å or less on the substrate over 5.653Å in InGaAs-based, Fe 16 N from after depositing the Fe in the base
2 can be produced. Manufacturable Fe
The 16 N 2 film had a film thickness of about 100 nm and a size of about 2 inches in diameter, and was not suitable for practical use as a transformer material or a magnet material. The reason for this is that Fe 16 N 2 is very sensitive to the substrate, film growth rate, temperature, and atmosphere, and is extremely difficult to manufacture. Also, in a general vapor deposition apparatus, since the region where the growth rate of the substance to be vapor deposited is constant is limited, the substrate is fixed at one position in the vapor deposition chamber during vapor deposition.

【0003】この鉄窒化物については特開昭59−65911
号公報において、窒素含有雰囲気中でスパッタすること
により作製した10%以上のFe162 を含有する窒化
鉄についてのものがある。
This iron nitride is disclosed in JP-A-59-65911.
Japanese Patent Laid-Open Publication No. 2003-242242 discloses an iron nitride containing 10% or more of Fe 16 N 2 produced by sputtering in a nitrogen-containing atmosphere.

【0004】[0004]

【発明が解決しようとする課題】本発明の最大の特徴は
基板に可撓性の材料を用いている点および作製される鉄
窒化物の厚さが100nm以上になるため障害にならな
い。本発明は、基板の種類、及び蒸着室中で基板を固定
する方法を選択することで、従来にない高い飽和磁束密
度をもつテープ状のFe162 薄膜の作製を可能にする
方法、および、これを用いて磁極の飽和磁場を増大した
電磁石や、渦電流損失を低減させた変圧器、その他の実
用上有効と思われる応用例を提供しようとするものであ
る。
The greatest feature of the present invention is that it uses a flexible material for the substrate and the thickness of the iron nitride produced is 100 nm or more, which is not an obstacle. The present invention enables a tape-like Fe 16 N 2 thin film having an unprecedented high saturation magnetic flux density to be produced by selecting the type of substrate and a method of fixing the substrate in a vapor deposition chamber, and The present invention aims to provide an electromagnet having an increased saturation magnetic field of a magnetic pole, a transformer having a reduced eddy current loss, and other practically effective application examples.

【0005】[0005]

【課題を解決するための手段】本発明は上述の目的を達
成するため、図1に示すように、基板として可撓性のセ
ラミックまたは高分子の材料を用い、蒸着装置内でドラ
ムの表面にこの基板を固定した状態でこのドラムを回転
させFeの蒸着を行う。その後、N2 またはN2 +NH
3 雰囲気中でFe162をFe上に成長させることでテ
ープ状のFe162 試料の作製を可能にする作製方法を
考案する。
In order to achieve the above-mentioned object, the present invention uses a flexible ceramic or polymer material as a substrate as shown in FIG. With this substrate fixed, this drum is rotated to deposit Fe. After that, N 2 or N 2 + NH
We devise a production method that enables the production of tape-like Fe 16 N 2 samples by growing Fe 16 N 2 on Fe in 3 atmospheres.

【0006】Fe162 は、Feと比較して電気抵抗率
が室温で約3倍大きくなっている。また、ヒステリシス
損失はFeとほとんど同程度で、低周波の交流電流に対
して渦電流損失の小さいコア材料として有効であると考
えられる。
The electric resistivity of Fe 16 N 2 is about three times higher than that of Fe at room temperature. Further, the hysteresis loss is almost the same as that of Fe, and it is considered that it is effective as a core material having a small eddy current loss for low-frequency alternating current.

【0007】また、この作製方法を用いて作製したテー
プ状のFe162 を適当な大きさに切断し、重ね合わせ
て接合することにより、変圧器のコア状の形状に加工で
きる。
Further, the tape-like Fe 16 N 2 produced by this production method is cut into an appropriate size, and the sheets are superposed and joined to each other, whereby the shape of the core of the transformer can be obtained.

【0008】[0008]

【作用】高飽和磁束密度Fe162 を利用することで、
これまでの材料と比較してより大きな磁場まで飽和しに
くいコア材として使用できる。
[Operation] By using a high saturation magnetic flux density Fe 16 N 2 ,
It can be used as a core material that is less likely to saturate up to a larger magnetic field than conventional materials.

【0009】[0009]

【実施例】以下、本発明の一実施例について説明する。
まず、基板としてYSZあるいはポリイミド等のセラミ
ック、高分子からなる可撓性基板を用いる。これを図2
に示す基板ホルダの図中21にしめすドラム型部分に巻
きつけて固定する。この基板ホルダを25の部分に棒を
ねじ止めし図3に示す真空槽中に外部から蒸着槽中に導
入する。このドラム22は蒸着槽中で歯車26を介して
回転させることができる。基板はロール状,テープ状あ
るいは板状で基板ホルダに固定できる形状である。蒸着
装置は図3に示す構成からなり、蒸着槽中は到達真空度
10-6Pa以下である。電子ビームは図中32,33の
2基あり、32は蒸着源として、33はガスの熱解離と
して使用する。蒸着源は99.999% のFeである。
EXAMPLES An example of the present invention will be described below.
First, as the substrate, a flexible substrate made of YSZ or a ceramic such as polyimide or a polymer is used. Figure 2
The substrate holder 21 shown in FIG. A rod is screwed to the portion of this substrate holder at 25, and the substrate holder is introduced into the vacuum chamber shown in FIG. The drum 22 can be rotated in the vapor deposition tank via a gear 26. The substrate is roll-shaped, tape-shaped, or plate-shaped and can be fixed to the substrate holder. The vapor deposition apparatus has the configuration shown in FIG. 3, and the ultimate vacuum in the vapor deposition tank is 10 −6 Pa or less. There are two electron beams 32 and 33 in the figure, 32 is used as a vapor deposition source, and 33 is used for thermal dissociation of gas. The evaporation source is 99.999% Fe.

【0010】先ず基板ホルダを回転させ、基板温度30
0℃、蒸着速度0.01nm/secでFeを10〜50n
m蒸着する。膜厚は、図3の37にある水晶発振型膜厚
計を用いて成膜中に調べる。膜中のN量は、成膜後にX
線光電子分光法により測定する。これによると、N量に
対する飽和磁束密度は、図4に示すようになる。これに
より、2.5T よりも高い飽和磁束密度の試料は、N量
が7%以上11%以下である必要がある。ここで、ガス
圧に対するN量は図5に示すようになる。これから、N
量になるために、Fe蒸着後、蒸着槽中にN2 またはN
2+NH3ガスを10-3Pa以上10-1Pa以下の範囲で
導入する。この時、特に1.4×10-2Pa付近でFe
中のN濃度は11at%となる。基板温度は図6より、
250℃が適当である。蒸着中は、熱解離用の電子ビー
ムに流す電流を調整することで雰囲気ガスを解離する。
解離状態は、図3の35に示す四重極質量計によって測
定する。Fe膜上にFe162を0.01nm/sec 以上
の蒸着速度で膜厚100〜1000nm程度まで成長さ
せる。このようにして作製したテープ状の試料を10-2
Pa以下の真空槽中で200℃、8時間以上の熱処理を
施す。図7に示すように、アニール時間によって飽和磁
束密度は変化する。さらに、図8のX線回折より熱処理
温度は150℃以上300℃以下の温度領域でFe16
2 の生成が見られる。このようにして作製したFe−N
膜は、触針式膜厚計による膜厚測定によると膜厚が10
0nm以上であり、試料振動型磁力計(VSM)による
磁気測定は図9に示す磁化曲線を持ち、飽和磁束密度は
2.2T以上2.8T以下である。このこととX線回折に
よる結果から、熱処理によって試料中にFe162 が生
成することが分かる。更に、この膜について電気抵抗を
測定すると、図10に示すように1.5×10-5Ωcm以
上4.0×10-5Ωcm以下の電気抵抗率を示し、渦電流
損失の低減に有効である。
First, the substrate holder is rotated to bring the substrate temperature to 30
Fe at 10 to 50 n at 0 ° C. and vapor deposition rate of 0.01 nm / sec
m vapor deposition. The film thickness is examined during film formation using a crystal oscillation type film thickness meter 37 shown in FIG. The amount of N in the film is X after the film is formed.
It is measured by line photoelectron spectroscopy. According to this, the saturation magnetic flux density with respect to the amount of N becomes as shown in FIG. Therefore, the sample having a saturation magnetic flux density higher than 2.5T needs to have an N content of 7% or more and 11% or less. Here, the amount of N with respect to the gas pressure is as shown in FIG. From now on, N
In order to reach the amount, after Fe deposition, N 2 or N
2 + NH 3 gas is introduced in the range of 10 -3 Pa or more and 10 -1 Pa or less. At this time, especially in the vicinity of 1.4 × 10 -2 Pa, Fe
The N concentration in the inside becomes 11 at%. The substrate temperature is
250 ° C is suitable. During vapor deposition, the atmospheric gas is dissociated by adjusting the electric current applied to the electron beam for thermal dissociation.
The dissociated state is measured by a quadrupole mass spectrometer shown at 35 in FIG. Fe 16 N 2 is grown on the Fe film at a deposition rate of 0.01 nm / sec or more to a film thickness of about 100 to 1000 nm. The tape-shaped sample prepared in this manner was used for 10 -2
Heat treatment is performed at 200 ° C. for 8 hours or more in a vacuum chamber of Pa or less. As shown in FIG. 7, the saturation magnetic flux density changes depending on the annealing time. Furthermore, the temperature range X-ray heat treatment temperature than the diffraction following 300 ° C. 0.99 ° C. or higher in FIG. 8 Fe 16 N
Generation of 2 can be seen. Fe-N produced in this way
The film has a thickness of 10 when measured by a stylus type film thickness meter.
It is 0 nm or more, the magnetic measurement by the sample vibrating magnetometer (VSM) has the magnetization curve shown in FIG. 9, and the saturation magnetic flux density is 2.2T or more and 2.8T or less. From this fact and the result of X-ray diffraction, it is understood that Fe 16 N 2 is generated in the sample by the heat treatment. Furthermore, when the electric resistance of this film was measured, as shown in FIG. 10, it showed an electric resistivity of not less than 1.5 × 10 −5 Ωcm and not more than 4.0 × 10 −5 Ωcm, which is effective in reducing eddy current loss. is there.

【0011】このようにして作製した試料はテープ状の
形をなす。これを適当な形に切断し、数十から数百枚重
ねて樹脂等で接着することにより板状の材料にする。こ
の材料は、図11に示すような変圧器の111の部分や
図12に示す電磁石の121の部分のようなコア材とし
て用いることができる。
The sample thus produced has a tape-like shape. This is cut into an appropriate shape, and several tens to several hundreds are stacked and bonded with a resin or the like to form a plate-shaped material. This material can be used as a core material such as the 111 part of the transformer as shown in FIG. 11 and the 121 part of the electromagnet as shown in FIG.

【0012】[0012]

【発明の効果】本発明によれば高い飽和磁束密度と良好
な渦電流低減化の特性を持つ鉄窒素化合物薄帯を得るこ
とができる。
According to the present invention, an iron-nitrogen compound ribbon having a high saturation magnetic flux density and a good eddy current reduction characteristic can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にて作製された薄帯状窒化鉄材料の説明
図。
FIG. 1 is an explanatory view of a ribbon-shaped iron nitride material produced by the present invention.

【図2】本発明に用いる基板ホルダの斜視図。FIG. 2 is a perspective view of a substrate holder used in the present invention.

【図3】本発明に用いる蒸着装置の説明図。FIG. 3 is an explanatory diagram of a vapor deposition device used in the present invention.

【図4】鉄窒化物の飽和磁束密度の窒素含有率依存性の
特性図。
FIG. 4 is a characteristic diagram of nitrogen content dependency of saturation magnetic flux density of iron nitride.

【図5】鉄窒化物の窒素含有率の蒸着時ガス圧依存性の
特性図。
FIG. 5 is a characteristic diagram of the gas pressure dependency during deposition of the nitrogen content of iron nitride.

【図6】鉄窒化物の飽和磁束密度の基板温度依存性の特
性図。
FIG. 6 is a characteristic diagram of substrate temperature dependence of saturation magnetic flux density of iron nitride.

【図7】鉄窒化物の飽和磁束密度の焼鈍時間依存性の特
性図。
FIG. 7 is a characteristic diagram of annealing time dependency of saturation magnetic flux density of iron nitride.

【図8】鉄窒化物のX線回折の焼鈍温度変化の説明図。FIG. 8 is an explanatory view of a change in annealing temperature of X-ray diffraction of iron nitride.

【図9】鉄窒化物の磁化特性図。FIG. 9 is a magnetization characteristic diagram of iron nitride.

【図10】鉄窒化物の抵抗のN濃度依存性の説明図。FIG. 10 is an explanatory diagram of N concentration dependence of resistance of iron nitride.

【図11】テープ状鉄窒化膜を用いた変圧器の断面図。FIG. 11 is a sectional view of a transformer using a tape-shaped iron nitride film.

【図12】テープ状鉄窒化膜を用いた電磁石の断面図。FIG. 12 is a sectional view of an electromagnet using a tape-shaped iron nitride film.

【符号の説明】[Explanation of symbols]

11…シート状の窒化鉄材料、12,13,14…この
試料の断面図、12…Fe95-885-12膜 、13…Fe
膜、14…可撓性基板。
11 ... Sheet-shaped iron nitride material, 12, 13, 14 ... Cross-sectional view of this sample, 12 ... Fe 95-88 N 5-12 film, 13 ... Fe
Membrane, 14 ... Flexible substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星屋 裕之 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Hoshiya 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Nを5.0at%以上12.0at%以下で
含有し、膜厚100nm以上の窒化鉄Fe−NをFe膜
上に成長させ、150℃以上350℃以下で熱処理して
Fe162を固相成長させる方法により作製され、飽和
磁束密度が2.2T以上2.8T 以下であることを特徴
とする薄帯状窒化鉄材料。
1. An iron nitride Fe-N containing N at 5.0 at% or more and 12.0 at% or less and having a film thickness of 100 nm or more is grown on an Fe film, and heat treated at 150 ° C. or more and 350 ° C. or less to produce Fe. A strip-shaped iron nitride material produced by a method of solid-phase growing 16 N 2 and having a saturation magnetic flux density of 2.2 T or more and 2.8 T or less.
【請求項2】請求項1において、ロール状,テープ状ま
たは平板状の可撓性基板を蒸着装置中のドラムに固定
し、前記可撓性基板上に真空中でFeを蒸着した後、N
2 またはNH3+N2雰囲気中でドラムを回転させながら
Fe−Nを成長させる薄帯状窒化鉄材料の作製方法。
2. The roll-shaped, tape-shaped or flat-shaped flexible substrate according to claim 1, which is fixed to a drum in a vapor deposition apparatus, and Fe is vapor-deposited on the flexible substrate in vacuum.
A method for producing a strip-shaped iron nitride material in which Fe-N is grown while rotating a drum in a 2 or NH 3 + N 2 atmosphere.
【請求項3】請求項1または2において、作製した材料
は室温での電気抵抗率が1.5× 10-5Ωcm以上7.0
×10-5Ωcm 未満である薄帯状窒化鉄材料。
3. The material as set forth in claim 1, which has an electric resistivity of 1.5 × 10 −5 Ωcm or more and 7.0 at room temperature.
A strip-shaped iron nitride material having a density of less than × 10 -5 Ωcm.
JP24299392A 1992-09-11 1992-09-11 Thin belt-like iron nitride material Pending JPH0696947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24299392A JPH0696947A (en) 1992-09-11 1992-09-11 Thin belt-like iron nitride material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24299392A JPH0696947A (en) 1992-09-11 1992-09-11 Thin belt-like iron nitride material

Publications (1)

Publication Number Publication Date
JPH0696947A true JPH0696947A (en) 1994-04-08

Family

ID=17097301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24299392A Pending JPH0696947A (en) 1992-09-11 1992-09-11 Thin belt-like iron nitride material

Country Status (1)

Country Link
JP (1) JPH0696947A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026007A3 (en) * 2011-08-17 2013-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2014124135A3 (en) * 2013-02-07 2015-01-15 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2016122971A1 (en) * 2015-01-26 2016-08-04 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
CN116888291A (en) * 2021-03-15 2023-10-13 株式会社日立制作所 Soft magnetic iron alloy plate and manufacturing method thereof
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827986B (en) * 2011-08-17 2017-02-15 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN103827986A (en) * 2011-08-17 2014-05-28 明尼苏达大学董事会 Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2014529682A (en) * 2011-08-17 2014-11-13 リージェンツオブ ザ ユニバーシティ オブ ミネソタ Formation technology of iron nitride permanent magnet and iron nitride permanent magnet
WO2013026007A3 (en) * 2011-08-17 2013-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
AU2012296365B2 (en) * 2011-08-17 2016-09-15 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN105074836A (en) * 2013-02-07 2015-11-18 明尼苏达大学董事会 Iron nitride permanent magnets and techniques for forming iron nitride permanent magnets
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN105074836B (en) * 2013-02-07 2018-01-05 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
WO2014124135A3 (en) * 2013-02-07 2015-01-15 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US12338536B2 (en) 2014-06-30 2025-06-24 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US11217370B2 (en) 2015-01-26 2022-01-04 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
US11581113B2 (en) 2015-01-26 2023-02-14 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
WO2016122971A1 (en) * 2015-01-26 2016-08-04 Regents Of The University Of Minnesota Preservation of strain in iron nitride magnet
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
CN116888291A (en) * 2021-03-15 2023-10-13 株式会社日立制作所 Soft magnetic iron alloy plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Shima et al. Low-temperature fabrication of L 1 0 ordered FePt alloy by alternate monatomic layer deposition
JPH0696947A (en) Thin belt-like iron nitride material
JPH07193298A (en) Equipment using magnetic reluctance material and its manufacture
Fujii et al. Surface and interface properties of epitaxial Fe3O4 films studied by Mössbauer spectroscopy
JP2000091665A (en) Magnetoresistive film and method of manufacturing the same
Richomme et al. Modulated structure and magnetic properties of UHV deposited Fe/Tb multilayers
Rüdiger et al. Growth and topography study of MnBi films
Liu et al. The magnetic properties of cobalt films produced by glancing angle deposition
Koyanagi et al. Magnetic and electrical properties of GdCu 2
JPH0982524A (en) Exchange coupling film and magnetoresistance effect element
Kockar et al. Influence of deposition parameters of Novel Vacuum Coating Plant on evaporated Ni60Fe40 and Ni80Fe20 films
EP0438687A1 (en) Iron/iron nitride multilayer films
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
Bis et al. Alloy Films of PbTe x Se1− x
Malmhall et al. Hall resistivity of a two-phase magnetic material-crystallised Metglas 2826
Takebayashi et al. Effect of oxygen on orientation of polycrystalline Fe films prepared by ECR‐magnetron sputtering
Dionne et al. Magnetic and stress characterization of nickel ferrite ceramic films grown by jet vapor deposition
JPS61199614A (en) Soft magnetic amorphous thin film
Sellers et al. Magnetic properties of compositionally modulated Fe/Cr thin films
Wang et al. Green's-Function Theory of an Induced-Moment System Containing Impurities. II. Vacancy Impurities
JPH0558251B2 (en)
Arrott et al. Increased Magnetic Moments in Transition Elements Through Epitaxy
JPS59198707A (en) Perpendicularly magnetic recording material and manufacture thereof
Asakawa et al. Electrical Properties of C60 and Its Partially Decomposed Thin Films Fabricated by Vacuum Evaporation and Ion Plating Methods
Furusawa et al. Magnetoresistance and magnetization of EuTe/Ni composite thin film