[go: up one dir, main page]

JPH069375U - Transmission - Google Patents

Transmission

Info

Publication number
JPH069375U
JPH069375U JP2273293U JP2273293U JPH069375U JP H069375 U JPH069375 U JP H069375U JP 2273293 U JP2273293 U JP 2273293U JP 2273293 U JP2273293 U JP 2273293U JP H069375 U JPH069375 U JP H069375U
Authority
JP
Japan
Prior art keywords
shaped member
passive
disk
drive
side disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2273293U
Other languages
Japanese (ja)
Inventor
三俊 中島
Original Assignee
三俊 中島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三俊 中島 filed Critical 三俊 中島
Priority to JP2273293U priority Critical patent/JPH069375U/en
Publication of JPH069375U publication Critical patent/JPH069375U/en
Pending legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

(57)【要約】 【目的】 永久磁石を用いて変速伝動できる伝動装置を
提供する。 【構成】 駆動側円板状部材A及び受動側円板状部材B
を、その外周部同志を対向させた状態で互いに平行する
軸芯Xa,Xb周りで回転自在に設け、前記円板状部材
A,Bの外周部夫々に、偶数個の永久磁石部JAs,J
An,JBs,JBnを、周方向適当間隔おきに且つ隣
合う磁石部の極性を異ならせる状態で、更には、両円板
状部材A,Bの夫々に備えさせる永久磁石部JAs,J
An,JBs,JBnの数を異ならせる状態で設けると
共に、伝動初期においてのみ前記受動側円板状部材Bを
駆動して前記受動側円板状部材Bを初期回転させる初期
駆動装置Kを設けてある。
(57) [Abstract] [Purpose] To provide a transmission device capable of variable speed transmission using a permanent magnet. [Structure] Drive-side disk-shaped member A and passive-side disk-shaped member B
Are provided rotatably around mutually parallel axial cores Xa and Xb with their outer peripheral parts facing each other, and an even number of permanent magnet parts JAs and J are provided on the outer peripheral parts of the disk-shaped members A and B, respectively.
An, JBs, and JBn are provided at appropriate intervals in the circumferential direction and in a state where the polarities of the adjacent magnet portions are made different, and further, the permanent magnet portions JAs and J are provided in the respective disk-shaped members A and B.
An number of An, JBs, and JBn are set to be different, and an initial drive device K that drives the passive-side disk-shaped member B to initially rotate by driving the passive-side disk-shaped member B only in the initial stage of transmission is provided. is there.

Description

【考案の詳細な説明】 【0001】 【産業上の利用分野】 本考案は、例えば電動モータの出力を各種装置の受動部に伝動するために使用 するなど、各種の伝動に仕様できる伝動装置に関し、詳しくは、永久磁石を利用 した伝動装置に関する。 【0002】 【従来の技術】 かかる伝動装置として、例えば図9に示すように、駆動側円板状部材11と受 動側円板状部材12とを、同軸芯周りで回転自在に支承し、それらそれら円板状 部材11,12の外周部夫々に、互いにひきつけあう磁石部n,sの複数個を設 けて、両円板状部材11,12を一体回転させるように構成したものである。 【0003】 【考案が解決しようとする課題】 上記従来構成の伝動装置によると、円板状部材11,12の回転速度を同じに する状態で伝動するものであり、換言すれば、変速して伝動できないものであり 、変速伝動できる伝動装置が望まれている。 本考案は、上記実情に鑑みて為されたものであって、その目的は、永久磁石を 利用して、変速伝動できる伝動装置を提供する点にある。 【0004】 【課題を解決するための手段】 本考案による伝動装置の特徴構成は、駆動側円板状部材及び受動側円板状部材 を、その外周部同志を対向させた状態で互いに平行する軸芯周りで回転自在に設 け、前記円板状部材の外周部夫々に、偶数個の永久磁石部を、周方向適当間隔お きに且つ隣合う磁石部の極性を異ならせる状態で、更には、両円板状部材の夫々 に備えさせる永久磁石部の数を異ならせる状態で設けると共に、伝動初期時にお いてのみ前記受動側円板状部材を駆動して前記受動側円板状部材を初期回転させ る初期駆動機構を設けた点にあり、その作用、及び、効果は次の通りである。 【0005】 【作用】 即ち、駆動側円板状部材の回転を、両円板状部材の外周部夫々に設けた永久磁 石の磁力を利用して、受動側板状部材に伝動するのであり、そして、伝動初期に おいて受動側板状部材を初期回転させること、及び、両円板状部材の夫々に備え させる永久磁石部の数が異なることにより、変速して伝動できるのである。 因に、駆動側円板状部材の回転が磁力によって受動側円板状部材に変速伝動さ れることは、実験により判明している。そして、その原理を図1(イ),(ロ) ,(ハ),(ニ)に基づいて説明する。 尚、図1は駆動側円板状部材Aの回転に伴って受動側円板状部材Bを3倍の速 度で増速回転させる場合を示すものであって、駆動側円板状部材Aに、6個永久 磁石部JAs,JAnを設けると共に、受動側円板状部材Bに、2個の永久磁石 部JBs,JBnを設けてある。但し、JAs,JBsがS極であり、JAn, JBnがN極である。 そして、駆動側円板状部材Aが図1(イ)で示す状態から図1(ハ)で示す状 態に回転する間及び駆動側円板状部材Aが図1(ハ)で示す状態から図1(イ) で示す状態に回転する間において、受動側円板状部材Bが一回転するようにして ある。 磁力利用の伝動について詳述すると、図1(イ),(ハ)の状態、換言すれば 、両円板状部材A,B夫々の異なる磁極の磁石部が最も近接する状態に近い範囲 において、異なる磁極の磁石部が互いに引きつけ合う作用によって受動側円板状 部材Bが加速回転されるものと推察される。つまり、例えば図1(イ)において 、駆動側円板状部材Aの磁石部JAsがT1 からT2 に至る回転方向上手側範囲 においては、その磁石部JAsと受動側円板状部材Bの磁石部JBnとが引きつ け合う作用によって、受動側円板状部材Bが加速回転されるものとなる。そして 、駆動側円板状部材Aの磁石部JAsがT2 からT3 に至る回転方向上手側範囲 においては、その磁石部JAsと受動側円板状部材Bの磁石部JBnとが引きつ け合う作用によって、受動側円板状部材Bが減速されるものとなるが、その減速 作用は回転方向下手側範囲の全範囲において行われるものではなく、駆動側円板 状部材Aの磁石部JAsがT2 を越えた直後の範囲においても前記の加速回転作 用が引き続き行われることになり、全体からみれば、加速作用範囲のほうが減速 作用範囲よりも大であり、その結果、受動側円板状部材Bが加速回転されながら 回転されるものと推察できるのである。 【0006】 【考案の効果】 従って、駆動側円板状部材の回転を変速して受動側円板状部材に伝動できるも のであり、もって、上記要望を満足させた実用上の利点大なる伝動装置を得るに 至った。 【0007】 【実施例】 以下本考案の実施例を図面に基づいて説明する。 図2及び図3は、前述の原理で説明した伝動装置を改良したものであって、電 動モータMが接続される駆動軸1Aに、駆動側円板状部材Aを一体回転自在に取 り付け、前記駆動軸1Aと平行な受動軸1Bの四本夫々に、受動側円板状部材B を、その外周部が駆動側円板状部材Aの外周部に対向する状態で一体回転自在に 取り付けてある。そして、四本の受動軸1B夫々を伝動ベルト2を用いて一体回 転するように連動連結すると共に、四本の受動軸1Bのうちの一つの受動軸1B に、各種装置に対する出力用プーリ3を取り付けてある。但し、図中Cは、伝動 ケースである。 そして、互いに平行する軸芯Xa,Xb周りで回転する両円板状部材A,Bの 外周部夫々に、偶数個の永久磁石部JAs,JAn,JBs,JBnを周方向適 当間隔おきに且つ隣合う磁石部の極性を異ならせる状態で、更には、両円板状部 材A,Bの夫々に備えさせる永久磁石部JAs,JAn,JBs,JBnの数を 異ならせる状態で設けると共に、伝動初期時においてのみ前記受動側円板状部材 Bを駆動して前記受動側円板状部材Bを初期回転させる初期駆動機構Kを設けて ある。 つまり、駆動側円板状部材Aに、第一磁石部JAsの三個と第二磁石部JAn の三個とを60度間隔おきに取り付け、受動側円板状部材Bの夫々に、第一磁石部 JAsの一個と第二磁石部JAnの一個とを 180度間隔おきに取り付けてある。 そして、駆動側円板状部材Aの第一及び第二磁石部JAs,JAn夫々を構成 するに、棒状の永久磁石jの一個を、その長手方向を前記軸芯Xa方向に向ける 状態で設けてある。但し、永久磁石jの両端夫々には、S極とN極とがあり、従 って、両磁石部JAs,JAnの極性を異ならせるために、永久磁石jを向きを 異ならせて設置してある。 又、受動側円板状部材Bの第一及び第二磁石部JBs,JBn夫々を構成する に、前記棒状永久磁石jの十個を、その長手方向を前記軸芯Xb方向に向ける状 態で設けてある。但し、両磁石部JBs,JBnの極性を異ならせるために、永 久磁石jを向きを異ならせて設置してある。 前記初期駆動機構Kを構成するに、補助電動モータMsを、電磁クラッチ等の 伝動クラッチ4を用いて連結してあり、もって前記電動モータMを駆動するに伴 って補助電動モータMsを適当時間駆動させることによって、受動側円板状部材 Bを初期回転させることができ、しかも、初期回転駆動時以外は伝動クラッチ4 を切り状態にすることによって、補助電動モータMsと受動側円板状部材Bとの 連結を解除できるように構成してある。 上記のように構成された伝動装置の作動に付いて説明すれば、前記両電動モー タM,Msを作動させるに伴って、駆動側円板状部材Aが回転駆動されると共に 受動側円板状部材Bが初期回転駆動される。そして、両円板状部材A,Bの回転 に伴って、磁石部JAs,JAnとJBs,JBnとの引きつけ合う作用及び押 し合う作用によって受動側円板状部材Bが加速回転されて、最終的に、受動側円 板状部材Bが駆動側円板状部材Aの回転速度の三倍の速度で回転する。 因に、この構成の場合においては、図4(イ),(ロ),(ハ),(ニ)に示 す構成、つまり、一つ駆動側円板状部材Aと一つの受動側円板状部材Bとの組み 合わせからなる構成を、四個設けた場合と同様となり、その結果、一つ駆動側円 板状部材Aと一つの受動側円板状部材Bとの組み合わせからなる構成の場合の伝 動トルクの四倍のトルクを伝動できるものとなる。又、受動側円板状部材Bは磁 石部JBs,JBnの重量によって円周部に比較的大きな重量を有するものであ り、その結果、定常回転状態においては大きな動慣性力を有し、大なる負荷を駆 動するための伝動装置としても利用できるものである。 【0008】 〔別実施例〕 次に、別実施例について説明する。 前記実施例において、伝動ベルト2に代えて伝動チェーンを用いても良い。 図5及び図6は、上記図2及び図3で説明した伝動装置を改造したものであっ て、前記駆動側円板状部材Aとギヤ伝動機構6を介して連動連結された補助の駆 動側円板状部材Aaの四個を、隣合う受動側円板状部材Bの間に位置させて設け たものである。 図7は上記図2及び図3で説明した伝動装置を改造したものであって、前記駆 動側円板状部材A及び前記受動側円板状部材Bの夫々を、回転軸芯方向五段に設 け、そして、前記駆動側円板状部材Aよりも大径の補助の駆動側円板状部材Ab を、前記五個の駆動側円板状部材Aの下方に、一体回転するように設けると共に 、前記受動側円板状部材Bよりも小径の補助の受動側円板状部材Bbを、前記五 個の受動側円板状部材Bの下方に、一体回転するように設け、更に、前記駆動軸 1Aと同軸芯の出力軸7を設けると共に、その出力軸7と前記受動軸1B夫々の 延長軸部分1B1 とを、ギヤ伝動機構8にて連動連結してある。 本考案を実施するに、駆動側円板状部材Aや受動側円板状部材Bの径は任意に 設定できるものである。 又、図8に示すように、前記駆動側円板状部材Aに備えさせる磁石部JAs, JAnの個数を、前記受動側円板状部材Bに備えさせる磁石部JBs,JBnの 個数より少なくして、減速伝動するように構成してもよい。即ち、駆動側円板状 部材Aに備えさせる磁石部JAs,JAnの個数と受動側円板状部材Bに備えさ せる磁石部JBs,JBnの個数との比に基づいて伝動変速比が決まることにな る。但し、両円板状部材に備えさせる磁石部JAs,JAn及びJBs,JBn の個数は、偶数である。 初期駆動機構Kを構成するに、前記電動モータMと受動軸1Bとの間に、伝動 クラッチを設けて、伝動開始後設定時間経過すると自動的に前記伝動クラッチを 切り操作するようにする等、各種の構成が考えられるものであり、要するに、伝 動開始後設定時間経過すると受動軸1Bの回転駆動を停止するようにするとよい 。 更に、上記実施例においては、原動機として電動モータMを例示したが、エン ジンの動力を伝動する場合や人力を伝動する場合等にも本考案は利用できるもの である。 【0009】 尚、実用新案登録請求の範囲の項に図面との対照を便利にするために符号を記 すが、該記入により本考案は添付図面の構成に限定されるものではない。 【提出日】平成5年5月27日 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】全文 【補正方法】変更 【補正内容】 【考案の詳細な説明】 【0001】 【産業上の利用分野】 本考案は、例えば電動モータの出力を各種装置の受動部に伝動するために使用 するなど、各種の伝動に使用できる伝動装置に関し、詳しくは、永久磁石を利用 した伝動装置に関する。 【0002】 【従来の技術】 かかる伝動装置として、従来では、次の[1]〜[3] に記載ものが知られている 。 [1] 図8に示されるように、駆動側円板状部材11と受動側円板状部材12とを 、同軸芯周りで回転自在に支承し、それら円板状部材11,12の外周部夫々 に、互いにひきつけあう磁石部n,sの複数個を設けて、両円板状部材11, 12を一体回転させるように構成したものがある。 [2] また、別の手段としては、実開昭48ー96344号公報に示されているように、小 径の駆動側円板状部材と大径の受動側円板状部材とを、その外周部どうしが対 向する状態で配設し、かつ、両円板状部材の外周部夫々に、周方向で隣合う磁 石部の極性が互いに異なる状態で、多数の永久磁石部を等間隔置きに配設した 伝動装置も知られている。 [3] さらにまた、互いに平行に配置した一対の回転軸の一方に、外周部に永久磁 石部を有した同一径の複数個の円板状部材を配設するとともに、他方の回転軸 上に外周部に永久磁石部を有した別の円板状部材を、その回転軸軸線方向で位 置変更自在に設け、かつ、前記一方の回転軸側に設けられる複数個の円板状部 材における永久磁石部の配設個数を互いに異ならせて、その複数の円板状部材 のうちの何れに対応した位置に前記他方の回転軸上の円板状部材を位置させる かを選択することにより、伝動速度比を変速できるようにしたものも知られて いる(例えば、実開昭50ー61244号公報)。 【0003】 【考案が解決しようとする課題】 上記の従来技術のうち、駆動側円板状部材と受動側円板状部材とを同軸芯状に 位置させた前記[1] に記載の技術では、両円板状部材の回転速度が互いに同一の 状態で回転駆動されるものであり、変速を伴う伝動を行うことができないもので あった。 また、大小の円板状部材を外周部どうしが対向する状態で設けた前記[2] に記 載の技術では、直径の小さい主動軸の着磁車における磁極数が、直径の大きい着 磁車より少なく、非磁性部の円弧の長さは双方が等しい。主動側の1極1個の磁 力回転に従動側の1極1個の磁力が追随して磁極に反比例する回転をするので、 同じ周速で従動側は減速回転となる。増速回転を目的とはしていない。 さらに、前記[3] に記載の従来技術によれば、永久磁石を用いた伝動装置で円 板状部材どうしの周速度を変えて、例えば20/16或は26/20に増速伝動も行えるも のではあるが、外周部を対向させる各円板状部材どうしの間で、永久磁石部の極 数比を、上記数値比以上に大きくすると磁石が密着していて非磁性の円弧部分が ないので斥力が回転を妨げる円弧部分が長くなって回転できなくなる。この装置 は例示されている以上にはあまり大きい速度変換はできないが、3段階に変更し て小幅な速度変換を目的としていると考えられる。 本考案の目的は、永久磁石を用いた伝動装置において、4枚の受動円板が1枚 の駆動円板を取り囲む形で磁気力を働き合って3倍の増速回転をして、かつ、大 きい運動エネルギーを発生して強力な伝動効果を得ることにある。 【0004】 【課題を解決するための手段】 上記目的を達成するために講じた本考案の技術手段は、1つの軸芯周りで回転 駆動される小径の駆動側円板状部材と、前記駆動側円板状部材の周囲に等間隔置 きで、かつ、前記1つの軸芯から等距離を隔てて位置する4つの軸芯周りで夫々 回転自在に設けた大径の受動側円板状部材とを、互いに外周部どうしを対向させ た状態に配設し、前記各円板状部材の外周部夫々に、周方向で隣合う永久磁石部 の極性が互いに異なる状態で、等間隔置きに永久磁石部を設け、かつ、永久磁石 部どうしの間に磁石が存在しない磁石不存在領域を設けるとともに、前記小径の 駆動側円板状部材側に設けられる永久磁石部と磁石不存在領域とを夫々6箇所と し、前記大径の受動側円板状部材側に設けられる永久磁石部と磁石不存在領域と を夫々2箇所に設定することによって、大径の受動側の各円板状部材と小径の駆 動側円板状部材とでは、磁極数が、前者は後者より少なくて同極の各磁石数は多 い、かつ磁石不存在領域の円弧部分の数は前者が後者より少なくてその円弧長さ は前者が後者より大きくして夫々の差を設けてある。 【0005】 【作用】 上記技術手段を講じたことによる作用は次の通りである。 すなわち、駆動側円板状部材の回転を、両円板状部材の外周部夫々に設けた永 久磁石の磁力を利用して、受動側板状部材に伝動するのであり、両円板状部材の 夫々に備えさせる永久磁石部の数と同極磁石の個数および磁石不存在領域の数と その円弧部の長さが前記のように異なることにより、駆動側円板状部材から伝動 されてくる回転磁力に、受動側円板状部材の磁力が反応して増速回転が生起する のである。 ちなみに、小径の駆動側円板状部材の回転する磁力に、大径の受動側円板状部 材の磁力が反応し極数に反比例して増速回転することは実験により判明している 。そして、その原理を図1(イ),(ロ),(ハ),(ニ)に基づいて説明する 。 尚、図1は駆動側円板状部材Aの回転に伴って受動側円板状部材Bを3倍の速 度で増速回転させる場合を示すものであって、駆動側円板状部材Aに、6個永久 磁石部JAs,JAnを設けると共に、受動側円板状部材Bに、2個の永久磁石 部JBs,JBnを設けてある。但し、JAs,JBsがS極であり、JAn, JBnがN極である。 そして、駆動側円板状部材Aが図1(イ)で示す状態から(ロ)を経て図1( ハ)で示す状態に回転する間、及び駆動側円板状部材Aが図1(ハ)で示す状態 から(ニ)を経て図1(イ)で示す状態に中心角120°回転する間において、 受動側円板状部材Bが一回転するようにしてある。 磁力利用の伝動について詳述すると、図1(イ),(ハ)の状態、換言すれば 、両円板状部材A,B夫々の異なる磁極の磁石部が最も近接する状態に近い範囲 において、異なる磁極の磁石部が互いに引きつけ合う作用によって受動側円板状 部材Bの磁石が、磁石不存在領域である長い円弧部分で駆動側円板状部材Aの磁 石との極間距離を次第に縮小してゆくので、極間距離の2乗に反比例して働く磁 力を磁石自体に加えることによって加速回転されることになる。 つまり、例えば図1(イ)において、駆動側円板状部材Aの磁石部JAsがT 1からT2に至る回転範囲においては、その磁石部JAsと受動側円板状部材B の磁石部JBnとが引きつけ合う作用によって、受動側円板状部材Bが加速回転 されるものとなる。そして、駆動側円板状部材Aの磁石部JAsがT2からT3 に至る回転範囲においては、その磁石部JAsと受動側円板状部材Bの磁石部J Bnとが別々の円周方向へ回転して極間距離が急速に拡大され、回転を妨げる力 に変わった引力は極間距離の2乗に反比例して急減衰するので、磁気死点がなく なり、磁石部JBnは運動エネルギーの大部分を保存したまま回転していく。 また、図2にも示すように、両円板状部材A,Bの各永久磁石部JAs,JA n,JBs,JBnは、夫々が密着した状態で配設されているのではなく、各永 久磁石部JAs,JAn,JBs,JBnどうしの間に磁石不存在領域Sが存在 し、かつ、その磁石不存在領域Sが、両円板状部材A,Bの間で対向する各永久 磁石部JAs,JAn,JBs,JBnどうしの磁力の相互干渉が磁力伝動に不 利に働くことを回避して、両円板状部材A,Bどうしの間における相対速度差を 生じさせるために有効に作用し、径の大きい受動側円板状部材Bの一つの永久磁 石部JBsまたはJBnが、その磁石不存在領域である長い円弧部分で径の小さ い駆動側円板状部材Aの永久磁石部JAnまたはJAsの一つに、前記極間距離 の2乗に反比例して引力が急速に強まりそして急速に弱まる状態で追いつき追い 抜く回転をするための手段として用いられているものであるから、両円板状部材 A,B間における磁力伝動を良好に行うことができる。 すなわち、両円板状部材A,Bは、その極数比が6:2と駆動側円板状部材A 側で大きく、直径が駆動側円板状部材Aよりも受動側円板状部材Bが大きく、磁 石不存在領域の円弧部の数が6:2で円弧の長さは駆動側円板状部材Aよりも受 動側円板状部材Bの方が大きい、という設定条件の両者の相違が、後者の磁石に 大きい運動現象を生起するところとなり、大径の受動側円板状部材Bと小径の駆 動側円板状部材Aとの角速度比が3:1したがって回転比3:1となり、従来の 各種伝動装置とは直径の大小関係が反対の回転比を実現したことになる。前記の 従来技術で説明した実開昭50ー61244号公報にしめされる伝動速度変換装 置では小比率での増速も可能になっているが、伝動状態での回転体は1個対1個 で、かつ同じ直径のものが対向している。本考案のものでは小直径の1個に大直 径の4個が対向して、小直径からの磁気力伝動に大直径の方が、その磁気力で対 応して回転比が大小同時に極数に反比例して3:1と大きい比率を得ている。 そして、上記の原理に加えて、本考案では、図2のように1つの軸芯Xa周り で回転駆動される小径の駆動側円板状部材Aに対して、その駆動側円板状部材A の周囲に等間隔置きで、かつ、前記1つの軸芯Xaから等距離を隔てて位置する 4つの軸芯Xb周りで夫々回転自在に設けた大径の受動側円板状部材Bを設けた ものであるから、各受動側円板状部材Bどうしの間でも、例えば図2の磁石位置 から回転した一瞬時の次の位置で、同図中、上の磁石部JBsと右の磁石部JB n、及び、下の磁石部JBnと左の磁石部JBsが夫々に磁石不存在領域で、互 いに磁力の引きつけ合う前記極間距離の2乗に反比例する力が夫々の回転を助長 する力として有効に作用するとともに、この受動側円板状部材Bと前記駆動側円 板状部材Aとの間で、磁力の反発し合う力もタイミングよく回転に有効に作用し て、出力側の受動側円板状部材Bがより効率よく回転することができる。 その反発とは、図2における紙面左の受動側円板状部材Bの磁石部JBnとこ れに対向する位置の駆動側円板状部材Aの磁石部JAn、及び、同図紙面右の受 動側円板状部材Bの磁石部JBsとこれに対向する位置の駆動側円板状部材Aの 磁石部JAsの磁石位置で働く斥力である。図の位置から駆動側円板状部材Aが 中心角30゜、受動側円板状部材Bが同90゜回転したとき図の上と下で双方の 磁石の斥力が同様に働くことになる。上記の30゜対90゜の回転で図の上下と 左右の磁石が対向し合う位置関係が入れ替わる。 駆動側円板状部材Aと受動側円板状部材Bとの磁石の極数の比を変えて駆動側 円板状部材A一枚を4極、受動側円板状部材B四枚を各2極にして組合せると回 転途中で隣合う受動側円板状部材Bの同極どうしが互いの回転を妨げる方向で接 近して、受動側円板状部材Bどうしの間における磁力の反発し合う力が生じ、殆 ど回転しなくなることがわかっている。 本考案のように受動側円板状部材Bを2極にして4つの軸芯位置に設け、駆動 側円板状部材Aを6極にして使用する場合には、前記のように磁石不存在の領域 で隣合う受動側円板状部材Bどうしの間でも互いに引き付け合う力が有効なタイ ミングで作用して、各受動側円板状部材Bどうしが相互に回転を高め合う副次的 な働きがある。 【0006】 【考案の効果】 上記の作用に基づいて次の効果が得られる。 すなわち、駆動される側の受動側円板状部材を駆動側円板状部材よりも速く回 転させ、小径で短い配設間隔の駆動側円板状部材の永久磁石部と、大径で長い配 設間隔の受動側円板状部材の永久磁石部とが夫々対応した状態で両円板状部材が 回転する。つまり、永久磁石部の配設間隔が長い大径の受動側円板状部材は、そ の大きい磁力が長い円弧の磁石不存在領域で前記のとおり有効に働いて磁石重量 に磁気による力を加え加速度となるので、それよりも小径の駆動側円板状部材よ りも周速度の速い状態で回転して大きい運動エネルギーを発生し、かつそのエネ ルギーの大部分を前記のように保存し続けて回転する。 したがって、前記永久磁石部の配設間隔の差、及び磁石不存在領域の円弧長さ の差などを利用して、極数に反比例する回転が直径の大小にかかわらず生起する ことで、両円板状部材どうしの間に周速度の差を生じさせ、充分な増速比を得る ことができる。 図2の磁石位置から中心角が駆動側円板状部材が30゜、受動側円板状部材が 90゜回転する毎に、磁石の対向し合う位置関係が、同図の上から右、右から下 、下から左、左から上へと移り変わり、前記30゜、90゜の回転毎にこの変化 を正確に繰り返して回転する。これらの変化は双方の円板状部材が1:3の角速 度比で回転して3倍の増速回転をし、受動側円板状部材の各4個が大きい直径比 のさらに3倍の周速になることを示すものである。 また、径の大きい受動側円板状部材における各同極磁石部の配設磁石数は1/4 円周の円弧内である程度多いことが有利である。数個程度では弱い回転力で小さ い運動エネルギーしか得られないことが分かっている。 駆動側円板状部材に対向させたその周囲4箇所に設ける受動側円板状部材は相 互に前記同様極間距離の縮小に反比例して引力を強めて回転を高め合う状態で回 転するので、これらの作用から、より効率のよい回転をし、特に受動側円板状部 材の多数個磁石がその磁力を十二分に発現して3倍の角速度で3倍の増速回転と なり、直径比の3倍の周速で大きい運動エネルギーを持つに至る。 一枚分磁石重量の同じ時間の運動距離は上記周速比のさらに4倍となる。駆動 軸に与える機械力は駆動側円板状部材の磁石を回転させることに消費される。代 わって同円板状部材に与えてある磁気力の回転が伝動されて、それに受動側円板 状部材に与えてある大きい磁気量が反応し、前記の運動をして出力となってゆく 。 ギヤーなどで一方的に伝動して増速する場合は、増速しただけトルクは小さ くなるが、前記のように受動側円板状部材も磁力を与えられていて、駆動側円板 状部材から伝動されてくる磁気力に、大きい半径の円周部で多数個の磁石が磁気 力反応を続けながら速い周速となり、大きい運動エネルギーをもって回転するの で、ギヤーなどの場合と反対に、増速して尚かつ大きいトルクが得られることと なる。 【0007】 【実施例】 以下本考案の実施例を図面に基づいて説明する。 図2及び図3は、前述の原理で説明した伝動装置を改良した本考案の伝動装置 であって、電動モータMが接続される駆動軸1Aに、駆動側円板状部材Aを一体 回転自在に取り付け、前記駆動軸1Aと平行な受動軸1Bの四本夫々に、互いに 密接して受動側円板状部材Bを、その外周部が駆動側円板状部材Aの外周部に密 接して対向する状態で一体回転自在に取り付けてある。そして、四本の受動軸1 B夫々を伝動ベルト2を用いて一体回転するように連動連結すると共に、四本の 受動軸1Bのうちの一つの受動軸1Bに、各種装置に対する出力用プーリ3を取 り付けてある。但し、図中Cは、伝動ケースである。 そして、互いに平行する軸芯Xa,Xb周りで回転する両円板状部材A,Bの 外周部夫々に、偶数個の永久磁石部JAs,JAn,JBs,JBnを、周方向 で隣合う永久磁石部JAs,JAn,JBs,JBnの極性が互いに異なる状態 で、かつ、各永久磁石部JAs,JAn,JBs,JBnどうしの間に磁石が存 在しない磁石不存在領域Sを設けた状態で配置すると共に、前記大径の受動側円 板状部材B側に設けられた永久磁石部JBs,JBnの極性の異なるものどうし の永久磁石部JBs,JBn間に位置する磁石不存在領域Sの周方向範囲を、小 径の駆動側円板状部材A側に設けられる永久磁石部JAs,JAnにおける極性 の異なるものどうしの磁石部JAs,JAn間に位置する磁石不存在領域Sの周 方向範囲よりも大きく設定して、両円板状部材A,B の夫々に備えさせる永久磁 石部JAs,JAn,JBs,JBn の数を、受動側円板状部材Bよりも駆動 側円板状部材Aの方が多く、磁石個数は反対に駆動側円板状部材Aよりも受動側 円板状部材Bの方が多い状態で設けてある。また、この伝動装置には、伝動初期 時においてのみ前記受動側円板状部材B を駆動して前記受動側円板状部材B を 初期回転させる初期駆動機構Kを設けてある。 さらに詳述すると、駆動側円板状部材Aに、第一磁石部JAsの三個と第二磁 石部JAnの三個とを60度間隔おきに取り付け、受動側円板状部材Bの夫々に、 第一磁石部JBsの一個と第二磁石部JBnの一個とを 180度間隔おきに取り付 けてあり、これらの各磁石部JAs,JAn,JBs,JBnの間の周方向間隔 の夫々が磁石不存在領域Sを構成している そして、駆動側円板状部材Aの第一及び第二磁石部JAs,JAn夫々を構成 するに、棒状の永久磁石jの一個を、その長手方向を前記軸芯Xa方向に向ける 状態で設けてある。但し、永久磁石jの両端夫々には、S極とN極とがあり、従 って、両磁石部JAs,JAnの極性を異ならせるために、永久磁石jを向きを 異ならせて設置してある。 また、受動側円板状部材Bの第一及び第二磁石部JBs,JBn夫々を構成す るに、前記棒状永久磁石jの十個を、その長手方向を前記軸芯Xb方向に向ける 状態で設けてある。但し、両磁石部JBs,JBnの極性を異ならせるために、 永久磁石jを向きを異ならせて設置してある。 前記初期駆動機構Kを構成するに、補助電動モータMsを、電磁クラッチ等の 伝動クラッチ4を用いて連結してあり、もって前記電動モータMを駆動するに伴 って補助電動モータMsを適当時間駆動させることによって、受動側円板状部材 Bを初期回転させることができ、さらに、初期回転駆動時以外は伝動クラッチ4 を切り状態にすることによって、補助電動モータMsと受動側円板状部材Bとの 連結を解除できるように構成してある。 ちなみに、この構成の場合においては、図4(イ),(ロ),(ハ),(ニ) に示す構成、つまり、一つ駆動側円板状部材Aと一つの受動側円板状部材Bとの 組み合わせからなる構成を、四個設けた場合と同様となり、それへさらに隣合う 受動側円板状部材Bの磁石どうしが引き合う力による前記副次効果が加わって、 その結果、一つの駆動側円板状部材Aと一つの受動側円板状部材Bとの組み合わ せからなる構成の場合に駆動側円板状部材Aからの伝動磁力に、受動側円板状部 材Bの磁力が反応して発生するトルクの四倍より大きいトルクを受動側円板状部 材B四つ分の合計で発生できるものとなる。又、受動側円板状部材Bは磁石部J Bs,JBnの重量によって円周部に比較的大きな重量を有するものであり、そ の結果、定常回転状態においては大きな動慣性力を有し、かつ、その重量の磁石 は運動エネルギーをもって回転するときにも対象磁石と引力・斥力を前記のよう に働き合うので、大なる負荷を駆動するための伝動装置としても利用できるもの である。 【0008】 〔別実施例〕 次に、別実施例について説明する。 前記実施例において、伝動ベルト2に代えて伝動チェーンを用いても良い。 図5及び図6は、上記図2及び図3で説明した伝動装置を改造したものであっ て、前記駆動側円板状部材Aとギヤ伝動機構6を介して連動連結された補助の駆 動側円板状部材Aaの四個を、隣合う受動側円板状部材Bの間に位置させて設け たものである。 図7は上記図2及び図3で説明した伝動装置を改造したものであって、前記駆 動側円板状部材A及び前記受動側円板状部材Bの夫々を横型または縦型に組んで 、回転軸芯方向五段に設け、そして、前記駆動側円板状部材Aよりも大径の補助 の駆動側円板状部材Abを、前記五個の駆動側円板状部材Aの下方もしくは横に 、一体回転するように設けると共に、前記受動側円板状部材Bよりも小径の補助 の受動側円板状部材Bbを、前記五個の受動側円板状部材Bの下方もしくは横に 、一体回転するように設け、更に、前記駆動軸1Aと同軸芯の出力軸7を設ける と共に、その出力軸7と前記受動軸1B夫々の延長軸部分1B1 とを、ギヤ伝 動機構8にて連動連結してある。このように3段とか5段にすればギヤー・ベル トなどによる機械的損失の比率を著しく低減する利点がある。ギヤー連結する場 合は図2に示した伝動ベルト2及び図3に示したプーリ3は不要である。 本考案を実施するに、駆動側円板状部材Aと受動側円板状部材Bの径は磁石の 大きさを含めて受動側円板状部材Bを駆動側円板状部材Aの2.4倍にすれば、 各外周部が密接して磁力の働きを向上できる。 尚、伝動の経路順序に基く形式として駆動・受動と表現しているが、伝動現象 の実態は次の通りである。すなわち、駆動側円板状部材Aに与えている磁石が回 転し、与えた機械力に代って伝動されてゆく回転磁力に、受動側円板状部材Bに 与えてある多数個の磁石が、ただ単に追随するのではなく、能動的にそれに反応 して駆動側円板状部材Aの異極磁石を、極間距離の2乗に反比例する磁気力の働 きで多数個磁石重量に力を加えながら、前述のように追いかけ追いぬく運動をす る。さらに受動側円板状部材Bの磁石同士で前記副次的効果が伴って、磁石不存 在領域である大半径の円弧部分で、4枚すべての大きい磁石重量が配列の最後尾 まで長い円弧の距離を活用する形で、絶え間なく磁力を働き合って3倍速の回転 をして直径の3倍の周速で運動する。 さらに、上記実施例においては、原動機として電動モータMを例示したが、エ ンジンの動力を伝動する場合や人力を伝動する場合等にも本考案は利用できるも のである。 【0009】 尚、実用新案登録請求の範囲の項に図面との対照を便利にするために符号を記 すが、該記入により本考案は添付図面の構成に限定されるものではない。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission device that can be used for various transmissions, for example, used for transmitting the output of an electric motor to a passive portion of various devices. Specifically, it relates to a transmission device using a permanent magnet. As such a transmission device, for example, as shown in FIG. 9, a drive-side disk-shaped member 11 and a passive-side disk-shaped member 12 are rotatably supported around a coaxial core. A plurality of magnet portions n and s attracting each other are provided on the outer peripheral portions of the disc-shaped members 11 and 12, respectively, so that the disc-shaped members 11 and 12 are integrally rotated. According to the transmission device having the above-mentioned conventional structure, the transmission is performed in a state where the rotational speeds of the disk-shaped members 11 and 12 are the same. In other words, the transmission is changed. There is a demand for a transmission device that cannot be transmitted and can be transmitted at a variable speed. The present invention has been made in view of the above circumstances, and an object thereof is to provide a transmission device that can transmit a variable speed by using a permanent magnet. A characteristic structure of a transmission device according to the present invention is that a drive-side disk-shaped member and a passive-side disk-shaped member are parallel to each other with their outer peripheral portions facing each other. Provided rotatably around the axis, in the outer peripheral portion of each of the disk-shaped member, an even number of permanent magnet portions, at a proper interval in the circumferential direction, and with different polarities of adjacent magnet portions, and further, The number of permanent magnets provided for each of the disk-shaped members is different, and the passive-side disk-shaped member is driven to initially rotate by driving the passive-side disk-shaped member only at the beginning of transmission. The point is that an initial drive mechanism is provided, and its operation and effect are as follows. That is, the rotation of the drive-side disc-shaped member is transmitted to the passive-side plate-shaped member by utilizing the magnetic force of the permanent magnets provided on the outer peripheral portions of both disc-shaped members, and The initial rotation of the passive-side plate-shaped member in the initial stage of transmission and the difference in the number of permanent magnet portions provided in each of the disc-shaped members enable transmission at a variable speed. Incidentally, it has been proved experimentally that the rotation of the drive-side disk-shaped member is transmitted to the passive-side disk-shaped member at a variable speed by the magnetic force. The principle will be described with reference to FIGS. 1 (a), (b), (c) and (d). Note that FIG. 1 shows a case where the passive-side disk-shaped member B is rotated at an increased speed at a triple speed as the drive-side disk-shaped member A rotates. , 6 permanent magnets JAs, JAn are provided, and the passive side disk-shaped member B is provided with two permanent magnets JBs, JBn. However, JAs and JBs are south poles, and JAn and JBn are north poles. Then, while the drive-side disk-shaped member A rotates from the state shown in FIG. 1A to the state shown in FIG. 1C, and when the drive-side disk-shaped member A changes from the state shown in FIG. The passive side disk-shaped member B is rotated once while rotating to the state indicated by 1 (a). The transmission using magnetic force will be described in detail. In the states of FIGS. 1A and 1C, in other words, in the range close to the state where the magnet portions of the respective discoid members A and B having different magnetic poles are closest to each other, It is presumed that the passive side disk-shaped member B is accelerated and rotated by the action of the magnets having different magnetic poles attracting each other. That is, for example, in FIG. 1A, the magnet portion JAs of the drive-side disk-shaped member A is T 1 To T 2 In the range on the upper side in the rotation direction up to, the action of the magnet portion JAs and the magnet portion JBn of the passive-side disc-shaped member B attracting each other causes the passive-side disc-shaped member B to be accelerated and rotated. Then, the magnet portion JAs of the drive-side disc-shaped member A is T 2 To T 3 In the range on the upper side in the rotation direction up to, the action of attracting the magnet portion JAs and the magnet portion JBn of the passive-side disc-shaped member B causes the passive-side disc-shaped member B to be decelerated. The deceleration action is not performed in the entire range on the lower side in the rotation direction, and the magnet portion JAs of the drive-side disk-shaped member A is T 2 The acceleration and rotation action continues to be performed even in the range immediately after exceeding the above range, and as a whole, the acceleration action range is larger than the deceleration action range, and as a result, the passive-side disc-shaped member B It can be inferred that is rotated while being accelerated and rotated. [0006] Therefore, the rotation of the drive-side disc-shaped member can be changed in speed and transmitted to the passive-side disc-shaped member. Therefore, the practical advantage that satisfies the above-mentioned demand is great. I got the equipment. Embodiments of the present invention will be described below with reference to the drawings. 2 and 3 show an improvement of the transmission device described in the above-mentioned principle, in which the drive side disc-shaped member A is integrally rotatably attached to the drive shaft 1A to which the electric motor M is connected. The passive-side disk-shaped member B is integrally rotatably attached to each of four passive shafts 1B that are parallel to the drive-shaft 1A, with the outer peripheral part facing the outer peripheral part of the drive-side disk-shaped member A. . Then, each of the four passive shafts 1B is interlockingly connected using the transmission belt 2 so as to rotate integrally, and one of the four passive shafts 1B is provided with an output pulley 3 for various devices. It is attached. However, C in the figure is a transmission case. Then, an even number of permanent magnet parts JAs, JAn, JBs, JBn are arranged at appropriate intervals in the circumferential direction and adjacent to the outer peripheral parts of both disk-shaped members A, B which rotate around mutually parallel axis centers Xa, Xb. It is provided in a state in which the polarities of the matching magnet portions are made different, and further, in a state in which the number of permanent magnet portions JAs, JAn, JBs, JBn provided for each of the disk-shaped members A, B is made different, and at the time of initial transmission. Only in the above, an initial drive mechanism K for driving the passive-side disk-shaped member B to initially rotate the passive-side disk-shaped member B is provided. That is, three first magnet portions JAs and three second magnet portions JAn are attached to the drive-side disc-shaped member A at intervals of 60 degrees, and each of the passive-side disc-shaped members B is attached to the first side. One magnet part JAs and one second magnet part JAn are attached at intervals of 180 degrees. In order to configure each of the first and second magnet portions JAs and JAn of the drive-side disc-shaped member A, one rod-shaped permanent magnet j is provided with its longitudinal direction oriented in the axial Xa direction. is there. However, both ends of the permanent magnet j have an S pole and an N pole. Therefore, in order to make the polarities of both magnet parts JAs, JAn different, the permanent magnet j is installed in different directions. In order to configure the first and second magnet portions JBs and JBn of the passive-side disk-shaped member B, ten rod-shaped permanent magnets j are provided with their longitudinal directions oriented in the axial center Xb direction. There is. However, in order to make the polarities of the two magnet parts JBs, JBn different, the permanent magnet j is installed in different directions. To configure the initial drive mechanism K, an auxiliary electric motor Ms is connected using a transmission clutch 4 such as an electromagnetic clutch, so that the auxiliary electric motor Ms is driven for an appropriate time as the electric motor M is driven. By doing so, the passive-side disc-shaped member B can be initially rotated, and the auxiliary electric motor Ms and the passive-side disc-shaped member B can be rotated by disengaging the transmission clutch 4 except during the initial rotation drive. It is configured so that the connection with can be released. The operation of the transmission configured as described above will be described. When the both electric motors M and Ms are operated, the drive-side disk-shaped member A is rotationally driven and the passive-side disk-shaped member is also driven. The member B is driven to rotate initially. Then, with the rotation of both disk-shaped members A and B, the passive side disk-shaped member B is accelerated and rotated by the attracting action and the pressing action of the magnet portions JAs, JAn and JBs, JBn, and finally. In addition, the passive-side disk-shaped member B rotates at a speed three times the rotation speed of the drive-side disk-shaped member A. Incidentally, in the case of this configuration, the configuration shown in FIGS. 4 (a), (b), (c), and (d), that is, one drive-side disk-shaped member A and one passive-side disk-shaped member In the case of the configuration including the combination with the member B, the same as the case where four pieces are provided, and as a result, the configuration including the combination of the one drive-side disk-shaped member A and the one passive-side disk-shaped member B It is possible to transmit a torque that is four times the transmission torque. Further, the passive-side disc-shaped member B has a relatively large weight in the circumferential portion due to the weight of the magnet portions JBs and JBn, and as a result, it has a large dynamic inertial force in a steady rotation state and becomes large. It can also be used as a transmission device for driving a load. Another Example Next, another example will be described. In the above embodiment, a transmission chain may be used instead of the transmission belt 2. FIGS. 5 and 6 are modifications of the transmission device described in FIGS. 2 and 3, and show an auxiliary drive side which is interlockingly connected to the drive side disk-shaped member A through a gear transmission mechanism 6. The four disk-shaped members Aa are provided so as to be positioned between the adjacent passive-side disk-shaped members B. FIG. 7 shows a modification of the transmission device described with reference to FIGS. 2 and 3, in which each of the drive-side disc-shaped member A and the passive-side disc-shaped member B has five stages in the direction of the rotation axis. And an auxiliary drive-side disk-shaped member Ab having a diameter larger than that of the drive-side disk-shaped member A is provided below the five drive-side disk-shaped members A so as to integrally rotate. An auxiliary passive disk-shaped member Bb having a diameter smaller than that of the passive disk-shaped member B is provided below the five passive disk-shaped members B so as to rotate integrally, and further, the drive An output shaft 7 coaxial with the shaft 1A is provided, and the output shaft 7 and extension shaft portions 1B of the passive shaft 1B are provided. 1 And are linked by a gear transmission mechanism 8. In carrying out the present invention, the diameters of the drive-side disk-shaped member A and the passive-side disk-shaped member B can be set arbitrarily. Further, as shown in FIG. 8, the number of magnets JAs, JAn provided in the drive-side disc-shaped member A is made smaller than the number of magnets JBs, JBn provided in the passive-side disc-shaped member B. Then, it may be configured to perform deceleration transmission. That is, the transmission gear ratio is determined based on the ratio of the number of magnets JAs, JAn provided on the drive-side disc-shaped member A to the number of magnets JBs, JBn provided on the passive-side disc-shaped member B. Become. However, the numbers of the magnet portions JAs, JAn and JBs, JBn provided on both disc-shaped members are even. To configure the initial drive mechanism K, a transmission clutch is provided between the electric motor M and the passive shaft 1B, and the transmission clutch is automatically disengaged when a set time has elapsed after the start of transmission. Various configurations are conceivable, and in short, it is preferable to stop the rotational drive of the passive shaft 1B after a lapse of a set time after the start of transmission. Further, although the electric motor M is exemplified as the prime mover in the above-described embodiment, the present invention can be applied to the case of transmitting the power of the engine or the case of transmitting human power. It should be noted that reference numerals are added to the claims of the utility model for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the accompanying drawings by the entry. [Submission Date] May 27, 1993 [Procedure Amendment 1] [Amendment Document Name] Specification [Amendment Item Name] Full Text [Amendment Method] Change [Amendment Content] [Detailed Description of Device] [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission device that can be used for various transmissions, for example, used to transmit the output of an electric motor to a passive portion of various devices. Regarding the device. [0002] As such a transmission device, conventionally, the following [1] to [3] are known. [1] As shown in FIG. 8, a drive-side disc-shaped member 11 and a passive-side disc-shaped member 12 are rotatably supported around a coaxial core, and outer peripheral portions of the disc-shaped members 11 and 12 are supported. There is a structure in which a plurality of magnet parts n and s attracting each other are provided so that both disc-shaped members 11 and 12 are integrally rotated. [2] As another means, as disclosed in Japanese Utility Model Application Laid-Open No. 48-96344, a small-diameter drive-side disk-shaped member and a large-diameter passive-side disk-shaped member are used. The permanent magnets are arranged with their outer peripheral parts facing each other, and a large number of permanent magnet parts are arranged at equal intervals on the outer peripheral parts of both disc-shaped members, with the polarities of adjacent magnetic parts in the circumferential direction being different from each other. There is also known a transmission device arranged in the. [3] Furthermore, a plurality of disk-shaped members of the same diameter having a permanent magnet portion on the outer periphery are arranged on one of the pair of rotating shafts arranged in parallel with each other, and the other rotating shaft is mounted on the other rotating shaft. Another disc-shaped member having a permanent magnet portion on the outer peripheral portion is provided so that its position can be freely changed in the direction of the axis of the rotation axis, and a plurality of disc-shaped members provided on the one rotation axis side are provided. By making the number of the permanent magnets different from each other and selecting which of the plurality of disc-shaped members the disc-shaped member on the other rotation shaft is to be positioned, It is also known that the transmission speed ratio can be changed (for example, Japanese Utility Model Laid-Open No. 50-61244). Among the above-mentioned conventional techniques, in the technique described in [1], the drive-side disc-shaped member and the passive-side disc-shaped member are coaxially positioned. The two disk-shaped members are rotatably driven at the same rotational speed, so that transmission accompanied by gear shifting cannot be performed. Further, in the technique described in [2], in which large and small disk-shaped members are provided with their outer peripheral portions facing each other, the number of magnetic poles in the magnetized wheel of the main shaft with a small diameter is larger than that of a magnetized wheel with a large diameter. The lengths of the arcs of the non-magnetic portion are the same for both. Since the magnetic force of one magnetic pole on the driving side and the magnetic force of one magnetic pole on the driven side follow and rotate in inverse proportion to the magnetic poles, the driven side is decelerated at the same peripheral speed. It is not intended to speed up rotation. Furthermore, according to the prior art described in [3], the peripheral speed of the disk-shaped members can be changed by a transmission device using a permanent magnet to perform speed-up transmission to, for example, 20/16 or 26/20. However, if the pole ratio of the permanent magnet part is made larger than the above numerical ratio between the disk-shaped members whose outer peripheral parts face each other, the magnets are in close contact and there is no non-magnetic arc part. The repulsive force obstructs the rotation of the arc, making it unrotatable. Although this device cannot perform much larger speed conversion than that illustrated, it is considered that the speed conversion is aimed at a narrow speed conversion by changing in three stages. The object of the present invention is, in a transmission device using permanent magnets, four passive discs to exert a magnetic force in such a manner as to surround one drive disc to perform threefold speedup rotation, and It is to generate a large kinetic energy and obtain a powerful transmission effect. Means for Solving the Problems The technical means of the present invention taken to achieve the above-mentioned object is a small-diameter drive-side disk-shaped member that is rotationally driven around one axis, and the drive. A large-diameter passive side disk-shaped member provided at equal intervals around the side disk-shaped member and rotatably provided around four shaft cores located at equal distances from the one shaft core; Are arranged in such a manner that their outer peripheral portions are opposed to each other, and the permanent magnets are arranged at equal intervals on the outer peripheral portions of the respective disk-shaped members with the polarities of the permanent magnet portions adjacent to each other in the circumferential direction being different from each other. And a magnet absent region where no magnet is present between the permanent magnet parts, and a permanent magnet part and a magnet absent region provided on the side of the small-diameter drive-side disk-shaped member are respectively provided. And a permanent magnet provided on the side of the large-diameter passive-side disc-shaped member. The number of magnetic poles of the large-diameter passive-side disk-shaped member and the small-diameter driven-side disk-shaped member is smaller than that of the latter by setting each of the parts and the magnet-free area at two positions. The number of each magnet of the same pole is large, the number of arc portions in the magnet absent region is smaller in the former than in the latter, and the arc length is larger in the former than in the latter, and the respective differences are provided. The action resulting from the above technical means is as follows. That is, the rotation of the drive-side disk-shaped member is transmitted to the passive-side plate-shaped member by utilizing the magnetic force of the permanent magnets provided on the outer peripheral portions of both the disk-shaped members. The number of permanent magnets, the number of homopolar magnets, the number of magnet absent areas, and the length of the arc portion of the magnets are different as described above. In addition, the magnetic force of the disc-shaped member on the passive side reacts with each other to cause accelerated rotation. By the way, it has been proved by experiments that the magnetic force of the large-diameter passive-side disk-shaped member reacts with the rotating magnetic force of the small-diameter drive-side disk-shaped member to rotate at an increased speed in inverse proportion to the number of poles. Then, the principle thereof will be described based on FIGS. 1 (a), 1 (b), 1 (c) and 1 (d). Note that FIG. 1 shows a case where the passive-side disk-shaped member B is rotated at an increased speed at a triple speed as the drive-side disk-shaped member A rotates. , 6 permanent magnets JAs, JAn are provided, and the passive side disk-shaped member B is provided with two permanent magnets JBs, JBn. However, JAs and JBs are south poles, and JAn and JBn are north poles. Then, while the drive-side disk-shaped member A rotates from the state shown in FIG. 1A to the state shown in FIG. While the central angle is rotated by 120 ° from the state shown in () to the state shown in FIG. 1 (a) via (d), the passive-side disc-shaped member B is rotated once. The transmission using magnetic force will be described in detail. In the states of FIGS. 1A and 1C, in other words, in the range close to the state where the magnet portions of the respective discoid members A and B having different magnetic poles are closest to each other, The magnets of the passive side disk-shaped member B are gradually reduced in distance between the magnets of the drive side disk-shaped member A and the magnets of the drive-side disk-shaped member A in the long arc portion which is the magnet absent region by the action of the magnets of different magnetic poles attracting each other. Therefore, the magnetic force acting in inverse proportion to the square of the distance between the poles is applied to the magnet itself, so that the magnet is accelerated and rotated. That is, for example, in FIG. 1A, in the rotation range of the magnet portion JAs of the drive-side disc-shaped member A from T 1 to T2, the magnet portion JAs and the magnet portion JBn of the passive-side disc-shaped member B 1 By the action of attracting each other, the passive-side disk-shaped member B is accelerated and rotated. Then, in the rotation range of the magnet portion JAs of the drive-side disc-shaped member A from T2 to T3, the magnet portion JAs and the magnet portion J Bn of the passive-side disc-shaped member B rotate in different circumferential directions. Then, the distance between the poles is rapidly expanded, and the attractive force, which has changed to a force that hinders rotation, is rapidly attenuated in inverse proportion to the square of the distance between the poles. Therefore, there is no magnetic dead center, and the magnet portion JBn has most of the kinetic energy. Rotate while saving. Further, as shown in FIG. 2, the permanent magnet portions JAs, JAn, JBs, and JBn of the disk-shaped members A and B are not arranged in close contact with each other, but are set to the permanent magnets. There is a magnet non-existing region S between the magnet parts JAs, JAn, JBs, JBn, and the magnet non-existing region S faces each of the disk-shaped members A and B. , JAn, JBs, JBn avoid mutual interference of the magnetic forces adversely affecting the magnetic force transmission, and effectively act to generate a relative speed difference between the discoid members A and B. One permanent magnet portion JBs or JBn of the passive-side disk-shaped member B having a large diameter has a long arc portion which is a non-existing region of the magnet and has a small diameter of the permanent magnet portion JAn or JAs of the driving-side disk-shaped member A. First, it is drawn in inverse proportion to the square of the distance between the poles. Since it is used as a means for rotating to catch up and overtake in a state where the force rapidly increases and then rapidly weakens, magnetic force transmission between the disk-shaped members A and B can be favorably performed. That is, the two disk-shaped members A and B have a pole ratio of 6: 2, which is large on the drive-side disk-shaped member A side, and has a diameter larger than that of the drive-side disk-shaped member A on the passive-side disk-shaped member B. Is large, the number of arcs in the magnet absent region is 6: 2, and the length of the arc is larger in the passive-side disk-shaped member B than in the drive-side disk-shaped member A. However, a large motion phenomenon occurs in the latter magnet, and the angular velocity ratio between the large-diameter passive-side disk-shaped member B and the small-diameter driving-side disk-shaped member A is 3: 1, and therefore the rotation ratio is 3: 1. That is, the rotation ratio is opposite to that of the conventional various transmissions in terms of the size of the diameter. Although the transmission speed conversion device disclosed in Japanese Utility Model Application Laid-Open No. 50-61244 described above can increase the speed at a small ratio, the number of rotating bodies in the transmission state is one to one. And, those of the same diameter face each other. In the present invention, one of the small diameters is opposed to four of the large diameters, and the magnetic force transmitted from the small diameters of the large diameter corresponds to the magnetic force, so that the rotation ratio simultaneously increases and decreases the number of poles. It is inversely proportional to a large ratio of 3: 1. In addition to the above-described principle, in the present invention, as shown in FIG. 2, the driving-side disc-shaped member A with respect to the driving-side disc-shaped member A having a small diameter that is rotationally driven around one axis Xa. A large-diameter passive-side disk-shaped member B is provided at equal intervals around and around each of the four axial cores Xb that are located equidistantly from the one axial core Xa and that is rotatable about each of the four axial cores Xb. Therefore, even between the passive-side disk-shaped members B, for example, at the next moment after a moment of rotation from the magnet position in FIG. 2, the upper magnet portion JBs and the right magnet portion JB in FIG. n and the lower magnet portion JBn and the left magnet portion JBs are in the magnet non-existing region, respectively, and a force inversely proportional to the square of the distance between the magnetic forces attracting each other is effective as a force for promoting each rotation. Between the passive side disc-shaped member B and the drive side disc-shaped member A. Force repelling magnetic force also act effectively on the rotation timely, driven-side disc-shaped member B of the output side can be rotated more efficiently. The repulsion means the magnet portion JBn of the passive-side disc-shaped member B on the left side of the paper in FIG. 2, the magnet portion JAn of the drive-side disc-shaped member A at a position facing the same, and the passive side on the right-hand side of the drawing. It is a repulsive force acting at the magnet position of the magnet portion JBs of the disc-shaped member B and the magnet portion JAs of the drive-side disc-shaped member A at a position facing the magnet portion JBs. When the drive-side disk-shaped member A is rotated by a central angle of 30 ° and the passive-side disk-shaped member B is rotated by 90 ° from the position shown in the drawing, the repulsive force of both magnets works similarly above and below the drawing. With the above rotation of 30 ° to 90 °, the positional relationship in which the upper and lower magnets and the left and right magnets face each other is switched. The drive side disc-shaped member A and the passive side disc-shaped member B are changed in the ratio of the number of poles of the magnets so that the drive side disc-shaped member A has four poles and the passive side disc-shaped member B has four poles. When two poles are combined, the same poles of the adjacent passive side disk-shaped members B approach each other in the direction in which they interfere with each other during rotation, and the magnetic forces repel each other between the passive side disk-shaped members B. It has been found that there is a matching force, which causes almost no rotation. When the passive side disk-shaped member B is provided with two poles at four axial core positions and the drive side disk-shaped member A is used with six poles as in the present invention, no magnet is present as described above. In the region of the above, the forces attracting each other between adjacent passive-side disk-shaped members B act at effective timing, and the passive-side disk-shaped members B mutually increase their rotations as a secondary function. There is. The following effects can be obtained based on the above operation. That is, the driven-side disk-shaped member on the driven side is rotated faster than the driving-side disk-shaped member, and the permanent magnet portion of the driving-side disk-shaped member having a small diameter and a short disposition interval and a large-diameter long member are arranged. Both of the disk-shaped members rotate in a state where the permanent magnet portions of the passive-side disk-shaped members at the intervals correspond to each other. In other words, the large-diameter passive-side disk-shaped member with the long intervals between the permanent magnets works effectively as described above in the arc-less region where the large magnetic force is long, and the magnetic force is applied to the magnet weight to accelerate the acceleration. Therefore, it rotates at a peripheral speed higher than that of the driving-side disc-shaped member having a smaller diameter than that to generate a large kinetic energy, and most of the energy continues to be stored and rotated as described above. . Therefore, by utilizing the difference in the arrangement interval of the permanent magnet portions and the difference in the arc length of the magnet absent region, the rotation inversely proportional to the number of poles occurs regardless of the size of the diameters of both circles. A sufficient speed increase ratio can be obtained by causing a difference in peripheral speed between the plate-shaped members. Each time the drive-side disk-shaped member rotates 30 degrees and the passive-side disk-shaped member rotates 90 degrees from the magnet position in FIG. From the bottom to the bottom, from the bottom to the left, and from the left to the top, this change is repeated exactly every 30 ° and 90 ° rotations. These changes occur because both disk-shaped members rotate at an angular velocity ratio of 1: 3 and increase in speed three times, and each of the four disk-side members on the passive side has a circumference three times larger than the large diameter ratio. It shows that it becomes faster. In addition, it is advantageous that the number of magnets provided in each homopolar magnet portion of the large-diameter passive-side disk-shaped member is large to some extent within an arc of a quarter circle. It is known that only a few kinetic energy can be obtained with a weak rotational force. Since the passive-side disk-shaped members provided at four positions around the drive-side disk-shaped member are opposed to each other in the same manner as described above, the passive-side disk-shaped members rotate in a state in which the attractive force is strengthened in inverse proportion to the reduction of the inter-electrode distance, and the rotation is enhanced. Due to these effects, more efficient rotation is achieved, and in particular, a large number of magnets on the passive-side disc-shaped member fully develop their magnetic force, resulting in a three-fold increase in rotation at a three-fold angular velocity and a diameter ratio. It has a large kinetic energy at a peripheral speed of 3 times. The moving distance of the magnet weight for one sheet at the same time is four times the peripheral speed ratio. The mechanical force applied to the drive shaft is consumed to rotate the magnet of the drive-side disk-shaped member. Instead, the rotation of the magnetic force applied to the disk-shaped member is transmitted, and the large magnetic amount applied to the disk-side member on the passive side reacts with it, and the above-mentioned motion is performed to output. In the case of unidirectionally transmitting with a gear etc. to increase the speed, the torque becomes smaller as the speed increases, but as mentioned above, the passive side disk-shaped member is also given a magnetic force, In response to the transmitted magnetic force, a large number of magnets in the circumference of a large radius continue to react with the magnetic force, resulting in a high peripheral velocity and rotation with large kinetic energy, so the speed is increased, contrary to the case of gears. In addition, a large torque can be obtained. Embodiments of the present invention will be described below with reference to the drawings. 2 and 3 show a transmission device of the present invention which is an improvement of the transmission device described in the above-mentioned principle, in which the drive-side disc-shaped member A is integrally rotatable with the drive shaft 1A to which the electric motor M is connected. The passive side disc-shaped member B is closely attached to each of the four passive shafts 1B parallel to the drive shaft 1A, and the outer peripheral portion thereof is closely attached to the outer peripheral portion of the drive side disc-shaped member A. They are mounted so as to rotate together as they face each other. Then, each of the four passive shafts 1B is interlockingly connected using the transmission belt 2 so as to integrally rotate, and one of the four passive shafts 1B is connected to one of the passive shafts 1B by an output pulley 3 for various devices. Is attached. However, C in the figure is a transmission case. Then, an even number of permanent magnet parts JAs, JAn, JBs, JBn are provided adjacent to each other in the circumferential direction on the respective outer peripheral parts of the disk-shaped members A and B which rotate around mutually parallel axial centers Xa and Xb. The parts JAs, JAn, JBs, and JBn are arranged so that the polarities thereof are different from each other, and the permanent magnet parts JAs, JAn, JBs, and JBn are provided with a magnet absent region S in which no magnet exists between them. , The circumferential range of the magnet absent region S located between the permanent magnet portions JBs, JBn of the permanent magnet portions JBs, JBn provided on the side of the large-diameter passive-side disc-shaped member B having different polarities. , Larger than the circumferential range of the magnet absent region S located between the magnet parts JAs, JAn of the permanent magnet parts JAs, JAn having different polarities provided on the side of the small-diameter disk-shaped member A on the drive side. The number of permanent magnets JAs, JAn, JBs, JBn provided on both of the disk-shaped members A and B for the drive-side disk-shaped member A is larger than that for the passive-side disk-shaped member B. On the contrary, the number of magnets is provided such that the number of magnets on the passive side disk-shaped member B is larger than that on the drive side disk-shaped member A. Further, this transmission device is provided with an initial drive mechanism K for driving the passive-side disc-shaped member B 1 to initially rotate the passive-side disc-shaped member B 1 only at the initial stage of transmission. More specifically, three first magnets JAs and three second magnets JAn are attached to the driving side disc-shaped member A at intervals of 60 degrees, and each of the passive side disc-shaped members B is attached. , One of the first magnet portion JBs and one of the second magnet portion JBn are attached at an interval of 180 degrees, and each of the circumferential portions between these magnet portions JAs, JAn, JBs, JBn has no magnet. The presence area S is configured. In order to configure each of the first and second magnet portions JAs and JAn of the drive-side disk-shaped member A, one rod-shaped permanent magnet j is used, and its longitudinal direction is the axial center. It is provided so as to face the Xa direction. However, both ends of the permanent magnet j have an S pole and an N pole. Therefore, in order to make the polarities of both magnet parts JAs, JAn different, the permanent magnet j is installed in different directions. In order to configure each of the first and second magnet portions JBs and JBn of the passive-side disc-shaped member B, ten rod-shaped permanent magnets j are provided with their longitudinal directions oriented in the axial center Xb direction. There is. However, in order to make the polarities of the two magnet parts JBs, JBn different, the permanent magnet j is installed in different directions. To configure the initial drive mechanism K, an auxiliary electric motor Ms is connected using a transmission clutch 4 such as an electromagnetic clutch, so that the auxiliary electric motor Ms is driven for an appropriate time as the electric motor M is driven. By doing so, the passive-side disc-shaped member B can be initially rotated, and further, the auxiliary electric motor Ms and the passive-side disc-shaped member B can be made by disengaging the transmission clutch 4 except during the initial rotation drive. It is configured so that the connection with can be released. By the way, in the case of this configuration, the configuration shown in FIGS. 4 (a), (b), (c), and (d), that is, one driving side disk-shaped member A and one passive side disk-shaped member The configuration including the combination with B is the same as the case where four are provided, and the secondary effect due to the attraction force between the magnets of the adjacent passive side disk-shaped members B is further added to the structure, resulting in one In the case of a configuration including a combination of the drive-side disk-shaped member A and one passive-side disk-shaped member B, the magnetic force of the passive-side disk-shaped member B reacts with the transmission magnetic force from the drive-side disk-shaped member A. The torque that is greater than four times the torque that is then generated can be generated by a total of four passive-side disk-shaped members B. Further, the passive-side disc-shaped member B has a relatively large weight in the circumferential portion due to the weight of the magnet portions JBs, JBn, and as a result, has a large dynamic inertial force in the steady rotation state, and Since the magnet having the weight interacts with the target magnet by the attractive force and the repulsive force as described above even when it rotates with kinetic energy, it can be used as a transmission device for driving a large load. Another Example Next, another example will be described. In the above embodiment, a transmission chain may be used instead of the transmission belt 2. FIGS. 5 and 6 are modifications of the transmission device described in FIGS. 2 and 3, and show an auxiliary drive side which is interlockingly connected to the drive side disk-shaped member A through a gear transmission mechanism 6. The four disk-shaped members Aa are provided so as to be positioned between the adjacent passive-side disk-shaped members B. FIG. 7 shows a modification of the transmission device described with reference to FIGS. 2 and 3, wherein the drive-side disc-shaped member A and the passive-side disc-shaped member B are assembled in a horizontal type or a vertical type, respectively. The auxiliary drive-side disk-shaped members Ab having a diameter larger than that of the drive-side disk-shaped members A are provided in five stages in the direction of the axis of rotation, and the auxiliary drive-side disk-shaped members A are provided below or alongside the five drive-side disk-shaped members A. And an auxiliary passive side disk-shaped member Bb having a diameter smaller than that of the passive side disk-shaped member B, below the side of the five passive-side disk-shaped members B, or laterally. An output shaft 7 coaxial with the drive shaft 1A is provided so as to rotate integrally, and the output shaft 7 and the extension shaft portions 1B1 of the respective passive shafts 1B are interlocked by a gear transmission mechanism 8. I am doing it. As described above, the use of three or five steps has the advantage of significantly reducing the ratio of mechanical loss due to gears and belts. When the gears are connected, the transmission belt 2 shown in FIG. 2 and the pulley 3 shown in FIG. 3 are unnecessary. In carrying out the present invention, the diameters of the drive-side disk-shaped member A and the passive-side disk-shaped member B include the sizes of the magnets. If it is set to four times, the outer peripheral portions are brought into close contact with each other to improve the function of magnetic force. It should be noted that the expression "drive / passive" is used as a form based on the order of the transmission paths, but the actual transmission phenomenon is as follows. That is, the magnet applied to the drive-side disc-shaped member A rotates, and the rotating magnetic force transmitted in place of the applied mechanical force causes the large number of magnets applied to the drive-side disc-shaped member B to move. , Not merely following, but actively reacting with it to cause the different pole magnets of the drive side disk-shaped member A to act on the weight of a large number of magnets by the action of the magnetic force inversely proportional to the square of the distance between the poles. At the same time, as mentioned above, the movement to chase and overtake is performed. Further, the magnets of the passive side disk-shaped member B are accompanied by the above-mentioned secondary effect, and in the large radius arc portion which is the magnet nonexistent area, the weights of all four large magnets are long arcs to the end of the array. In the form of utilizing the distance, the magnetic force constantly works to rotate at a triple speed and move at a peripheral speed of three times the diameter. Further, although the electric motor M is illustrated as the prime mover in the above embodiment, the present invention can be applied to the case of transmitting the power of the engine or the case of transmitting human power. It should be noted that reference numerals are added to the claims of the utility model for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the accompanying drawings by the entry.

【図面の簡単な説明】 【図1】本考案の伝動装置の原理を示す概略平面図 【図2】伝動装置の概略平面図 【図3】伝動装置の概略側面図 【図4】図2、図3に示す実施例における伝動の原理を
示す概略平面図 【図5】別実施例の概略平面図 【図6】別実施例の概略展開側面図 【図7】別実施例の概略側面図 【図8】別実施例の概略平面図 【図9】従来例の概略平面図 【符号の説明】 A 駆動側円板状部材 B 受動側円板状部材 JAs,JAn,JBs,JBn 磁石部 K 初期駆動機構
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view showing the principle of the transmission device of the present invention. FIG. 2 is a schematic plan view of the transmission device. FIG. 3 is a schematic side view of the transmission device. Schematic plan view showing the principle of transmission in the embodiment shown in FIG. 3 [FIG. 5] Schematic plan view of another embodiment [FIG. 6] Schematic developed side view of another embodiment [FIG. 7] Schematic side view of another embodiment [FIG. 8] Schematic plan view of another embodiment [FIG. 9] Schematic plan view of conventional example [Description of symbols] A Drive-side disk-shaped member B Passive-side disk-shaped member JAs, JAn, JBs, JBn Magnet part K initial Drive mechanism

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成5年5月27日 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】全文 【補正方法】変更 【補正内容】 【書類名】 明細書 【考案の名称】 伝動装置 【実用新案登録請求の範囲】 1.1つの軸芯(Xa)周りで回転駆動される小径の駆
動側円板状部材(A)と、前記駆動側円板状部材(A)
の周囲に等間隔置きで、かつ、前記1つの軸芯(Xa)
から等距離を隔てて位置する4つの軸芯(Xb)周りで
夫々回転自在に設けた大径の受動側円板状部材(B)と
を、互いに外周部どうしを対向させた状態に配設し、 前記各円板状部材(A),(B)の外周部夫々に、周方
向で隣合う永久磁石部(JAs),(JAn),(JB
s),(JBn)の極性が互いに異なる状態で、等間隔
置きに永久磁石部(JAs),(JAn),(JB
s),(JBn)を設け、かつ、永久磁石部(JA
s),(JAn),(JBs),(JBn)どうしの間
に磁石が存在しない磁石不存在領域(S)を設けるとと
もに、 前記小径の駆動側円板状部材(A)側に設けられる永久
磁石部(JAs),(JAn)と磁石不存在領域(S)
とを夫々6箇所とし、前記大径の受動側円板状部材
(B)側に設けられる永久磁石部(JBs),(JB
n)と磁石不存在領域(S)とを夫々2箇所に設定して
ある伝動装置。 2.前記大径の受動側円板状部材(B)は、その外周部
に設けられた永久磁石部JBs,JBnの極性の異なる
ものの夫々が、受動側円板状部材(B)の四半周の範囲
にわたって、かつ、受動側円板状部材(B)の回転軸芯
を境にした点対称となる状態で位置するとともに、相隣
る永久磁石部(JBs),(JBn)の間に位置する磁
石不存在領域(S)が、前記受動側円板状部材(B)の
残りの四半周の範囲に位置する状態に配設されている実
用新案登録請求の範囲第1項に記載の伝動装置。 【図面の簡単な説明】 【図1】本考案の伝動装置の原理を示す概略平面図 【図2】伝動装置の概略平面図 【図3】伝動装置の概略側面図 【図4】図2、図3に示す実施例における伝動の原理を
示す概略平面図 【図5】別実施例の概略平面図 【図6】別実施例の概略展開側面図 【図7】別実施例の概略側面図 【図8】従来例の概略平面図 【符号の説明】 A 駆動側円板状部材 B 受動側円板状部材 JAs,JAn,JBs,JBn 磁石部 S 磁石不存在領域 Xa,Xb 軸芯 【手続補正2】 【補正対象書類名】図面 【補正対象項目名】図1 【補正方法】変更 【補正内容】 【図1】 【手続補正3】 【補正対象書類名】図面 【補正対象項目名】図2 【補正方法】変更 【補正内容】 【図2】 【手続補正4】 【補正対象書類名】図面 【補正対象項目名】図4 【補正方法】変更 【補正内容】 【図4】 【手続補正5】 【補正対象書類名】図面 【補正対象項目名】図8 【補正方法】変更 【補正内容】 【図8】【手続補正6】 【補正対象書類名】図面 【補正対象項目名】図9 【補正方法】削除
─────────────────────────────────────────────────── ───
[Procedure Amendment] [Submission Date] May 27, 1993 [Procedure Amendment 1] [Amendment Target Document Name] Specification [Amendment Target Item Name] Full Text [Amendment Method] Change [Amendment Content] [Document Name] Specification [Device title] Transmission device [Claims for utility model registration] 1. Small-diameter drive-side disc-shaped member (A) that is rotationally driven around one axis (Xa), and the drive-side disc-shaped member Material (A)
At equal intervals and around the one axis (Xa)
A large-diameter passive-side disc-shaped member (B), which is provided rotatably around four axial cores (Xb) located at equal distances from each other, is arranged with their outer peripheral portions facing each other. However, the permanent magnet portions (JAs), (JAn), (JB) adjacent to each other in the circumferential direction are provided on the outer peripheral portions of the disk-shaped members (A), (B), respectively.
s) and (JBn) have different polarities, the permanent magnet portions (JAs), (JAn), (JBn) are equally spaced.
s), (JBn), and the permanent magnet part (JA
s), (JAn), (JBs), (JBn), a magnet nonexistence region (S) is provided between the two, and a permanent magnet is provided on the small-diameter drive-side disc-shaped member (A) side. Magnets (JAs), (JAn) and magnet non-existence area (S)
And 6 respectively, and permanent magnets (JBs), (JBs) provided on the large-diameter passive-side disc-shaped member (B) side.
n) and the magnet absent region (S) are set in two places respectively. 2. In the large-diameter passive-side disc-shaped member (B), although the permanent magnets JBs and JBn provided on the outer periphery thereof have different polarities, they are within a quarter of the circumference of the passive-side disc-shaped member (B). A magnet that is located across the permanent magnets (JBs) and (JBn) adjacent to each other in a state of being point-symmetrical with respect to the rotation axis of the disc member (B) on the passive side. The transmission device according to claim 1, wherein the non-existence region (S) is arranged in a state of being located in a range of the remaining quarter circumference of the passive-side disc-shaped member (B). BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view showing the principle of the transmission device of the present invention. FIG. 2 is a schematic plan view of the transmission device. FIG. 3 is a schematic side view of the transmission device. Schematic plan view showing the principle of transmission in the embodiment shown in FIG. 3 [FIG. 5] Schematic plan view of another embodiment [FIG. 6] Schematic developed side view of another embodiment [FIG. 7] Schematic side view of another embodiment FIG. 8: Schematic plan view of conventional example [Explanation of reference numerals] A drive-side disc-shaped member B passive-side disc-shaped member JAs, JAn, JBs, JBn magnet part S magnet absent region Xa, Xb axis core [procedure correction 2] [Name of document to be amended] Drawing [Name of item to be amended] Figure 1 [Correction method] Change [Content of amendment] [Figure 1] [Procedure amendment 3] [Document name to be amended] Drawing [Item name to be amended] Figure 2 [Correction method] Change [Content of amendment] [Figure 2] [Procedure Amendment 4] [Document name of amendment] Drawing [Amendment item name] Figure 4 [Correction method] Change [Content of amendment] [Figure 4] [Procedure Amendment 5] [Amendment Document Name] Drawing [Amendment Item Name] Figure 8 [Amendment Method] Change [Amendment Content] [Figure 8] [Procedure Amendment 6] [Amendment Document Name] Drawing [Amendment Item Name] Figure 9 [Amendment Method] Delete

Claims (1)

【実用新案登録請求の範囲】 1.駆動側円板状部材(A)及び受動側円板状部材
(B)を、その外周部同志を対向させた状態で互いに平
行する軸芯(Xa),(Xb)周りで回転自在に設け、
前記円板状部材(A),(B)の外周部夫々に、偶数個
の永久磁石部(JAs),(JAn),(JBs),
(JBn)を、周方向適当間隔おきに且つ隣合う磁石部
の極性を異ならせる状態で、更には、両円板状部材
(A),(B)の夫々に備えさせる永久磁石部(JA
s),(JAn),(JBs),(JBn)の数を異な
らせる状態で設けると共に、伝動初期時においてのみ前
記受動側円板状部材(B)を駆動して前記受動側円板状
部材(B)を初期回転させる初期駆動機構(K)を設け
てある伝動装置。 2.前記駆動側円板状部材(A)に備えさせる磁石部
(JAs),(JAn)の個数を、前記受動側円板状部
材(B)備えさせる磁石部(JBs),(JBn)の個
数よりも多くして、増速伝動する実用新案登録請求の範
囲1.項に記載の伝動装置。 3.前記駆動側円板状部材(A)に備えさせる磁石部
(JAs),(JAn)の個数を、前記受動側円板状部
材(B)備えさせる磁石部(JBs),(JBn)の個
数よりも少なくして、減速伝動する実用新案登録請求の
範囲1.項に記載の伝動装置。
[Scope of utility model registration request] 1. The drive-side disk-shaped member (A) and the passive-side disk-shaped member (B) are rotatably provided around mutually parallel axial centers (Xa) and (Xb) with their outer peripheral portions facing each other.
An even number of permanent magnet portions (JAs), (JAn), (JBs), are provided on the outer peripheral portions of the disk-shaped members (A) and (B), respectively.
(JBn) at a proper interval in the circumferential direction and in a state where the polarities of the adjacent magnet portions are different from each other, and further provided in each of the disk-shaped members (A) and (B).
s), (JAn), (JBs), and (JBn) are provided in different states, and the passive-side disc-shaped member (B) is driven only at the initial stage of transmission to drive the passive-side disc-shaped member. A transmission device provided with an initial drive mechanism (K) for initially rotating (B). 2. The number of magnets (JAs), (JAn) provided in the drive-side disc-shaped member (A) is calculated from the number of magnets (JBs), (JBn) provided in the passive-side disc-shaped member (B). The scope of claims for utility model registration is to increase the transmission rate. The transmission device according to paragraph. 3. The number of magnets (JAs), (JAn) provided in the drive-side disc-shaped member (A) is calculated from the number of magnets (JBs), (JBn) provided in the passive-side disc-shaped member (B). Claims for utility model registration to reduce speed and reduce transmission 1. The transmission device according to paragraph.
JP2273293U 1993-04-30 1993-04-30 Transmission Pending JPH069375U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273293U JPH069375U (en) 1993-04-30 1993-04-30 Transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273293U JPH069375U (en) 1993-04-30 1993-04-30 Transmission

Publications (1)

Publication Number Publication Date
JPH069375U true JPH069375U (en) 1994-02-04

Family

ID=12090919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273293U Pending JPH069375U (en) 1993-04-30 1993-04-30 Transmission

Country Status (1)

Country Link
JP (1) JPH069375U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059818A1 (en) * 2014-10-17 2016-04-21 株式会社日創 Permanent magnet rotation mechanism and permanent magnet power generator provided with said permanent magnet rotation mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059818A1 (en) * 2014-10-17 2016-04-21 株式会社日創 Permanent magnet rotation mechanism and permanent magnet power generator provided with said permanent magnet rotation mechanism
JP5950378B1 (en) * 2014-10-17 2016-07-13 株式会社日創 Permanent magnet rotation mechanism and permanent magnet power generator equipped with the permanent magnet rotation mechanism

Similar Documents

Publication Publication Date Title
US4163914A (en) Infinitely variable ratio permanent magnet transmission
KR100287576B1 (en) Rotating device and rotating method
JP2010537142A (en) Kinetic energy accumulator and energy transfer system with kinetic energy accumulator
US20020158531A1 (en) Device for kinetic energy accelerator/amplifier
MXPA01012528A (en) Device for coupling at least one auxiliary assembly to a main assembly.
US8210980B2 (en) Orbital magnetic speed change
EP3482100B1 (en) Variable speed transmission and system using same
JPH069375U (en) Transmission
US5747902A (en) Rotary apparatus
WO2012167024A2 (en) Magnetic coupling
KR20200094070A (en) An apparatus for extending power using magnetic
MXPA03004457A (en) Method and device for transmitting force magnetically.
US7999429B2 (en) Power transmission apparatus
JP3632211B2 (en) Flywheel
JPH04105544A (en) Rotation transfer apparatus
KR20220157614A (en) Power assist device using the magnetic force of a permanent magnet.
JPS61236358A (en) Transmitter
JPH03285556A (en) Magnetic gear unit
JP2003161360A (en) Accelerator
CA2122452C (en) Rotary apparatus
JPS62114466A (en) Rotating plate with magnet
RU2063566C1 (en) Automatic transmission
JP4759489B2 (en) Non-contact power transmission device
RU2088033C1 (en) Controlled electromagnetic clutch
JP2002317751A (en) Rotation assisting device