JPH0695494B2 - Exposure method - Google Patents
Exposure methodInfo
- Publication number
- JPH0695494B2 JPH0695494B2 JP61105393A JP10539386A JPH0695494B2 JP H0695494 B2 JPH0695494 B2 JP H0695494B2 JP 61105393 A JP61105393 A JP 61105393A JP 10539386 A JP10539386 A JP 10539386A JP H0695494 B2 JPH0695494 B2 JP H0695494B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- photoresist layer
- film
- dye
- ultraviolet light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 18
- 229920002120 photoresistant polymer Polymers 0.000 claims description 30
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 26
- 239000010409 thin film Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 15
- 238000000206 photolithography Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- JBTHDAVBDKKSRW-UHFFFAOYSA-N chembl1552233 Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 JBTHDAVBDKKSRW-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/7045—Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- ing And Chemical Polishing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置、特に超LSIの製造工程の一つで
ある光リソグラフィー工程での露光方法に関する。The present invention relates to an exposure method in an optical lithography process which is one of the manufacturing processes of semiconductor devices, particularly VLSI.
本発明は、半導体装置の製造に際しての光リソグラフィ
ー工程での露光方法において、半導体基体上に所定の光
に感光するホトレジスト層と、レーザ光の照射で上記光
に対して透過性が生ずる膜を順次被着形成し、マスクを
介して上記膜にレーザ光を照射して照射部分に透過性を
与えて後、上記膜をマスクとして上記所定の光を全面照
射してホトレジスト層を露光することによって、耐プラ
ズマ性に優れ且つ微細パターンのレジスト層を形成し得
るようにしたものである。The present invention relates to an exposure method in a photolithography step in the manufacture of a semiconductor device, in which a photoresist layer which is exposed to a predetermined light and a film which is transparent to the light upon irradiation with laser light are sequentially formed on a semiconductor substrate. By depositing and irradiating the film with a laser beam through a mask to make the irradiated part transparent, by exposing the photoresist layer to the entire surface by irradiating the predetermined light with the film as a mask, The resist layer is excellent in plasma resistance and can form a fine pattern resist layer.
超LSI製造工程中の光リソグラフィー工程では、より高
精度の微細なレジストパターンの形成が要求される。In the photolithography process in the VLSI manufacturing process, it is required to form a finer resist pattern with higher accuracy.
近年、その高解像力性、高スループット性から注目され
ているエキシマレーザ(遠紫外光)を光源とする光リソ
グラフィー工程において、ホトレジストとしてレーザの
波長(193nm,249nm,308nm)に感光域を有する遠紫外光
用ホトレジスト層を単層で用いるものがほとんどであ
る。In the photolithography process using an excimer laser (far-ultraviolet light) as a light source, which has been attracting attention in recent years due to its high resolution and high throughput, the far-ultraviolet light having a photosensitive region at the laser wavelength (193 nm, 249 nm, 308 nm) is used as a photoresist. In most cases, the photoresist layer for light is used as a single layer.
しかし、一般に遠紫外光用ホトレジストは、プラズマエ
ッチングでの耐プラズマ性に弱く、現在のエッチング工
程の主流である反応性イオンエッチング時の損傷が著し
いため、使用しにくい材料であった。これに対し、フェ
ノールノボラック樹脂を主成分とする紫外光用ホトレジ
ストは十分な耐プラズマ性を有する。しかし、一般の紫
外光用ホトレジストはレーザの波長に対し低感度で解像
力も遠紫外光用ホトレジストに比較して劣るという欠点
があった。However, the photoresist for deep ultraviolet light is generally weak in plasma resistance in plasma etching, and is significantly damaged during reactive ion etching, which is the mainstream of the current etching process, and is therefore a material that is difficult to use. On the other hand, an ultraviolet light photoresist containing a phenol novolac resin as a main component has sufficient plasma resistance. However, a general ultraviolet photoresist has a drawback that it is insensitive to a laser wavelength and its resolution is inferior to that of a deep ultraviolet photoresist.
本発明は、上述の点に鑑み、耐プラズマ性に優れるホト
レジストを用いて高精度の微細パターンに露光できる露
光方法を提供するものである。In view of the above points, the present invention provides an exposure method capable of exposing a highly precise fine pattern using a photoresist having excellent plasma resistance.
本発明は、半導体基体(1)上に所定の光(6)に感光
する高耐プラズマ性を有するホトレジスト層(2)を被
着形成し、さらにこのホトレジスト層82)上にレーザ光
(5)の照射で光(6)に対して透過性を有する像形成
用の膜(3)を被着形成する。そして、所定パターンの
マスク(4)を介して膜(3)にレーザ光(5)を照射
し、その照射部分(3a)に透過性を与えて後、膜(3)
をマスクにして光(6)を全面照射してホトレジスト層
(2)を露光するようになす。According to the present invention, a photoresist layer (2) having high plasma resistance which is exposed to a predetermined light (6) is formed on a semiconductor substrate (1), and a laser beam (5) is further formed on the photoresist layer 82. The film (3) for image formation, which is transparent to the light (6), is deposited by the irradiation of. Then, the film (3) is irradiated with a laser beam (5) through a mask (4) having a predetermined pattern, and the irradiated part (3a) is made to be transparent, and then the film (3) is irradiated.
Is used as a mask to irradiate the entire surface with light (6) to expose the photoresist layer (2).
光(6)としては例えば紫外光を用い、ホトレジスト層
(2)としてはポジ型の紫外光用ホトレジストを用いる
ことができる。また、膜(3)としては、レーザ波長と
紫外光の両者を吸収し、レーザ光照射で容易に分解して
紫外光の吸収性を失う性質をもつ染料を含有した有機薄
膜を用いることができる。For example, ultraviolet light can be used as the light (6), and a positive type ultraviolet light photoresist can be used as the photoresist layer (2). As the film (3), it is possible to use an organic thin film containing a dye that absorbs both the laser wavelength and the ultraviolet light and is easily decomposed by laser light irradiation to lose the ultraviolet light absorption. .
レーザ照射によって膜(3)の露光部分(3a)は光
(6)に対して透過性をもつようになり、一方、膜
(3)の未露光部分(3b)は光(6)に対し吸収性を保
つので、膜(3)は光(6)に対するマスク、即ち下層
のホトレジスト層(2)を露光する際の密着式マスクと
なる。By the laser irradiation, the exposed part (3a) of the film (3) becomes transparent to the light (6), while the unexposed part (3b) of the film (3) absorbs the light (6). The film (3) functions as a mask against the light (6), that is, a contact type mask when exposing the lower photoresist layer (2) because the property is maintained.
この膜(3)ではレーザ露光により高解像度のマスクパ
ターンが形成される。次いで、膜(3)を通して光
(6)の全面露光により、ホトレジスト層(2)が膜
(3)のマスクパターン通りに露光され、現像後、半導
体基体(1)上に高精度の微細パターンのレジスト層
(7)が形成される。このレジスト層(7)は耐プラズ
マ性が高いので、以後のプラズマエッチングにおいて十
分耐えることができる。A high-resolution mask pattern is formed on the film (3) by laser exposure. Next, the photoresist layer (2) is exposed to light according to the mask pattern of the film (3) by the whole surface exposure of the light (6) through the film (3), and after development, a highly precise fine pattern is formed on the semiconductor substrate (1). A resist layer (7) is formed. Since this resist layer (7) has high plasma resistance, it can sufficiently withstand the subsequent plasma etching.
以下、図面を参照して本発明による露光方法の一例を説
明する。An example of the exposure method according to the present invention will be described below with reference to the drawings.
本例においては、先ず第1図に示すように選択エッチン
グすべき半導体基体(1)の主面上に、通常の紫外光用
のポジ型ホトレジスト層即ち耐プラズマ性に優れるノボ
ラック系樹脂成分を有する例えばOFPR800(商品名:東
京応化工業社製)等のポジ系ホトレジスト層(2)を回
転塗布し、ベーキングして形成する。このホトレジスト
層(2)の膜厚は段差上での平坦化を良くするために、
1.5μm〜2.0μm程度とするのがよい。In this example, first, as shown in FIG. 1, a normal positive photoresist layer for ultraviolet light, that is, a novolac resin component excellent in plasma resistance is provided on the main surface of a semiconductor substrate (1) to be selectively etched. For example, a positive photoresist layer (2) such as OFPR800 (trade name: manufactured by Tokyo Ohka Kogyo Co., Ltd.) is spin-coated and baked to form. The thickness of the photoresist layer (2) is set in order to improve the flatness on the step,
It is preferable that the thickness is about 1.5 μm to 2.0 μm.
次に、第2図に示すように、ホトレジスト層(2)上
に、エキシマレーザなどの遠紫外光を吸収する染料Aと
紫外光を吸収する染料Bを含有する像形成用の有機薄膜
(3)(膜厚0.1μm〜0.3μm程度)を回転塗布し、ベ
ーキングして形成する。染料A及び染料Bは、遠紫外光
による照射加熱で容易に分解し、吸収性を失ない、すな
わち紫外光に対して透過性を有する材料より成るもの
で、例えば染料Aとしてはアクリジン、染料Bとしては
スーダンオレンジを使用することができる。Next, as shown in FIG. 2, an organic thin film (3) for image formation containing a dye A that absorbs far-ultraviolet light such as an excimer laser and a dye B that absorbs ultraviolet light (3) on the photoresist layer (2). ) (Film thickness of 0.1 μm to 0.3 μm) is spin-coated and baked to form. The dye A and the dye B are composed of a material which is easily decomposed by irradiation heating with far-ultraviolet light and does not lose its absorbability, that is, has transparency to ultraviolet light. For example, as the dye A, acridine and dye B are used. Can be used as Sudan orange.
次に、第3図に示すように所定パターンのマスク(4)
を介して例えばエキシマレーザ光(5)を照射する。こ
のレーザ光(5)による露光で有機薄膜(3)のレーザ
照射された部分(3a)の中の染料A及び染料Bが分解す
る。この場合、有機薄膜(3)の中にはレーザ光(5)
を吸収する染料Aが含まれているためにレーザ光(5)
を効果的に吸収し、その際発生した熱により染料A及び
染料Bが分解し、その露光部分(3a)は紫外光(6)に
対して透過性を有することとなる。一方、膜(3)の未
露光部分(3b)は染料Bが保存されているので紫外光
(6)に対して吸収性を保つ。Next, as shown in FIG. 3, a mask (4) having a predetermined pattern.
For example, excimer laser light (5) is radiated via. The exposure with the laser light (5) decomposes the dye A and the dye B in the laser-irradiated portion (3a) of the organic thin film (3). In this case, the laser light (5) is contained in the organic thin film (3).
Laser light (5) due to the inclusion of dye A that absorbs
Is effectively absorbed, and the heat generated at that time decomposes the dye A and the dye B, and the exposed portion (3a) becomes transparent to the ultraviolet light (6). On the other hand, since the dye B is stored in the unexposed portion (3b) of the film (3), it retains the absorptivity for the ultraviolet light (6).
次に、第4図に示すように有機薄膜(3)をマスクとし
て紫外光(波長365nm〜436nm)(6)により全面露光す
る。このとき、前工程での有機薄膜(3)の露光部分
(3a)は紫外光吸収用の染料Bが分解し、吸収性を失っ
ているために、下層のホトレジスト層(2)の有機薄膜
(3)の露光部分(3a)に対応した部分(2a)のみが露
光される。Next, as shown in FIG. 4, the entire surface is exposed with ultraviolet light (wavelength 365 nm to 436 nm) (6) using the organic thin film (3) as a mask. At this time, in the exposed portion (3a) of the organic thin film (3) in the previous step, the dye B for absorbing ultraviolet light is decomposed and loses its absorbability, so the organic thin film (2) of the lower photoresist layer (2) ( Only the portion (2a) corresponding to the exposed portion (3a) of 3) is exposed.
次に、第5図に示すように有機薄膜(3)を適切な溶剤
を用いて剥離する。Next, as shown in FIG. 5, the organic thin film (3) is peeled off using an appropriate solvent.
次に、第6図に示すようにホトレジスト層(2)の露光
部分(2a)を現像液によって除去し、所望パターンのエ
ッチングレジスト層(7)を形成する。なお、有機薄膜
(3)が上記現像液に可溶であれば、ホトレジスト層
(2)に対する現像処理で有機薄膜の剥離が同時に行わ
れるので第5図の工程を省略することができる。Next, as shown in FIG. 6, the exposed portion (2a) of the photoresist layer (2) is removed by a developing solution to form an etching resist layer (7) having a desired pattern. If the organic thin film (3) is soluble in the developing solution, the organic thin film is stripped at the same time in the developing process for the photoresist layer (2), and thus the step shown in FIG. 5 can be omitted.
尚、上例では有機薄膜(3)にエキシマレーザ光(5)
を吸収する染料Aと紫外光(6)を吸収する染料Bを混
合含有せしめたが、その他露光用レーザ光と紫外光の両
者を吸収し、且つレーザ光の照射加熱で容易に分解し吸
収性を失う染料を使用することもできる。In the above example, excimer laser light (5) is applied to the organic thin film (3).
A dye A which absorbs UV light and a dye B which absorbs UV light (6) are mixed and contained. However, both the laser light for exposure and the UV light are absorbed, and they are easily decomposed by heating by irradiation with laser light and absorbability. It is also possible to use a dye that loses.
斯る露光法においては、エキシマレーザ光(5)による
露光でマスク(4)を通して有機薄膜(3)の露光され
た部分(3a)が染料A及び染料Bの分解によって紫外光
(6)に対して透過性をもち、未露光部分(3b)が紫外
光(6)に対して吸収性を保つので、この有機薄膜
(3)が紫外光(6)に対するマスクとして作用する。
しかも有機薄膜(3)は下層ホトレジスト層(2)に密
着されているので、密着式マスクとなる。従って、この
有機薄膜(3)をマスクとして紫外光(6)の全面露光
によって、ホトレジスト層(2)がマスクパターン通り
に露光され、現像後、所望のレジストパターンを形成す
ることができる。In such an exposure method, the exposed portion (3a) of the organic thin film (3) is exposed to the ultraviolet light (6) through the mask (4) by the exposure with the excimer laser light (5) due to the decomposition of the dye A and the dye B. The organic thin film (3) acts as a mask for the ultraviolet light (6) because it has transparency and the unexposed portion (3b) keeps absorbing the ultraviolet light (6).
Moreover, since the organic thin film (3) is in close contact with the lower photoresist layer (2), it becomes a contact type mask. Therefore, by using the organic thin film (3) as a mask, the photoresist layer (2) is exposed according to the mask pattern by the whole surface exposure of the ultraviolet light (6), and after development, a desired resist pattern can be formed.
この露光法では像形成用の上層の有機薄膜(3)がその
薄膜性から高解像力が期待でき、また下層のホトレジス
ト層(2)は耐プラズマ性に優れるノボラック系樹脂成
分のレジストを用いるために、爾後のプラズマエッチン
グに十分に耐えることができる。従って、従来の遠紫外
光用レジスト及び紫外光用レジストの両者の特徴を兼ね
備えたレジスト工程を確立することができる。In this exposure method, the upper organic thin film (3) for image formation can be expected to have high resolution due to its thin film property, and the lower photoresist layer (2) uses a novolak resin component resist excellent in plasma resistance. It can withstand the plasma etching after that. Therefore, it is possible to establish a resist process that has the features of both the conventional deep-UV light resist and the conventional UV-light resist.
本発明の露光法によれば、従来の遠紫外光用レジスト或
いは紫外光用レジストの単層レジストを用いた場合には
両立し得なかった高解像力性及び高耐プラズマ性を有し
たせしめることができ、高精度の微細パターンのエッチ
ングレジスト層を形成することができる。従って、本発
明は特に超LSI製造工程における光リソグラフィー工程
で、高精度の微細なエッチングリジストパターンを形成
する際に適用して好適ならしめるものである。According to the exposure method of the present invention, it is possible to impart high resolution and high plasma resistance, which are not compatible when a conventional deep ultraviolet light resist or a single layer resist of ultraviolet light resist is used. It is possible to form an etching resist layer having a fine pattern with high precision. Therefore, the present invention is particularly suitable for application in forming a highly precise fine etching resist pattern in an optical lithography process in a VLSI manufacturing process.
第1図乃至第6図は本発明の露光方法の実施例を示す工
程順の断面図である。 (1)は半導体基体、(2)はホトレジスト層、(3)
は有機薄膜、(4)はマスク、(5)はレーザ光、
(6)は紫外光である。1 to 6 are cross-sectional views in order of the processes, showing an embodiment of the exposure method of the present invention. (1) is a semiconductor substrate, (2) is a photoresist layer, (3)
Is an organic thin film, (4) is a mask, (5) is laser light,
(6) is ultraviolet light.
Claims (1)
ジスト層を被着形成する工程と、 上記ホトレジスト層上に、レーザ光を照射することによ
り上記光に対して透過性を有する膜を被着形成する工程
と、 上記膜にレーザ光を照射し所定部分に透過性を与える工
程と、 上記膜をマスクにして上記所定の光を照射して上記ホト
レジスト層を露光する工程とを有することを特徴とする
露光方法。1. A step of depositing a photoresist layer which is sensitive to predetermined light on a semiconductor substrate, and a film transparent to the light by irradiating a laser beam on the photoresist layer. And a step of irradiating the film with a laser beam to impart transparency to a predetermined portion, and a step of exposing the photoresist layer by irradiating the film with the predetermined light as a mask. A characteristic exposure method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61105393A JPH0695494B2 (en) | 1986-05-08 | 1986-05-08 | Exposure method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61105393A JPH0695494B2 (en) | 1986-05-08 | 1986-05-08 | Exposure method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62261124A JPS62261124A (en) | 1987-11-13 |
JPH0695494B2 true JPH0695494B2 (en) | 1994-11-24 |
Family
ID=14406395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61105393A Expired - Fee Related JPH0695494B2 (en) | 1986-05-08 | 1986-05-08 | Exposure method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0695494B2 (en) |
-
1986
- 1986-05-08 JP JP61105393A patent/JPH0695494B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62261124A (en) | 1987-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6113746B2 (en) | ||
JPH0695494B2 (en) | Exposure method | |
US5407782A (en) | Method of forming resist pattern in a multilayer resist | |
JPS63246821A (en) | Formation of pattern | |
JPH02262319A (en) | Pattern forming method | |
JPS59141230A (en) | Formation of pattern | |
KR920003808B1 (en) | Photolithography Method for Forming Fine Patterns | |
KR100261162B1 (en) | Patterning method of semiconductor device | |
JPS5834921A (en) | Manufacture of semiconductor device | |
JPS63246822A (en) | Formation of pattern | |
JPS588131B2 (en) | Manufacturing method of semiconductor device | |
JPS62245251A (en) | Resist pattern forming method | |
JPH03283418A (en) | Resist pattern forming method | |
JP2714967B2 (en) | Method of forming resist pattern | |
JPH0263114A (en) | Manufacturing method of semiconductor device | |
JPS58101427A (en) | Manufacture of semiconductor device | |
JPH07113771B2 (en) | Method of forming resin pattern on substrate | |
JP2716296B2 (en) | Pattern formation method | |
JPH02118650A (en) | Pattern forming material | |
JPS62198855A (en) | Formation of pattern | |
JPS58153932A (en) | Photographic etching method | |
JPS6134670B2 (en) | ||
JPH06163397A (en) | Pattern formation method | |
JP2003086502A (en) | Method of patterning a photoresist layer on a semiconductor substrate | |
JPS629894B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |