JPH0696218B2 - Feed variable speed machining method for curved surface cutting of molds etc. - Google Patents
Feed variable speed machining method for curved surface cutting of molds etc.Info
- Publication number
- JPH0696218B2 JPH0696218B2 JP20712088A JP20712088A JPH0696218B2 JP H0696218 B2 JPH0696218 B2 JP H0696218B2 JP 20712088 A JP20712088 A JP 20712088A JP 20712088 A JP20712088 A JP 20712088A JP H0696218 B2 JPH0696218 B2 JP H0696218B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- curved surface
- tool
- feed rate
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、マシニングセンター、NCフライス盤等におい
て、複雑な凹凸曲面を有する金型等を切削加工する場合
の曲面加工方法に関する。Description: TECHNICAL FIELD The present invention relates to a curved surface processing method for cutting a mold or the like having a complicated uneven curved surface in a machining center, an NC milling machine or the like.
従来の金型等における切削曲面加工は、第6図に示す通
りで、アップ、ダウンを繰り返す凹凸の起伏面に対し、
例えばボールエンドミルを回転させながら垂直に押し当
て、それを一定速度に限定された状態でしか進ませるこ
とができない。As shown in FIG. 6, the cutting curved surface processing in the conventional mold etc. is as follows.
For example, it is possible to push the ball end mill vertically while rotating it and to advance it only at a constant speed.
しかし、この一定の送り速度では、複雑な形状の金型等
に対し充分に対応することができず、傾斜の部分、特に
下り傾斜の部分では、少しでも速度が過剰となると、エ
ンドミルの先端を欠損して仕舞うことになる。However, with this constant feed rate, it is not possible to sufficiently cope with molds of complicated shape, etc., and if the speed becomes excessive in the inclined part, especially the downward inclined part, the tip of the end mill will be It will be lost and closed.
そこで、現在は、この先端欠損を避ける為、エンドミル
の送り速度を欠損回避のできる最低の速度に合わせてい
るのが実情で、即ち、最も効率の悪い状態となってお
り、工程合理化を阻害する最大の原因の一つとなってい
る。Therefore, at present, in order to avoid this tip loss, it is the actual situation that the feed speed of the end mill is adjusted to the lowest speed that can avoid the loss, that is, the most inefficient state, which hinders the rationalization of the process. It is one of the biggest causes.
又、この低速な切削は、本来上り傾斜面では工具の周速
を速めた方が摩耗が少なくて済むのに、この上り斜面で
却て低速が摩耗を大きくして、工具寿命を縮めてしまう
という欠点を有している。In addition, this low-speed cutting originally requires less wear on the upslope surface when the peripheral speed of the tool is increased, but on the upslope surface, the low speed rather increases wear and shortens the tool life. It has the drawback of
(本発明の解決しようとする課題) そこで本発明は、凹凸の起伏の複雑な曲面を有する金型
等の切削加工において、これから加工する傾斜面に対応
した送り速度を事前に演算して、その曲面に最適な送り
速度に可変速できる加工法を開発しようとするものであ
り、加工能率の向上と工具寿命の延長を図ろうとするも
のである。(Problems to be solved by the present invention) Therefore, in the present invention, in cutting of a mold or the like having a complicated curved surface of uneven undulations, a feed rate corresponding to an inclined surface to be processed is calculated in advance, and It aims to develop a machining method that allows variable feed speeds to be optimal for curved surfaces, and aims to improve machining efficiency and extend tool life.
(課題を解決するための手段) 本発明金型等における曲面切削加工方法は、切削工具の
送り速度を数値制御し得る機構を備えたマシニングセン
ター、NCフライス盤等を対象とし、その切削刃物の曲面
に対する送り速度を、 F:送り速度 K:係数 V:ボールエンドミルの平均周速 a:ボールエンドミルの半径 b:切込み深さの上部Y座標 c:切込み深さの下部Y座標 の式で演算し(第2図参照)、 その式に予め計算した数値をインプットして、被加工物
の曲面に対し最適な送り速度で切削加工することを特徴
として構成される。(Means for Solving the Problems) The curved surface cutting method in the mold of the present invention is intended for a machining center equipped with a mechanism capable of numerically controlling the feed speed of a cutting tool, an NC milling machine, etc. Feed rate, F: Feed rate K: Coefficient V: Average peripheral speed of ball end mill a: Radius of ball end mill b: Upper Y coordinate of depth of cut c: Lower Y coordinate of depth of cut Calculate with the formula (see Fig. 2) By inputting a pre-calculated numerical value into the equation, it is configured to perform cutting at the optimum feed rate for the curved surface of the workpiece.
そして、当該切削工具をハイス工具とした場合には、そ
の送り速度式 F=K・Vにおいて、 その係数Kの値を、 上り傾斜角度の場合:k=18±4 下り傾斜角度の場合:k=21±4 とすることが望ましい。When the cutting tool is a high speed tool, the value of the coefficient K in the feed rate formula F = K · V is calculated as follows: up slope angle: k = 18 ± 4 down slope angle: k = 21 ± 4 is desirable.
又、切削工具を超硬工具とした場合には、その送り速度
式 F=K・V において、 その係数Kの値を、 上り傾斜角度の場合:k=26±4 下り傾斜角度の場合:k=30±4 とすることが望ましい。If the cutting tool is a cemented carbide tool, the coefficient K in the feed rate formula F = K · V is calculated as follows: k = 26 ± 4 for up-tilt angle: k for down-tilt angle = 30 ± 4 is preferable.
(作用) 金型等を切削加工する場合、マシニングセンターの数値
制御機構には、切削工具の送り速度が、 の式に基づいて、予め可変速の速度がインプットされる
為、その曲面に対応して最適値に可変速できるように働
く(第1図参照)。(Operation) When cutting a die etc., the numerical control mechanism of the machining center is Since a variable speed is input in advance based on the equation (3), it works so that the variable speed can be adjusted to an optimum value corresponding to the curved surface (see FIG. 1).
その時、当該切削工具をハイス工具とした場合に、その
送り速度式 F=K・V において、その係数Kの値
を、上り傾斜角度の場合:k=18±4、下り傾斜角度の場
合:k=21±4とすれば、工具の材質に適合した、摩耗の
少ない送り速度とするように働く。At that time, when the cutting tool is a high speed tool, in the feed rate formula F = K · V, the value of the coefficient K is set to k = 18 ± 4 for up-tilt angle and k for down-tilt angle. = 21 ± 4, it works to make the feed rate suitable for the material of the tool and less worn.
又、切削工具を超硬工具とした場合には、その係数Kの
値を、上り傾斜角度の場合:k=26±4、下り傾斜角度の
場合:k=30±4とすれば、超硬工具欠損を回避するよう
に作用する。If the cutting tool is a cemented carbide tool, the coefficient K is set to a value of k = 26 ± 4 for an up-tilt angle and k = 30 ± 4 for a down-tilt angle. It acts to avoid tool loss.
(実施例) 以下、自動車の金型をマシニングセンターを用いて加工
する場合を、第3図の数値制御用のフローチャートに従
って説明すると、金型の凹凸面の起伏形状を座標軸x,y,
z軸に写して図形データとして入力し、次いで、加工精
度をきめる為のトレランス、スカルプチャハイトを決定
する。そして、凹凸面の起伏に合わせて傾斜角度(θ)
を演算し、ボールエンドミルの平均周束(V)を演算す
る。この平均周速(V)は平均切削半径を、 の式で計算し、これに2πN/1000を掛けて演算する。次
に、傾斜角度(θ)が、正か負かで、係数Kの値を決定
し、ハイス工具の場合、上り傾斜の場合にはK=18.6と
し、下り傾斜の場合K=21.6とする。そして、送り速度
式 F=K・V に従って上り又は下り加工の送り速度
を演算する。次いで、データを適度な長さに省略する
為、傾斜角度の値に従ってそれをブロックに分け(例え
ば5度間隔に分け)、そのブロック毎の送り速度を決定
する。そして、連続した数値制御データを作成して、ダ
イレクトNC又はNCテープに出力させて、マシニングセン
ターを作動させて切削加工を行なう。(Example) Hereinafter, the case of machining a mold of an automobile using a machining center will be described with reference to the flowchart for numerical control of FIG. 3, in which the uneven shape of the uneven surface of the mold is represented by coordinate axes x, y, and
Copy it on the z-axis and input it as figure data, then determine the tolerance and sculpture height to determine the processing accuracy. And the inclination angle (θ) according to the undulations of the uneven surface
Is calculated, and the average peripheral flux (V) of the ball end mill is calculated. This average peripheral speed (V) is the average cutting radius, Calculate with the formula of and multiply by 2πN / 1000 to calculate. Next, the value of the coefficient K is determined depending on whether the inclination angle (θ) is positive or negative. In the case of a high speed tool, K = 18.6 in the case of an upward inclination and K = 21.6 in the case of a downward inclination. Then, the feed rate for the up or down machining is calculated according to the feed rate formula F = K · V. Next, in order to omit the data to an appropriate length, it is divided into blocks (for example, divided into 5 degrees) according to the value of the tilt angle, and the feed rate for each block is determined. Then, continuous numerical control data is created, output to direct NC or NC tape, and the machining center is operated to perform cutting.
この切削加工を行なった結果を、切削回数と工具摩耗幅
との関係で実験したところ、ハイス工具で45度の上り傾
斜の場合を示す第4図(A)では、F=400が摩耗の最
も少ない最適値で、それ以下では摩耗が頗る大きく又そ
れ以上でも若干増大する。又、45度の下り傾斜の場合を
示す第4図(B)では、F=250が摩擦の最も少ない最
適値で、それ以上では摩耗が大きく又それ以下でも僅か
増大する。When the results of this cutting process were tested on the relationship between the number of times of cutting and the tool wear width, in Fig. 4 (A) showing the case of a 45-degree upslope with a high speed tool, F = 400 is the most wear. With a small optimum value, the wear is very large below that and slightly above that. Further, in FIG. 4 (B) showing the case of the downward inclination of 45 degrees, F = 250 is the optimum value with the least friction, and if it is more than that, the wear is large, and if it is less than that, it slightly increases.
一方、超硬工具で45度の上り傾斜の場合を示す第5図
(A)では、F=900が摩耗の最も少ない最適値で、そ
れ以下では摩耗が大きくなる。又、30度の下り傾斜の場
合を示す第5図(B)では、F=350が摩耗の最も少な
い最適値で、それ以上でも以下でも摩耗は大きくなる。On the other hand, in FIG. 5 (A) showing the case where the cemented carbide tool has an upward inclination of 45 degrees, F = 900 is the optimum value with the least wear, and below that, the wear is large. Further, in FIG. 5 (B) showing the case of the downward inclination of 30 degrees, F = 350 is the optimum value with the least wear, and the wear becomes greater above and below.
いずれの場合も傾斜角度及び工具の材質に従って最適な
送り速度が依存することを示し、これを外れると摩耗や
欠損が生じ易いことが判明した。In any case, it was shown that the optimum feed rate depends on the tilt angle and the material of the tool, and it was found that if it deviates from this, wear and fracture are likely to occur.
(発明の効果) 本発明は以上のようで、マシニングセンター等の切削工
具の送り速度が、 の式に基づいて演算し、可変速とすることができるの
で、欠損の生じやすい下り切削では送り速度を低速と
し、逆に上り切削では比較的高速とし、金型等の被加工
物の傾斜角度に対応でき、作業時間を頗る短縮すること
ができる。従って、納期の短縮化が叫ばれる今日の工程
合理化の要請に応えることができる。(Effects of the Invention) The present invention is as described above, and the feed rate of a cutting tool such as a machining center is Since it can be calculated based on the formula, and the variable speed can be used, the feed speed is set low for downward cutting, where chipping is likely to occur, and conversely set relatively high for upward cutting. It is possible to reduce the work time. Therefore, it is possible to meet today's request for streamlining of the process, which is demanded to shorten the delivery time.
又、その際、下り傾斜では低速に上り傾斜では高速とす
ることで、下りにおける欠損及び上りにおける摩耗の問
題を解決し、工具の寿命を約5倍程度に延長させること
ができる。Further, at that time, by making the downward inclination low and the upward inclination high, it is possible to solve the problems of chipping in the downward and wear on the upward, and to extend the life of the tool by about 5 times.
皿に、係数Kの値を工具の材質に合わせて設定したので
工具の特性を生かすことができ、特に超硬工具にあって
は、従来その欠損が起こり易い性質から曲面加工には使
用不可能とされていたものを、本発明方法によってこれ
を使用可能とすることができるから、高速切削に強い超
硬工具の特性をマシニングセンター、NCフライス盤等に
よる曲面加工にも生かすことができる。Since the value of coefficient K is set on the plate according to the material of the tool, the characteristics of the tool can be utilized. Especially, in the case of a cemented carbide tool, it is not possible to use it for curved surface machining due to the fact that it is liable to chip. Since what has been described above can be used by the method of the present invention, the characteristics of a cemented carbide tool that is resistant to high-speed cutting can be utilized for curved surface processing by a machining center, NC milling machine, or the like.
図面は本発明実施例を示すもので、第1図は金型に沿っ
てボールエンドミルを最適送り速度で送る本発明の方法
を示す模式図、第2図はボールエンドミルと金型傾斜面
との関係を座標軸に位置付けした正面図、第3図はフロ
ーチャート図、第4図(A)−(B)はハイス工具を用
いて切削加工した場合の切削長さとフランク摩耗の関係
を示すグラフ図、第5図は(A)−(B)は超硬工具を
用いて切削加工した場合の切削長さとフランク摩耗の関
係を示すグラフ図、第6図は従来の金型切削加工を示す
模式図。The drawings show an embodiment of the present invention. FIG. 1 is a schematic view showing a method of the present invention in which a ball end mill is fed along a mold at an optimum feed speed, and FIG. 2 shows a ball end mill and a mold inclined surface. The front view in which the relationship is positioned on the coordinate axes, FIG. 3 is a flowchart, FIG. 4 (A)-(B) is a graph showing the relationship between cutting length and flank wear when cutting is performed using a HSS tool, 5A and 5B are graphs showing the relationship between cutting length and flank wear when cutting is performed using a cemented carbide tool, and FIG. 6 is a schematic diagram showing conventional die cutting.
Claims (3)
を有するマシニングセンター等の工作機械において、 その切削刃物の曲面に対する送り速度を、 F:送り速度 K:係数 V:ボールエンドミルの平均周速 a:ボールエンドミルの半径 b:切込み深さの上部Y座標 c:切込み深さの下部Y座標 の式で演算し、 その式に予め計算した数値を入力して、曲面に対し最適
値で切削加工することを特徴とする金型等の曲面切削に
おける送り可変加工方法。1. In a machine tool such as a machining center having a mechanism capable of numerically controlling the feed rate of a cutting tool, the feed rate of a cutting blade to a curved surface is F: Feed rate K: Coefficient V: Average peripheral speed of ball end mill a: Radius of ball end mill b: Upper Y coordinate of depth of cut c: Lower Y coordinate of depth of cut Calculate with the formula A variable feed method for curved surface cutting of dies, etc., which is characterized by inputting the numerical value and performing cutting processing on the curved surface at the optimum value.
型等の曲面切削における送り可変加工方法。2. When the cutting tool is a high speed tool, the coefficient K in the feed rate formula F = K · V is set to k = 18 ± 4 when the ascending inclination angle is k. = 21 ± 4. The variable feed machining method for curved surface cutting of a mold or the like according to claim 1.
型等の曲面切削における送り可変加工方法。3. When the cutting tool is a cemented carbide tool, in the feed rate formula F = K · V, the value of the coefficient K is as follows: in the case of an upward inclination angle: k = 26 ± 4 in the case of a downward inclination angle: The variable feed machining method in curved surface cutting of a mold or the like according to claim 1, wherein k = 30 ± 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20712088A JPH0696218B2 (en) | 1988-08-20 | 1988-08-20 | Feed variable speed machining method for curved surface cutting of molds etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20712088A JPH0696218B2 (en) | 1988-08-20 | 1988-08-20 | Feed variable speed machining method for curved surface cutting of molds etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0259253A JPH0259253A (en) | 1990-02-28 |
JPH0696218B2 true JPH0696218B2 (en) | 1994-11-30 |
Family
ID=16534525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20712088A Expired - Lifetime JPH0696218B2 (en) | 1988-08-20 | 1988-08-20 | Feed variable speed machining method for curved surface cutting of molds etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0696218B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0591173U (en) * | 1992-05-08 | 1993-12-10 | 三相電機株式会社 | Cooling blades for motor rotors |
JPH0842415A (en) | 1994-07-30 | 1996-02-13 | Suzuki Motor Corp | Intake device of v-engine |
US6428252B1 (en) * | 1997-04-02 | 2002-08-06 | Tino Oldani | Method for machining |
WO2005058532A1 (en) * | 2003-12-17 | 2005-06-30 | Showa Denko K.K. | Method for producing forging die, forging die and forged article |
DE602004020497D1 (en) * | 2004-08-12 | 2009-05-20 | Makino Milling Machine | METHOD FOR MACHINING A WORKPIECE |
CZ2023310A3 (en) * | 2023-08-10 | 2025-01-01 | České vysoké učenà technické v Praze | A method of control of feed speed and revolutions of a spindle for CNC machine tools |
-
1988
- 1988-08-20 JP JP20712088A patent/JPH0696218B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0259253A (en) | 1990-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4833617A (en) | Solid modeling based adaptive feedrate control for NC machining | |
US3557416A (en) | Cutting insert | |
JPH01199702A (en) | Cutting insert | |
EP0788040A1 (en) | Method of high speed cutting mold and ultra-high speed milling machine | |
CN107042329A (en) | For the milling method of chill product | |
SE434607B (en) | CUTTER SHEETS INCLUDING A BODY WITH TENDERS AND PROCEDURE FOR PREPARING THIS | |
JPH0215963A (en) | Method of grinding cam of camshaft | |
Pasko et al. | High speed machining (HSM)–the effective way of modern cutting | |
JPH0696218B2 (en) | Feed variable speed machining method for curved surface cutting of molds etc. | |
CN111037753B (en) | A milling method for rough machining of free-form surface with irregular contour by circular saw | |
Crookall | The performance-envelope concept in the economics of machining | |
JP2001071209A (en) | Ball end mill | |
CN101134255A (en) | Hard alloy precision working rack type cutter and processing technique | |
CN105215448A (en) | The special-purpose milling cutter of processing boiler part die cavity and manufacturing forming process thereof | |
JP3748099B2 (en) | Cutting method and NC data creation device for performing this cutting method | |
CN208408576U (en) | The slot knife of processable inner hole | |
JP3703859B2 (en) | Ball end mill | |
Finzer | High speed machining (HSC) of sculptured surfaces in die and mold manufacturing | |
CN211588568U (en) | Small triangular blade | |
CN112846321B (en) | Milling method for engine steel seal surface | |
CN112719378B (en) | Method for machining inclined hole of channel steel part | |
CN207326446U (en) | A kind of machining equipment easy to safeguard | |
CN110802264B (en) | An improved method for multi-axis CNC machining of deep cavity surfaces of molds | |
JP2529866Y2 (en) | Cutting tools for brittle materials | |
JPH0679581A (en) | Automatic cutting conditions setting device for nc machine tool |