[go: up one dir, main page]

JPH0694372B2 - Method for producing high-purity antimony pentoxide powder - Google Patents

Method for producing high-purity antimony pentoxide powder

Info

Publication number
JPH0694372B2
JPH0694372B2 JP1593187A JP1593187A JPH0694372B2 JP H0694372 B2 JPH0694372 B2 JP H0694372B2 JP 1593187 A JP1593187 A JP 1593187A JP 1593187 A JP1593187 A JP 1593187A JP H0694372 B2 JPH0694372 B2 JP H0694372B2
Authority
JP
Japan
Prior art keywords
sbcl
powder
solution
hydrogen peroxide
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1593187A
Other languages
Japanese (ja)
Other versions
JPS63185822A (en
Inventor
素彦 吉住
邦昭 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1593187A priority Critical patent/JPH0694372B2/en
Publication of JPS63185822A publication Critical patent/JPS63185822A/en
Publication of JPH0694372B2 publication Critical patent/JPH0694372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度のSb2O5粉末を短時間に収率良く、製造
する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing high-purity Sb 2 O 5 powder in a short time and with high yield.

酸化アンチモンはプラスチック、繊維等に難燃材として
混入される。酸化アンチモンの種類には三酸化アンチモ
ン(Sb2O3)、四酸化アンチモン(Sb2O4)、五酸化アン
チモン(Sb2O5)等があり、何れも難燃材として用いら
れるが、特にSb2O5はSb2O3に比べて微細な粉末が得られ
るので、近年その使用量が増加している。
Antimony oxide is mixed into plastics, fibers, etc. as a flame retardant material. Types of antimony oxide include antimony trioxide (Sb 2 O 3 ), antimony tetroxide (Sb 2 O 4 ), antimony pentoxide (Sb 2 O 5 ), etc., all of which are used as flame retardants, Since Sb 2 O 5 can obtain a finer powder than Sb 2 O 3 , the amount of its use has increased in recent years.

[従来技術と問題点] 各種の酸化アンチモンのうち900℃以下で最も安定なの
はSb2O4であり、空気中でSb2O3を燃焼するとSb2O4とな
り、Sb2O5を得ることができない。そこで従来、Sb2O5
製造する方法として、次の方法が知られている。
[Prior art and problems] Among various antimony oxides, Sb 2 O 4 is the most stable at 900 ° C or lower, and when Sb 2 O 3 is burned in the air, it becomes Sb 2 O 4 and obtains Sb 2 O 5. I can't. Therefore, conventionally, the following method has been known as a method for producing Sb 2 O 5 .

(a)Sb2O3をKOH及び過酸化水素と反応させてアンチモ
ン酸カリウム(KSbO3)を形成させこれをイオン交換樹
脂等で脱イオンしてコロイド状Sb2O5を得る方法(特公
昭57-11848)。
(A) Method of reacting Sb 2 O 3 with KOH and hydrogen peroxide to form potassium antimonate (KSbO 3 ) and deionizing it with an ion exchange resin to obtain colloidal Sb 2 O 5 (Japanese Patent Publication No. 57-11848).

(b)Sb2O3を90℃以上の温度で、特殊な管型反応容器
に流通させながら過酸化水素と反応させる方法(特公昭
53-20479)。
(B) A method of reacting Sb 2 O 3 with hydrogen peroxide while flowing through a special tubular reaction vessel at a temperature of 90 ° C. or higher (Japanese Patent Publication No.
53-20479).

上記(a)方法は、KSbO3のイオン交換によりSb2O5を製
造するものであり、この場合、原料のSb2O3粉末が水、
アルコールに溶け難く濃厚なKOH溶液には溶解し易い性
質を利用して、更に、KOHに過酸化水素を混合してKOHの
少ないモル数でSb2O3を溶解させ、後工程のイオン交換
の負担を軽減している。ところが該方法においても依然
としてコロイド状沈澱中にKが残留するのを避けること
が出来ず、高純度のSb2O5を得ることは極めて困難であ
る。
The above method (a) is for producing Sb 2 O 5 by ion exchange of KSbO 3 , in which case the raw material Sb 2 O 3 powder is water,
Utilizing the property that it is hard to dissolve in alcohol and is easily dissolved in a concentrated KOH solution, further, hydrogen peroxide is mixed with KOH to dissolve Sb 2 O 3 in a small number of moles of KOH, and ion exchange in the subsequent step is performed. It reduces the burden. However, even in this method, it is unavoidable that K remains in the colloidal precipitate, and it is extremely difficult to obtain high-purity Sb 2 O 5 .

上記(b)方法はKOHを用いずに直径Sb2O3を酸化するも
のであり、K残留の問題を生ぜず、かつ酸、アルカリを
用いないので装置の腐蝕を回避でき、連続的な製造を実
施できるものの、使用できる装置が限定され、しかも、
収率が低い欠点がある。
The above method (b) oxidizes the diameter Sb 2 O 3 without using KOH, does not cause the problem of K residue, and does not use acid or alkali, so that corrosion of the equipment can be avoided and continuous production is possible. Can be carried out, but the devices that can be used are limited, and
There is a drawback that the yield is low.

[問題解決に係る知見] 本発明者等は、Sb2O3を出発原料とする従来の方法とは
異なり、SbCl3を出発原料とし、これをアンモニア(NH4
OH)と反応させ、更に、過酸化水素で酸化することによ
り微細な高純度のSb2O5粉末を容易に製造しうる知見を
得た。
[Knowledge on Problem Solving] The present inventors, unlike the conventional method using Sb 2 O 3 as a starting material, use SbCl 3 as a starting material and use ammonia (NH 4
It has been found that fine high-purity Sb 2 O 5 powder can be easily produced by reacting with (OH) and oxidizing with hydrogen peroxide.

[発明の構成] 本発明によれば、三塩化アンチモン(SbCl3)とNH4OHと
を反応させた後、生成物を過酸化水素で酸化して五酸化
アンチモン(Sb2O5)を製造する方法が提供される。
According to the present invention, antimony trichloride (SbCl 3 ) is reacted with NH 4 OH, and then the product is oxidized with hydrogen peroxide to produce antimony pentoxide (Sb 2 O 5 ). Methods are provided.

また、その好適な実施態様として、室温ないし100℃の
温度下で、塩酸あるいはアルコールに溶解したSbCl3
液をNH4OHに滴下し、あるいはSbCl3溶液にNH4OHを滴下
し、反応終了後、更に、過酸化水素を滴下してコロイド
状のSb2O5沈澱を生成させ該沈澱を別、乾燥してSb2O5
粉末を製造する方法が提供される。
Further, as a preferred embodiment thereof, at room temperature to 100 ° C., SbCl 3 solution dissolved in hydrochloric acid or alcohol is added dropwise to NH 4 OH, or NH 4 OH is added dropwise to SbCl 3 solution, and after completion of the reaction. Further, hydrogen peroxide was added dropwise to form a colloidal Sb 2 O 5 precipitate, and the precipitate was separated and dried to obtain Sb 2 O 5
A method of making a powder is provided.

従来のSb2O3を原料とする製造方法において、Sb2O5粉末
を溶解する際にアルカリの残留を避けるためにKOHに代
えてNH4OHを用いることが考慮されるが、Sb2O3はNH4OH
に溶解し難く用いることが出来ない。KOHを用いずにSb2
O3を直接酸化しようとすれば特殊な反応容器を用いなけ
ればならず(上記b方法)収率も低い。
In the manufacturing method of the conventional Sb 2 O 3 as raw materials, it is contemplated that using NH 4 OH instead of KOH in order to avoid residual alkali during the dissolving Sb 2 O 5 powder, Sb 2 O 3 is NH 4 OH
It is hard to dissolve in and cannot be used. Sb 2 without KOH
If O 3 is to be directly oxidized, a special reaction vessel must be used (method b) above, and the yield is low.

本発明は原料としてSbCl3を用いる。塩化アンチモンに
はこの他に五塩化アンチモンSbCl5があるが、該SbCl5
水中で直ちに加水分解してSb2O5の粗粒子となり微細な
粉末が得られない。上記SbCl3は予め塩酸またはアルコ
ールに溶解される。該SbCl3とNH4OHとを反応させるには
SbCl3液をNH4OH液に滴下しても良く、またNH4OH液をSbC
l3液に滴下しても良い。反応温度は室温〜100℃程度で
ある。SbCl3を塩酸又はアルコールに溶解させずに過酸
化水素と直接接触させても通常使用される35%H2O2溶液
ではSbCl3の加水分解が進行せず、Sb2O5を得ることが出
来ない。
The present invention uses SbCl 3 as a raw material. In addition to this, there is antimony pentachloride SbCl 5 as antimony chloride, but this SbCl 5 is immediately hydrolyzed in water to form coarse particles of Sb 2 O 5 , and a fine powder cannot be obtained. The above SbCl 3 is previously dissolved in hydrochloric acid or alcohol. To react the SbCl 3 with NH 4 OH
SbCl 3 solution may be added dropwise to NH 4 OH solution, also SbC a NH 4 OH solution
l It may be added dropwise to the 3 liquid. The reaction temperature is room temperature to about 100 ° C. Even if SbCl 3 is not dissolved in hydrochloric acid or alcohol and brought into direct contact with hydrogen peroxide, hydrolysis of SbCl 3 does not proceed in the commonly used 35% H 2 O 2 solution, and Sb 2 O 5 can be obtained. Can not.

SbCl3液とNH4OH液との反応により次式のようにオキシ塩
化アンチモン(Sb4O5Cl2等)が形成される。
The reaction between the SbCl 3 solution and the NH 4 OH solution forms antimony oxychloride (Sb 4 O 5 Cl 2, etc.) as shown in the following formula.

4SbCl3+10NH4OH →Sb4O5Cl2+10NH4Cl+5H2O 該反応後、過酸化水素を滴下し、上記生成物を酸化す
る。
4SbCl 3 + 10NH 4 OH → Sb 4 O 5 Cl 2 + 10NH 4 Cl + 5H 2 after O reaction, was added dropwise hydrogen peroxide to oxidize the product.

Sb4O5Cl2+4H2O2 →2Sb2O5+2HCl+3H2O 通常、酸化剤としては過酸化水素の他に過マンガン酸カ
リウムや重クロム酸カリウムが用いられるが、本方法で
これらの酸化剤を用いると、K、Cr、Mn、が残留する虞
があり、好ましくない。上記NH4OHとの反応および過酸
化水素との反応を60℃以下で実施した場合には、80℃以
上に昇温し、20〜30分間攪拌して反応を終了させる。
Sb 4 O 5 Cl 2 + 4H 2 O 2 → 2Sb 2 O 5 + 2HCl + 3H 2 O Usually, potassium permanganate and potassium dichromate are used as oxidizing agents in addition to hydrogen peroxide. If the agent is used, K, Cr, and Mn may remain, which is not preferable. When the reaction with NH 4 OH and the reaction with hydrogen peroxide are carried out at 60 ° C. or lower, the temperature is raised to 80 ° C. or higher and the reaction is terminated by stirring for 20 to 30 minutes.

上記酸化反応により副生するNH4Clはデカンテーション
を繰返えすことにより除去される。デカンテーションは
導電率計を用いて溶液が蒸留水と同程度の導電率を示す
程度まで行なう。またはAgNO3溶液を滴下して白色沈澱
が生じない程度まで行なう。更に、上記コロイド状沈澱
を別後に乾燥し500℃以上に焼成することによりNH4Cl
は昇華し、残留Cl分は1/2以下に大幅に除去される。
NH 4 Cl, which is a by-product of the above oxidation reaction, is removed by repeating decantation. Decantation is performed using a conductivity meter until the solution shows a conductivity similar to that of distilled water. Alternatively, add AgNO 3 solution dropwise until the white precipitate does not occur. Further, after separating the colloidal precipitate, it is dried and calcined at a temperature of 500 ° C. or higher to produce NH 4 Cl.
Sublimates and the residual Cl content is largely removed by less than 1/2.

別後乾燥し、500℃、2時間焼成することによりその
X線回析グラフが、Sb6O13のピークを示す粉末が得られ
る。Sb6O13はSb2Sb4Oによって示される混合原子酸化物
である。一般に、無水のSb2O5は脱水、脱酸素が起るの
で生成し難く、通常、Sb2O5・nH2O(n=1〜5)の水
和物として生成される。該Sb2O5・nH2Oは加熱により脱
水され、400℃付近で脱水は終了するが、同時に脱酸素
も起り、Sb6O13に変化する。Sb6O13は600〜800℃に加熱
しても安定であり、900℃付近でSb2O4に分解する。
After separating, it is dried and calcined at 500 ° C. for 2 hours to obtain a powder whose X-ray diffraction graph shows a peak of Sb 6 O 13 . Sb 6 O 13 is a mixed atom oxide represented by Sb 2 Sb 4 O. In general, anhydrous Sb 2 O 5 is difficult to generate because dehydration and deoxidation occur, and it is usually generated as a hydrate of Sb 2 O 5 · nH 2 O (n = 1 to 5). The Sb 2 O 5 .nH 2 O is dehydrated by heating, and the dehydration ends near 400 ° C., but at the same time, deoxidation also occurs and Sb 6 O 13 is changed. Sb 6 O 13 is stable even when heated to 600 to 800 ° C., and decomposes into Sb 2 O 4 near 900 ° C.

以上のことから本発明において五酸化アンチモンとは、
Sb2O5の他にSb6O13を含む。
From the above, in the present invention, antimony pentoxide is:
Includes Sb 6 O 13 in addition to Sb 2 O 5 .

[発明の効果] 本発明の製造方法はアルカリ金属等を含む溶液を用いな
いので、これら金属元素が残留することがなく、またア
ンモニアや塩素も焼成工程で除去されるので極めて高純
度の五酸化アンチモン粉末を得ることが出来る。因に、
従来の方法によって製造した五酸化アンチモン粉末には
アルカリ金属、Clが夫々、1.90%、124ppm程度残留して
いるのに対し、本発明に係るもののアルカリ金属、Cl検
出量は1ppm以下である。
[Effects of the Invention] Since the production method of the present invention does not use a solution containing an alkali metal or the like, these metal elements do not remain, and ammonia and chlorine are also removed in the firing step, so that extremely high purity pentoxide is obtained. Antimony powder can be obtained. By the way,
In the antimony pentoxide powder produced by the conventional method, 1.90% and 124 ppm of alkali metal and Cl remain, respectively, whereas the amount of alkali metal and Cl detected in the present invention is 1 ppm or less.

更に、従来の製造方法に係る粉末は比表面積が27m2/g程
度であるのに対し、本発明によって得られる粉末は比表
面積が37〜39m2/gであり、格段に微細な粉末が得られ
る。
Furthermore, while the powder according to the conventional manufacturing method has a specific surface area of about 27 m 2 / g, the powder obtained by the present invention has a specific surface area of 37 to 39 m 2 / g, and a significantly fine powder is obtained. To be

また、本発明の方法は比較的短時間で反応が終了するの
で製造効率が良く、また操作も簡便であり、実施が容易
である。
In addition, the method of the present invention has a high production efficiency because the reaction is completed in a relatively short time, and the operation is simple and easy to carry out.

[実施例] 蒸留水4lに25%のNH4OHを413ml加え、攪拌した。このNH
4OH液に、SbCl3粉末(三菱金属社製、99.999%)420gを
6N塩酸280mlに溶解した液を定量ポンプで10分間かけて
滴下し、反応させた。引続き5分間攪拌した後、35%過
酸化水素223gを加え、80℃に昇温し、30分間攪拌しコロ
イド状沈澱を生成させた。
[Example] 413 ml of 25% NH4OH was added to 4 liters of distilled water and stirred. This NH
420 g of SbCl 3 powder (manufactured by Mitsubishi Metals, 99.999%) in 4 OH liquid
A solution dissolved in 280 ml of 6N hydrochloric acid was added dropwise with a metering pump over 10 minutes to cause a reaction. After continuously stirring for 5 minutes, 223 g of 35% hydrogen peroxide was added, the temperature was raised to 80 ° C., and the mixture was stirred for 30 minutes to form a colloidal precipitate.

その後、液の導電率が0.01mS/cmになるまで上記沈澱
を蒸留水にて洗浄後、別し、乾燥後、粉砕し、比表面
積とアルカリ金属とClの残留量を測定した。この結果を
次表に示す。
Then, the above precipitate was washed with distilled water until the conductivity of the liquid reached 0.01 mS / cm, separated, dried, and pulverized, and the specific surface area and the residual amounts of alkali metal and Cl were measured. The results are shown in the table below.

引続き、該粉末を500℃、2時間焼成して、X線回析を
行なったところ、Sb6O13のピークのみ検出された。焼成
後の比表面積、アルカリ金属、Cl量および従来品を併せ
て次表に示す。
Subsequently, when the powder was calcined at 500 ° C. for 2 hours and subjected to X-ray diffraction, only a peak of Sb 6 O 13 was detected. The specific surface area after firing, alkali metal, amount of Cl and conventional products are also shown in the following table.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】三塩化アンチモン(SbCl3)とアンモニア
水とを反応させた後、生成物を過酸化水素で酸化して五
酸化アンチモン(Sb2O5)を製造する方法。
1. A method for producing antimony pentoxide (Sb 2 O 5 ) by reacting antimony trichloride (SbCl 3 ) with aqueous ammonia and then oxidizing the product with hydrogen peroxide.
【請求項2】室温から100℃の温度下で、SbCl3溶液をア
ンモニア水に滴下し、あるいはSbCl3溶液にアンモニア
水を滴下し、反応終了後、更に、過酸化水素を滴下して
コロイド状のSb2O5沈澱を生成させ、該沈澱を別、乾
燥してSb2O5粉末を製造する特許請求の範囲第1項の製
造方法。
2. At room temperature to 100 ° C., the SbCl 3 solution is dropped into ammonia water, or the ammonia water is dropped into the SbCl 3 solution, and after completion of the reaction, hydrogen peroxide is dropped further to form a colloidal form. 2. The production method according to claim 1, wherein the Sb 2 O 5 precipitate is produced, the precipitate is separated and dried to produce Sb 2 O 5 powder.
JP1593187A 1987-01-28 1987-01-28 Method for producing high-purity antimony pentoxide powder Expired - Lifetime JPH0694372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1593187A JPH0694372B2 (en) 1987-01-28 1987-01-28 Method for producing high-purity antimony pentoxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1593187A JPH0694372B2 (en) 1987-01-28 1987-01-28 Method for producing high-purity antimony pentoxide powder

Publications (2)

Publication Number Publication Date
JPS63185822A JPS63185822A (en) 1988-08-01
JPH0694372B2 true JPH0694372B2 (en) 1994-11-24

Family

ID=11902516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1593187A Expired - Lifetime JPH0694372B2 (en) 1987-01-28 1987-01-28 Method for producing high-purity antimony pentoxide powder

Country Status (1)

Country Link
JP (1) JPH0694372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535237B2 (en) * 2003-03-27 2010-09-01 日産化学工業株式会社 Antimony pentoxide sol and method for producing the same
CN114713294B (en) * 2021-01-06 2025-01-07 中昊晨光化工研究院有限公司 A treatment system and method for waste antimony pentachloride catalyst
CN117756177B (en) * 2024-01-23 2024-08-30 锡矿山闪星锑业有限责任公司 Preparation method of powdery antimony pentoxide

Also Published As

Publication number Publication date
JPS63185822A (en) 1988-08-01

Similar Documents

Publication Publication Date Title
JP6226235B2 (en) Method for producing scorodite
EP0828690B1 (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
KR100811872B1 (en) Manufacturing method of stainless dissolving raw material using iron nickel (フ e ニ) sludge
JP7517685B2 (en) Method for producing bismuth-containing ruthenium pyrochlore metal oxide and method for producing oxygen electrode catalyst
US3399956A (en) Process for converting monovalent thallium compounds to trivalent thallium compounds
GB2033883A (en) Production of lead monoxide from lead sulphate material
JPH0694372B2 (en) Method for producing high-purity antimony pentoxide powder
US4812302A (en) Process for preparing high purity Mn3 O4
US3669650A (en) Production of copper compounds and copper metal powder
JPH05319825A (en) Production of cuprous oxide
JPS6034928A (en) Manufacture of carbonic acid from vicinal water-soluble diolas starting substance
JPH06329414A (en) Method for producing rare earth fluoride
US3966880A (en) Method for producing alkali metal gold sulfite
US2585185A (en) Process for production of copper powder having an average particle size of two microns
JP2508531B2 (en) Method for producing antimony oxide powder
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
US2493262A (en) Process of preparing basic sai
JP4304303B2 (en) Process for producing zinc hydroxystannate
JP4082892B2 (en) Method for producing nickel oxyhydroxide
US1358626A (en) Depolarizing agent for dry batteries and process of making same
JP2000344519A (en) Method for manufacturing barium titanate
US3065048A (en) Process for preparing heavy metal tellurides
CA1158018A (en) Process for production of coc1.sub.2 solution from cobaltic oxide-hydrate
JP2736693B2 (en) Method for producing jarosite particle powder
JP3166013B2 (en) Method for producing high-purity amorphous zinc stannate powder