[go: up one dir, main page]

JPH0694314A - Mixed refrigerant refrigerating circuit - Google Patents

Mixed refrigerant refrigerating circuit

Info

Publication number
JPH0694314A
JPH0694314A JP24326892A JP24326892A JPH0694314A JP H0694314 A JPH0694314 A JP H0694314A JP 24326892 A JP24326892 A JP 24326892A JP 24326892 A JP24326892 A JP 24326892A JP H0694314 A JPH0694314 A JP H0694314A
Authority
JP
Japan
Prior art keywords
refrigerant
circuit
compressor
heat exchanger
mixed refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24326892A
Other languages
Japanese (ja)
Inventor
Kazuo Takemasa
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24326892A priority Critical patent/JPH0694314A/en
Publication of JPH0694314A publication Critical patent/JPH0694314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a mixed refrigerant refrigerating circuit which can reduce the load of a compressor at the time of start, can prevent an oil from being deteriorated, or prevent the compressor from being worn out by preventing a heating of the compressor from happening, and at the same time, of which the encapsulated refrigerant is less destructive to the ozone layer, for a mixed refrigerant refrigerating circuit to obtain a low temperature. CONSTITUTION:The title mixed refrigerant refrigerating circuit consists of a first refrigerant circuit A for which a compressor 1, condenser 2, flow divider 3, first intermediate heat-exchanger 4, capillary tube 5, and evaporator 6 are connected in order, and a second refrigerant circuit B which is branched from the flow divider 3 and connected to the piping between the evaporator 6 and compressor 1 of the first refrigerant circuit A by a capillary tube 9 and second intermediate heat-exchanger 10. Then, a cascade type heat-exchanger 11 is constituted of the first and second intermediate heat-exchangers 4, 10. At the same time, for a mixed refrigerant refrigerating circuit wherein a non-azeotropic mixed refrigerant is encapsulated in the first and second refrigerant circuit A, B, a solenoid valve 7 and tank 8 are provided between the flow divider 3 and capillary tube 9 of the second refrigerant circuit B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は始動時の負荷を軽減でき
る混合冷媒冷凍回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed-refrigerant refrigeration circuit capable of reducing the load at the time of starting.

【0002】[0002]

【従来の技術】従来、この種の混合冷媒冷凍回路は、特
開平3−88889号公報に開示されているように、圧
縮機、凝縮器、分流器、第1の中間熱交換器、減圧器、
蒸発器を順次接続した第1の冷媒回路と、前記分流器か
ら分岐し、減圧器、第2の中間熱交換器を介して前記第
1の冷媒回路の蒸発器と圧縮機の間の配管に接続された
第2の冷媒回路とからなり、前記第1と第2の中間熱交
換器でカスケード型熱交換器を構成すると共に、第1及
び第2の冷媒回路中に非共沸混合冷媒を封入して構成さ
れている。
2. Description of the Related Art Conventionally, a mixed refrigerant refrigerating circuit of this kind has been disclosed in Japanese Patent Laid-Open No. 3-88889, so that a compressor, a condenser, a flow divider, a first intermediate heat exchanger, and a pressure reducer. ,
A first refrigerant circuit in which an evaporator is sequentially connected and a branch from the flow divider, and a pipe between the evaporator and the compressor of the first refrigerant circuit via a pressure reducer and a second intermediate heat exchanger. A second refrigerant circuit connected to the first and second intermediate heat exchangers to form a cascade heat exchanger, and a non-azeotropic mixed refrigerant in the first and second refrigerant circuits. It is configured by enclosing it.

【0003】そして、斯る回路は、分流器で分流された
未凝縮の冷媒をカスケード型熱交換器で蒸発させて、蒸
発器でより低い温度が得られるようにしたものである。
In such a circuit, the uncondensed refrigerant divided in the flow divider is evaporated in the cascade heat exchanger so that a lower temperature can be obtained in the evaporator.

【0004】また、従来、冷凍機の冷媒として用いられ
ているものにはR12(ジクロロジフルオロメタン)と
R500(R12とR152a(1,1−ジフルオロエ
タン)との共沸混合物)が多い。R12の沸点は約−3
0℃で、R500の沸点は約−33℃であり通常の冷凍
装置に好適である。更に圧縮機への吸込温度が比較的高
くても吐出温度が圧縮機のオイルスラッジを引き起こす
程高くならない。更に又、R12は圧縮機のオイルと相
溶性が良く、冷媒回路中のオイルを圧縮機まで引き戻す
役割も果たす。
Further, R12 (dichlorodifluoromethane) and R500 (an azeotropic mixture of R12 and R152a (1,1-difluoroethane)) are often used as refrigerants in refrigerators. The boiling point of R12 is about -3
At 0 ° C., the boiling point of R500 is about −33 ° C., which is suitable for ordinary refrigeration equipment. Further, even if the suction temperature to the compressor is relatively high, the discharge temperature does not become so high as to cause oil sludge in the compressor. Furthermore, R12 has good compatibility with the oil of the compressor, and also plays a role of returning the oil in the refrigerant circuit to the compressor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
構成によると蒸発器の温度はマイナス数十度というかな
り低い温度にまで到達するため、圧縮機の負荷は大きく
なり、特に、起動時に圧縮機が加熱してオイルの劣化や
潤滑不良による摩耗を引き起こすという問題があった。
However, according to the above construction, the temperature of the evaporator reaches a considerably low temperature of minus several tens of degrees, so that the load of the compressor becomes large, and especially when the compressor is started up. There is a problem that heating causes deterioration of oil and wear due to poor lubrication.

【0006】また、最近では、所謂特定フロンがオゾン
層を破壊する恐れがあることが知れ渡り、その使用が世
界的に規制されることとなった。このため、上記R12
やR500に代替できる冷媒の研究が一刻も早く望まれ
ている。
Further, recently, it has become known that so-called specific CFCs may destroy the ozone layer, and their use has been regulated worldwide. Therefore, the above R12
There is an urgent need for research on refrigerants that can substitute for R500 and R500.

【0007】本発明は斯る点に鑑みなされたもので、マ
イナス数十度という低い温度を得る混合冷媒冷凍回路に
おいて、起動時における圧縮機の負荷を減少し、圧縮機
の加熱を防止してオイルの劣化や摩耗を防止すると共
に、封入冷媒がオゾン層を破壊することが少ない混合冷
媒冷凍回路を提供することを目的とする。
The present invention has been made in view of the above problems, and in a mixed refrigerant refrigeration circuit for obtaining a low temperature of minus several tens of degrees, the load of the compressor at the time of starting is reduced to prevent the compressor from being heated. An object of the present invention is to provide a mixed-refrigerant refrigeration circuit in which deterioration and wear of oil are prevented and the enclosed refrigerant hardly destroys the ozone layer.

【0008】[0008]

【課題を解決するための手段】本発明は、圧縮機、凝縮
器、分流器、第1の中間熱交換器、減圧器、蒸発器を順
次接続した第1の冷媒回路と、前記分流器から分岐し、
減圧器、第2の中間熱交換器を介して前記第1の冷媒回
路の蒸発器と圧縮機の間の配管に接続された第2の冷媒
回路とからなり、前記第1と第2の中間熱交換器でカス
ケード型熱交換器を構成すると共に、第1及び第2の冷
媒回路中に非共沸混合冷媒を封入している混合冷媒冷凍
回路において、前記第2の冷媒回路の分流器と減圧器の
間に開閉弁とタンクを設けたものである。
According to the present invention, there is provided a first refrigerant circuit in which a compressor, a condenser, a flow divider, a first intermediate heat exchanger, a pressure reducer and an evaporator are sequentially connected, and the flow divider is used. Branch,
A first refrigerant circuit and a second refrigerant circuit connected to a pipe between the evaporator and the compressor of the first refrigerant circuit via a pressure reducer and a second intermediate heat exchanger, In a mixed refrigerant refrigerating circuit in which a non-azeotropic mixed refrigerant is sealed in the first and second refrigerant circuits, the heat exchanger constitutes a cascade type heat exchanger, and a diverter of the second refrigerant circuit is provided. An on-off valve and a tank are provided between the pressure reducers.

【0009】[0009]

【作用】本発明の混合冷媒冷凍回路は上記の構成によ
り、圧縮機の起動時には、開閉弁を開放しておけば、タ
ンクを膨張タンクとして機能させて混合冷媒冷凍回路の
平衡圧力を低下させることができ、圧縮機の負荷を軽減
してオイルの劣化や摩耗による損傷を防止できる。ま
た、始動後、カスケード型熱交換器の温度が低下した場
合には、開閉弁を閉塞して沸点の低い冷媒を第1の冷媒
回路中で循環させることにより、所望の蒸発温度が得ら
れる一方、カスケード型熱交換器の温度が上昇して所定
値に達した場合には、開閉弁を開放してタンク、減圧器
を介してカスケード型熱交換器へ液冷媒を導入すること
ができ、カスケード型熱交換器の凝縮温度を低下させて
より低い蒸発温度を得ることができる。
According to the mixed refrigerant refrigeration circuit of the present invention, when the compressor is started, if the open / close valve is opened, the tank functions as an expansion tank to lower the equilibrium pressure of the mixed refrigerant refrigeration circuit. Therefore, it is possible to reduce the load on the compressor and prevent the oil from being deteriorated or damaged due to wear. In addition, when the temperature of the cascade heat exchanger decreases after the start, the opening / closing valve is closed to circulate the low boiling point refrigerant in the first refrigerant circuit to obtain a desired evaporation temperature. When the temperature of the cascade heat exchanger rises and reaches a predetermined value, the on-off valve can be opened to introduce the liquid refrigerant into the cascade heat exchanger via the tank and the pressure reducer. The condensing temperature of the mold heat exchanger can be lowered to obtain a lower evaporation temperature.

【0010】[0010]

【実施例】次に図面において実施例を説明する。図1は
本発明の混合冷媒回路を示す。
Embodiments Next, embodiments will be described with reference to the drawings. FIG. 1 shows a mixed refrigerant circuit of the present invention.

【0011】この冷媒回路には、例えば、ジフルオロメ
タン(R32)とペンタフルオロエタン(R125)の
非共沸混合冷媒、R32とR125とR134aとの非
共沸混合冷媒、R32とR134aとの非共沸混合冷
媒、R32とR125とR123との非共沸混合冷媒、
R32とR134aとR123との非共沸混合冷媒、R
125とR123との非共沸混合冷媒、R32とR12
3との非共沸混合冷媒、R32とR124との非共沸混
合冷媒、R32とR125とR124との非共沸混合冷
媒、R125とR124との非共沸混合冷媒が封入され
る。
In this refrigerant circuit, for example, a non-azeotropic mixed refrigerant of difluoromethane (R32) and pentafluoroethane (R125), a non-azeotropic mixed refrigerant of R32, R125 and R134a, and a non-azeotropic mixed refrigerant of R32 and R134a. An azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant of R32, R125 and R123,
Non-azeotropic mixed refrigerant of R32, R134a and R123, R
Non-azeotropic refrigerant mixture of 125 and R123, R32 and R12
3, a non-azeotropic mixed refrigerant of R32 and R124, a non-azeotropic mixed refrigerant of R32, R125 and R124, and a non-azeotropic mixed refrigerant of R125 and R124 are sealed.

【0012】ここで、R32の蒸発温度は−51.7
℃、R125の蒸発温度は−48.5℃である。
Here, the evaporation temperature of R32 is -51.7.
C, the evaporation temperature of R125 is -48.5 ° C.

【0013】そして、回路は、圧縮機1、凝縮器2、分
流器3、第1の中間熱交換器4、キャピラリチューブ
5、蒸発器6を順次接続した第1の冷媒回路Aと、前記
分流器3から分岐し、電磁弁7、タンク8、キャピラリ
チューブ9、第2の中間熱交換器10を介して前記第1
の冷媒回路Aの蒸発器6と圧縮機1の間の配管に接続さ
れた第2の冷媒回路Bとからなり、前記第1と第2の中
間熱交換器4,10でカスケード型熱交換器11を形成
して構成されている。1aはアキュムレータである。
The circuit includes a first refrigerant circuit A in which a compressor 1, a condenser 2, a flow divider 3, a first intermediate heat exchanger 4, a capillary tube 5 and an evaporator 6 are sequentially connected, and the flow dividing is performed. Branching from the reactor 3 and passing through the solenoid valve 7, the tank 8, the capillary tube 9 and the second intermediate heat exchanger 10
The second refrigerant circuit B connected to the pipe between the evaporator 6 and the compressor 1 of the refrigerant circuit A of the above, and the first and second intermediate heat exchangers 4 and 10 are cascade type heat exchangers. 11 is formed. 1a is an accumulator.

【0014】12は前記カスケード型熱交換器11に設
けた温度センサーである。13は温度制御装置であり、
前記温度センサー12の信号を受けてカスケード型熱交
換器11が所定温度以上になると電磁弁7を開とし、所
定温度以下になると電磁弁7を閉とするよう制御する。
即ち、温度制御装置13は、図2に示すように、電源1
4と、圧縮機1に直列接続された温度設定サーモスタッ
ト15と、この温度設定サーモスタット15及び圧縮機
1の直列回路に並列接続されたソレノイド駆動サーモ1
6及び電磁弁17と、前記ソレノイド駆動サーモ16に
接続された温度センサー12とで構成されている。そし
て、温度センサー12からの信号が所定値以下の場合は
ソレノイド駆動サーモ16の接点を閉に維持し、電磁弁
7のソレノイドへの通電を遮断して電磁弁7を閉とする
一方、温度センサー12からの信号が所定値以上になる
とソレノイド駆動サーモ16の接点を閉成させ、電磁弁
7のソレノイドを通電して電磁弁7を開放するよう制御
する。
Reference numeral 12 is a temperature sensor provided in the cascade heat exchanger 11. 13 is a temperature control device,
When the cascade heat exchanger 11 receives a signal from the temperature sensor 12 and the temperature exceeds a predetermined temperature, the solenoid valve 7 is opened, and when the temperature falls below the predetermined temperature, the solenoid valve 7 is closed.
That is, as shown in FIG. 2, the temperature control device 13 uses the power source 1
4, a temperature setting thermostat 15 connected in series to the compressor 1, and a solenoid driven thermostat 1 connected in parallel to a series circuit of the temperature setting thermostat 15 and the compressor 1.
6 and a solenoid valve 17, and a temperature sensor 12 connected to the solenoid driving thermostat 16. When the signal from the temperature sensor 12 is less than or equal to a predetermined value, the contact of the solenoid driving thermostat 16 is kept closed, the solenoid of the solenoid valve 7 is de-energized, and the solenoid valve 7 is closed. When the signal from 12 exceeds a predetermined value, the contact of the solenoid driving thermostat 16 is closed, and the solenoid of the solenoid valve 7 is energized to open the solenoid valve 7.

【0015】即ち、電磁弁7は、カスケード型熱交換器
11の温度が25〜30℃の常温よりも高い温度になっ
た時に開放し、少なくとも10℃以下の温度、例えば0
℃で閉じるよう設定される。
That is, the solenoid valve 7 is opened when the temperature of the cascade heat exchanger 11 becomes higher than the normal temperature of 25 to 30 ° C., and the temperature is at least 10 ° C. or lower, for example, 0.
Set to close at ℃.

【0016】ここで、温度制御装置13は、は蒸発器6
の冷却が進んで蒸発器6による熱吸収が減少するに従っ
てカスケード型熱交換器11を強制冷却をしないで済む
温度帯に維持できるように設定される。
Here, the temperature control device 13 includes the evaporator 6
It is set so that the cascade heat exchanger 11 can be maintained in a temperature range where forced cooling is not required as the cooling of the above-mentioned progresses and the heat absorption by the evaporator 6 decreases.

【0017】このように構成された混合冷媒冷凍回路に
おいて、圧縮機1から吐出された高温高圧のガス状冷媒
混合物(R32とR125の混合冷媒)は凝縮器2に流
入して放熱した後、分流器3へ流入する。この時、圧縮
機の起動時等、カスケード型熱交換器11の温度がまだ
低い場合には、電磁弁7は作動せずに開放しており、分
流器3にて液化された冷媒(R125)はタンク8に導
入される。この結果、圧縮機1の始動時にはタンク8が
膨張タンクとして機能し、主冷媒回路である第1の冷媒
回路Aは、沸点の低い冷媒(R32)だけが循環し、混
合冷媒冷凍回路の平衡圧力を低下させることができ、圧
縮機の負荷を軽減してオイルの劣化や摩耗による損傷を
防止できる。
In the mixed-refrigerant refrigeration circuit thus constructed, the high-temperature and high-pressure gaseous refrigerant mixture (mixed refrigerant of R32 and R125) discharged from the compressor 1 flows into the condenser 2 to radiate heat, and then split. Flows into the vessel 3. At this time, when the temperature of the cascade heat exchanger 11 is still low, such as when the compressor is started, the solenoid valve 7 is open without operating, and the liquefied refrigerant (R125) in the flow divider 3 is used. Is introduced into the tank 8. As a result, at the time of starting the compressor 1, the tank 8 functions as an expansion tank, and in the first refrigerant circuit A that is the main refrigerant circuit, only the refrigerant (R32) having a low boiling point circulates, and the equilibrium pressure of the mixed refrigerant refrigeration circuit. It is possible to reduce the load on the compressor and prevent the oil from being deteriorated or damaged due to wear.

【0018】この後、カスケード型熱交換器11の温度
が上昇して所定値以上になると、電磁弁7が閉となって
タンク8内に貯溜した液冷媒(R125)がキャピラリ
チューブ9を介してカスケード型熱交換器11に導入さ
れ、カスケード型熱交換器11の凝縮温度を一層低下さ
せる。この結果、沸点の低い冷媒(R32)を第1の冷
媒回路A中で循環させることにより、所望とする蒸発温
度が得られる。更にこの後、カスケード型熱交換器11
の温度が上昇して所定値に達した場合には、電磁弁7が
再び開放してタンク8、キャピラリチューブ9を介して
カスケード型熱交換器11へタンク8内の冷媒を導入す
ることができ、カスケード型熱交換器11の凝縮温度を
低下させてより低い蒸発温度を得ることができる。
After that, when the temperature of the cascade heat exchanger 11 rises to a predetermined value or more, the electromagnetic valve 7 is closed and the liquid refrigerant (R125) stored in the tank 8 is passed through the capillary tube 9. It is introduced into the cascade heat exchanger 11 to further lower the condensation temperature of the cascade heat exchanger 11. As a result, by circulating the refrigerant (R32) having a low boiling point in the first refrigerant circuit A, a desired evaporation temperature can be obtained. Further after this, the cascade heat exchanger 11
When the temperature rises and reaches a predetermined value, the solenoid valve 7 is opened again and the refrigerant in the tank 8 can be introduced into the cascade heat exchanger 11 via the tank 8 and the capillary tube 9. By lowering the condensation temperature of the cascade heat exchanger 11, a lower evaporation temperature can be obtained.

【0019】[0019]

【発明の効果】以上のように本発明によれば、圧縮機の
起動時には、開閉弁を開放しておけば、タンクを膨張タ
ンクとして機能させて混合冷媒冷凍回路の平衡圧力を低
下させることができ、圧縮機の負荷を軽減してオイルの
劣化や摩耗による損傷を防止できる。また、始動後、カ
スケード型熱交換器の温度が低下した場合には、開閉弁
を閉塞して沸点の低い冷媒を第1の冷媒回路中で循環さ
せることにより、所望の蒸発温度が得られる一方、カス
ケード型熱交換器の温度が上昇して所定値に達した場合
には、開閉弁を開放してタンク、減圧器を介してカスケ
ード型熱交換器へ液冷媒を導入することができ、カスケ
ード型熱交換器の凝縮温度を低下させてより低い蒸発温
度を得ることができる。
As described above, according to the present invention, when the on-off valve is opened at the time of starting the compressor, the tank can function as an expansion tank to reduce the equilibrium pressure of the mixed refrigerant refrigeration circuit. It is possible to reduce the load on the compressor and prevent the oil from being deteriorated or damaged due to wear. When the temperature of the cascade heat exchanger decreases after the start, the on-off valve is closed and the refrigerant having a low boiling point is circulated in the first refrigerant circuit to obtain the desired evaporation temperature. When the temperature of the cascade heat exchanger rises and reaches a predetermined value, the on-off valve can be opened to introduce the liquid refrigerant into the cascade heat exchanger through the tank and the pressure reducer. The condensing temperature of the mold heat exchanger can be lowered to obtain a lower evaporation temperature.

【0020】また、第2の冷媒回路によって液化冷媒を
分流するため、液冷媒と共にオイルを分流することがで
き、オイル戻りを良好にできる。
Further, since the liquefied refrigerant is diverted by the second refrigerant circuit, the oil can be diverted together with the liquid refrigerant, and the oil return can be improved.

【0021】更に、本発明の混合冷媒冷凍回路によれ
ば、回路中に封入される冷媒は規制外のものであるた
め、オゾン層の破壊を抑制でき、環況を良好に保ちつ
つ、所望とする冷凍能力が得られ、オイル戻りも良好で
R500やR502の代替としての使用も可能な実用性
に優れた混合冷媒冷凍回路を提供できる。
Further, according to the mixed-refrigerant refrigeration circuit of the present invention, since the refrigerant enclosed in the circuit is out of regulation, it is possible to suppress the destruction of the ozone layer, and to keep the environment favorable and to obtain a desired value. It is possible to provide a mixed-refrigerant refrigeration circuit which has a high refrigerating capacity, has a good oil return, and can be used as a substitute for R500 and R502, and has excellent practicability.

【0022】このように本発明の混合冷媒冷凍回路は、
−40℃という低い温度を達成する装置に有効である。
Thus, the mixed refrigerant refrigeration circuit of the present invention is
It is effective for a device that achieves a low temperature of -40 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の混合冷媒冷凍回路を示す冷媒回路図で
ある。
FIG. 1 is a refrigerant circuit diagram showing a mixed refrigerant refrigeration circuit of the present invention.

【図2】温度制御装置の電気回路図である。FIG. 2 is an electric circuit diagram of a temperature control device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 分流器 4 第1の中間熱交換器 5 キャピラリチューブ 6 蒸発器 7 電磁弁 8 タンク 9 キャピラリチューブ 10 第2の中間熱交換器 11 カスケード型熱交換器 1 Compressor 2 Condenser 3 Divider 4 First Intermediate Heat Exchanger 5 Capillary Tube 6 Evaporator 7 Solenoid Valve 8 Tank 9 Capillary Tube 10 Second Intermediate Heat Exchanger 11 Cascade Heat Exchanger

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、分流器、第1の中間熱
交換器、減圧器、蒸発器を順次接続した第1の冷媒回路
と、前記分流器から分岐し、減圧器、第2の中間熱交換
器を介して前記第1の冷媒回路の蒸発器と圧縮機の間の
配管に接続された第2の冷媒回路とからなり、前記第1
と第2の中間熱交換器でカスケード型熱交換器を構成す
ると共に、第1及び第2の冷媒回路中に非共沸混合冷媒
を封入している混合冷媒冷凍回路において、前記第2の
冷媒回路の分流器と減圧器の間に開閉弁とタンクを設け
たことを特徴とする混合冷媒冷凍回路。
1. A first refrigerant circuit in which a compressor, a condenser, a flow divider, a first intermediate heat exchanger, a pressure reducer, and an evaporator are sequentially connected, and a pressure reducer and a second refrigerant branching from the flow divider. A second refrigerant circuit connected to a pipe between the evaporator and the compressor of the first refrigerant circuit via an intermediate heat exchanger of
In the mixed refrigerant refrigeration circuit in which a non-azeotropic mixed refrigerant is sealed in the first and second refrigerant circuits, the second refrigerant is formed while the cascade type heat exchanger is composed of the second intermediate heat exchanger and the second intermediate heat exchanger. A mixed-refrigerant refrigeration circuit characterized in that an on-off valve and a tank are provided between a shunt and a pressure reducer of the circuit.
JP24326892A 1992-09-11 1992-09-11 Mixed refrigerant refrigerating circuit Pending JPH0694314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24326892A JPH0694314A (en) 1992-09-11 1992-09-11 Mixed refrigerant refrigerating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24326892A JPH0694314A (en) 1992-09-11 1992-09-11 Mixed refrigerant refrigerating circuit

Publications (1)

Publication Number Publication Date
JPH0694314A true JPH0694314A (en) 1994-04-05

Family

ID=17101344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24326892A Pending JPH0694314A (en) 1992-09-11 1992-09-11 Mixed refrigerant refrigerating circuit

Country Status (1)

Country Link
JP (1) JPH0694314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049506A1 (en) * 1997-04-25 1998-11-05 Sanyo Electric Co., Ltd. Low temperature storage cabinet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049506A1 (en) * 1997-04-25 1998-11-05 Sanyo Electric Co., Ltd. Low temperature storage cabinet

Similar Documents

Publication Publication Date Title
US5784893A (en) Air conditioning system with built-in intermediate heat exchanger with two different types of refrigerants circulated
Mondal Refrigeration and Air-conditioning
EP2813784B1 (en) Air conditioner
US10422558B2 (en) Refrigeration cycle device
EP1431684A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
US6161391A (en) Environmental test chamber fast cool down system and method therefor
EP3128257A1 (en) Refrigeration cycle device
MXPA03001817A (en) Method and arrangement for defrosting a vapor compression system.
JP2000234811A (en) Refrigeration cycle device
JPH09196480A (en) Liquid cooler for refrigeration equipment
JPH0340297B2 (en)
JP3155653B2 (en) Refrigeration equipment using mixed refrigerant
JPH0694314A (en) Mixed refrigerant refrigerating circuit
JP2003336918A (en) Cooling device
EP4177545A1 (en) Heat source unit and control method therefor
EP1431683A2 (en) Refrigerating device
JP2003194427A (en) Cooling device
WO2023012960A1 (en) Refrigeration circuit device and refrigeration circuit control method
WO2023012961A1 (en) Refrigeration circuit device and control method for refrigeration circuit device
JP2640051B2 (en) Refrigeration equipment
US12352487B2 (en) Fluid temperature control system
JP2855954B2 (en) Thermal storage type air conditioner
JP4000509B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JPH06317358A (en) Refrigeration equipment
JPH05180519A (en) Heat regenerating freezing cycle device