JPH0690524B2 - Optical semiconductor material and electrophotographic photoreceptor using the same - Google Patents
Optical semiconductor material and electrophotographic photoreceptor using the sameInfo
- Publication number
- JPH0690524B2 JPH0690524B2 JP61161973A JP16197386A JPH0690524B2 JP H0690524 B2 JPH0690524 B2 JP H0690524B2 JP 61161973 A JP61161973 A JP 61161973A JP 16197386 A JP16197386 A JP 16197386A JP H0690524 B2 JPH0690524 B2 JP H0690524B2
- Authority
- JP
- Japan
- Prior art keywords
- phthalocyanine
- vanadium
- group
- charge transfer
- photosensitive member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0622—Heterocyclic compounds
- G03G5/0624—Heterocyclic compounds containing one hetero ring
- G03G5/0635—Heterocyclic compounds containing one hetero ring being six-membered
- G03G5/0638—Heterocyclic compounds containing one hetero ring being six-membered containing two hetero atoms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0622—Heterocyclic compounds
- G03G5/0624—Heterocyclic compounds containing one hetero ring
- G03G5/0627—Heterocyclic compounds containing one hetero ring being five-membered
- G03G5/0631—Heterocyclic compounds containing one hetero ring being five-membered containing two hetero atoms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0622—Heterocyclic compounds
- G03G5/0624—Heterocyclic compounds containing one hetero ring
- G03G5/0635—Heterocyclic compounds containing one hetero ring being six-membered
- G03G5/0637—Heterocyclic compounds containing one hetero ring being six-membered containing one hetero atom
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は,中心金属としてバナジウムを含有するフタロ
シアニンを用いた電子写真感光体等に有用な光半導体材
料に関し,更に詳細に言えば,優れた露光感度特性,波
長特性に加え,極めて分散性の良い一次粒子径が0.2ミ
クロン以下の微粒子の非結晶性のバナジウムを含有する
フタロシアニンを電荷発生剤として用いた電子写真感光
体に関する。DETAILED DESCRIPTION OF THE INVENTION "Object of the Invention" (Field of Industrial Application) The present invention relates to a photo-semiconductor material useful for an electrophotographic photoreceptor or the like using phthalocyanine containing vanadium as a central metal. Speaking of which, in addition to excellent exposure sensitivity characteristics and wavelength characteristics, an electrophotographic photosensitive member using a phthalocyanine containing amorphous vanadium, which is a fine particle having an excellent dispersibility and a primary particle size of 0.2 micron or less, as a charge generating agent .
(従来の技術) 従来,電子写真感光体の感光体としては,セレン,セレ
ン合金,酸化亜鉛,硫化カドミウムおよび酸化チタンな
どの無機光導電体を用いたものが主として使用されて来
た。近年,半導体レーザーの発展は目覚ましく,小型で
安定したレーザー発振器が安価に入手出来るようにな
り,電子写真用光源として用いられ始めている。しか
し,これらの装置に短波長光を発振する半導体レーザー
を用いるのは,寿命,出力等を考えれば問題が多い。従
って,従来用いられて来た短波長領域に感度を持つ材料
を半導体レーザー用に使うには不適当であり,長波長領
域(780nm以上)に高感度を持つ材料を研究する必要が
生じて来た。最近は有機系の材料,特に長波長領域に感
度を持つことが期待されるフタロシアニンを使用し,こ
れを積層した積層型有機感光体の研究が盛んに行なわれ
ている。例えば,二価の金属フタロシアニンとしては,
ε型銅フタロシアニン(ε−CuPc),τ型無金属フタロ
シアニン(τ−H2Pc)が長波長領域に感度を持ち,三
価,四価の金属フタロシアニンとしては,クロロアルミ
ニウムフタロシアニン(AlPcCl),クロロアルミニウム
フタロシアニンクロライド(ClAlPcCl),またはチタニ
ルフタロシアニン(TiOPc),クロロインジウムフタロ
シアニン(InPcCl)を蒸着し,次いで可溶性溶媒の蒸気
に接触させて長波長,高感度化する方法(特開昭57-394
84号,特開昭59-166959号公報)や,第IV族金属としてT
i,SnおよびPbを含有するフタロシアニンを各種の置換
基,誘導体またはクラウンエーテルなどのシフト化剤を
用いて長波長処理をする方法(特願昭59-36254号,特願
昭59-204045号公報)等がある。(Prior Art) Conventionally, as a photoreceptor of an electrophotographic photoreceptor, a photoreceptor using an inorganic photoconductor such as selenium, selenium alloy, zinc oxide, cadmium sulfide, and titanium oxide has been mainly used. In recent years, the development of semiconductor lasers has been remarkable, and small, stable laser oscillators have become available at low cost, and they are beginning to be used as light sources for electrophotography. However, using a semiconductor laser that oscillates short-wavelength light in these devices has many problems in terms of life, output, and the like. Therefore, it is unsuitable to use the conventionally used material having sensitivity in the short wavelength region for semiconductor lasers, and it becomes necessary to study the material having high sensitivity in the long wavelength region (780 nm or more). It was Recently, research has been actively conducted on a laminated organic photoconductor in which an organic material, particularly phthalocyanine, which is expected to have sensitivity in a long wavelength region, is used and laminated. For example, as a divalent metal phthalocyanine,
ε-type copper phthalocyanine (ε-CuPc) and τ-type metal-free phthalocyanine (τ-H2Pc) have sensitivity in the long wavelength region, and trivalent and tetravalent metal phthalocyanines include chloroaluminum phthalocyanine (AlPcCl) and chloroaluminum phthalocyanine. Chloride (ClAlPcCl), titanyl phthalocyanine (TiOPc) or chloroindium phthalocyanine (InPcCl) is vapor-deposited, and then contacted with a vapor of a soluble solvent for long wavelength and high sensitivity (JP-A-57-394).
84, Japanese Patent Laid-Open No. 59-166959) and T as a Group IV metal.
A method of subjecting phthalocyanine containing i, Sn and Pb to long wavelength treatment using various substituents, derivatives or shift agents such as crown ethers (Japanese Patent Application Nos. 59-36254 and 59-204045). ) Etc.
プリンター用のデジタル光源として,LEDも実用化されて
いる。可視光領域のLEDも使われているが,一般に実用
化されているものは,650nm以上,標準的には670nmの発
振波長を持っている。アゾ化合物,ペリレン化合物,セ
レン,酸化亜鉛等は,650nm前後で充分な光感度を有する
とは言えないが,フタロシアニン化合物は,650nm前後に
吸収ピークを持つため,LED用材料としても有効な材料と
して期待出来る。LEDs have also been put into practical use as digital light sources for printers. Although LEDs in the visible light range are also used, the ones that have been put into practical use have an oscillation wavelength of 650 nm or more, typically 670 nm. Azo compounds, perylene compounds, selenium, zinc oxide, etc. cannot be said to have sufficient photosensitivity around 650 nm, but phthalocyanine compounds have absorption peaks around 650 nm, so they are also effective materials for LEDs. I can expect it.
特開昭57-147641号公報には,バナジルフタロシアニン
を電荷発生材料として用いた感光体が記載されている。
この公報には,ボールミル,ペイントコンディショナ
ー,SPEXミルなどを用いて,溶剤または不活性樹脂溶液
中で粉砕,分散する技術が開示されているが,溶液中で
の粉砕はきわめて効率が悪く,溶剤中の粉砕はその再現
性に問題がある。また,バナジルフタロシアニンの合成
または精製工程で,アルコール等の極性の強い溶剤を使
うと結晶粒子が強固に凝集し,その後の微粒子化が困難
になる(特開昭57-147641号公報,特開昭61-28557号公
報など)。Japanese Unexamined Patent Publication No. 57-147641 describes a photoconductor using vanadyl phthalocyanine as a charge generating material.
This publication discloses a technique of pulverizing and dispersing in a solvent or an inert resin solution using a ball mill, paint conditioner, SPEX mill, etc. However, pulverization in a solution is extremely inefficient and Crushing has a problem in reproducibility. Also, in the process of synthesizing or purifying vanadyl phthalocyanine, if a solvent having a strong polarity such as alcohol is used, the crystal particles are strongly aggregated and it becomes difficult to make them into fine particles thereafter (Japanese Patent Laid-Open Nos. 57-147641 and Sho. 61-28557 publication).
この様に,従来報告されているバナジルフタロシアニン
は,強固に凝集した塊状粒子であることが多く,凝集し
た粒子間に含まれる不純物が多く,また結晶化の際に必
ず結晶成長するため,顔料粒子径が大きいなどのため
に,それらを用いて蒸着および分散塗布された電荷発生
層は,分散安定性を欠き塗工性の低下を引き起こしてい
た。それにより,均質な電荷発生層を得ることが難し
く,美しい画像は得ることが難しかった。As described above, conventionally reported vanadyl phthalocyanine is often agglomerated particles that are strongly aggregated, many impurities are contained between the aggregated particles, and crystals always grow during crystallization. Due to its large diameter, the charge generation layer vapor-deposited and dispersion-coated using them lacked dispersion stability and caused deterioration of coatability. As a result, it was difficult to obtain a uniform charge generation layer, and it was difficult to obtain a beautiful image.
これら結晶性フタロシアニンの場合光吸収効率が十分で
なく,電荷発生層のキャリア発生効率の低下,電荷移動
層へのキャリアーの注入効率の低下,さらには,長期に
わたる繰り返し使用時の耐劣化特性,耐刷性,画像安定
性などの電子写真諸特性を十分満足していない欠点があ
った。In the case of these crystalline phthalocyanines, the light absorption efficiency is not sufficient, the carrier generation efficiency of the charge generation layer is reduced, the injection efficiency of carriers into the charge transfer layer is reduced, and the deterioration resistance and resistance to repeated use over a long period of time It had a drawback that it did not fully satisfy various electrophotographic characteristics such as printability and image stability.
(発明が解決しようとする問題点) 本発明の目的は,顔料の分散性を改良して,きわめて分
散性が良く,塗膜に欠陥のない均質な電荷発生層を得る
ことにより,画像の密なすぐれた露光感度特性,波長特
性に加え,長期にわたる繰り返し使用時の耐劣化特性,
耐刷性,画像安定性を得ることにある。(Problems to be Solved by the Invention) An object of the present invention is to improve the dispersibility of a pigment so as to obtain a uniform charge generation layer having a very good dispersibility and no defects in the coating film. In addition to excellent exposure sensitivity characteristics and wavelength characteristics, deterioration resistance characteristics during repeated use over a long period of time,
This is to obtain printing durability and image stability.
「発明の構成」 (問題点を解決するための手段および作用) 本発明は,フタロシアニンのベンゼン環がハロゲン原子
で置換されていてもよい,中心核がオキシバナジウムま
たはハロゲン化バナジウムであるフタロシアニンであっ
て,アシッドペースティング法またはアシッドスラリー
法で処理し,次に機械的処理方法で麿砕してなる該フタ
ロシアニンが強いX線回折ピークを示さない非結晶性の
バナジウム系フタロシアニンを用いてなる光半導体材料
であり,さらには電荷発生剤および電荷移動剤を使用し
てなる電子写真感光体において,電荷発生剤が該フタロ
シアニンである電子写真感光体である。[Structure of Invention] (Means and Actions for Solving Problems) The present invention provides a phthalocyanine having a central nucleus of oxyvanadium or vanadium halide, which may have a benzene ring of phthalocyanine substituted with a halogen atom. A photo-semiconductor using a non-crystalline vanadium phthalocyanine which does not show a strong X-ray diffraction peak of the phthalocyanine obtained by treating with an acid pasting method or an acid slurry method and then pulverizing with a mechanical treatment method. An electrophotographic photosensitive member comprising a material, and further a charge generating agent and a charge transfer agent, wherein the charge generating agent is the phthalocyanine.
さらには0.2ミクロン以下の粒子径を持つ微少な一次粒
子であり,非結晶性のバナジウム系フタロシアニンから
なる電荷発生剤を用いて電子写真感光体を得ることがで
きる。本発明のバナジウム系フタロシアニンとは,バナ
ジウム金属および酸素をまたはハロゲンを中心核として
含むフタロシアニンのことであり,オキシバナジウムフ
タロシアニン(VOPc),バナジウムフタロシアニンジク
ロライド(VCl2Pc),または以上のフタロシアニンのベ
ンゼン環が一つまたは二つ以上ハロゲン化されたものを
示す。フタロシアニンは一般的には,フタロジニトリル
と金属塩化物とを加熱融解または有機溶媒存在下で加熱
するフタロジニトリル法,無水フタル酸を尿素および金
属塩化物と加熱融解または有機溶媒存在下で加熱するワ
イラー法,シアノベンズアミドと金属塩とを高温で反応
させる方法,ジリチウムフタロシアニンと金属塩を反応
させる方法があるが,これらに限定されるものではな
い。また有機溶媒としては,α−クロロナフタレン,β
−クロロナフタレン,α−メチルナフタレン,メトキシ
ナフタレン,ジフェニルエタン,エチレングリコール,
ジアルキルエーテル,キノリン,スルホラン,ジクロル
ベンゼンなど反応不活性な高沸点の溶媒が望ましい。Furthermore, it is a minute primary particle having a particle size of 0.2 micron or less, and an electrophotographic photoreceptor can be obtained by using a charge generating agent composed of non-crystalline vanadium phthalocyanine. The vanadium-based phthalocyanine of the present invention is a phthalocyanine containing vanadium metal and oxygen as a central nucleus, or oxyvanadium phthalocyanine (VOPc), vanadium phthalocyanine dichloride (VCl2Pc), or a benzene ring of the above phthalocyanine. Indicates one or two or more halogenated compounds. Phthalocyanine is generally a phthalodinitrile method in which phthalodinitrile and a metal chloride are heated and melted or heated in the presence of an organic solvent, and phthalic anhydride is heated and melted with urea and a metal chloride or heated in the presence of an organic solvent. There are, but not limited to, the Weyler method, the method of reacting cyanobenzamide with a metal salt at a high temperature, and the method of reacting dilithium phthalocyanine with a metal salt. Further, as the organic solvent, α-chloronaphthalene, β
-Chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenylethane, ethylene glycol,
It is desirable to use a reaction-inert high boiling point solvent such as dialkyl ether, quinoline, sulfolane, or dichlorobenzene.
本発明で使用するバナジウムを含有するフタロシアニン
は、モーザーおよびトーマスの「フタロシアニン化合
物」(Moser and Thomas“Phthalocyamine Compound
s")等の公知方法および前記の適当な方法によって得ら
れるものを使用し,合成物を酸,アルカリ,アセトン,
メチルエチルケトン,テトラヒドロフラン,ピリジン,
キノリン,スルホラン,α−クロロナフタレン,トルエ
ン,キシレン,クロロホルム,四塩化炭素,ジクロロメ
タン,ジクロロエタン,トリクロロプロパン,N,N′−ジ
メチルホルムアミド等により洗浄して得られ,更に昇華
精製することも可能である。以上の方法で合成されたバ
ナジウムを含有するフタロシアニン化合物は,粒子が強
固に凝集および結晶化し,1〜2ミクロン,大きな粒子で
は10ミクロン以上の二次粒子を形成している。この凝集
はきわめて強く,サンドミル,ボールミル,アトライタ
ー,ロールミル等の粉砕手段を用いても,短時間に,簡
単に微粒子化出来ない。The vanadium-containing phthalocyanine used in the present invention is a Moser and Thomas "Phthalocyamine Compound".
s ") and other known methods and those obtained by the appropriate methods described above are used to synthesize the compound with acid, alkali, acetone,
Methyl ethyl ketone, tetrahydrofuran, pyridine,
It is obtained by washing with quinoline, sulfolane, α-chloronaphthalene, toluene, xylene, chloroform, carbon tetrachloride, dichloromethane, dichloroethane, trichloropropane, N, N'-dimethylformamide, etc., and can be further purified by sublimation. . In the phthalocyanine compound containing vanadium synthesized by the above method, the particles are strongly aggregated and crystallized to form secondary particles of 1 to 2 microns, and large particles of 10 microns or more. This agglomeration is extremely strong, and even if a grinding means such as a sand mill, a ball mill, an attritor, or a roll mill is used, it cannot be easily made into fine particles in a short time.
前記の結晶性粗大二次粒子を電荷発生層に含有した電子
写真感光体は,光吸収効率の低下により,キャリア発生
数が減少し光感度が低下する。また電荷発生層が不均一
のため電荷移動層に対するキャリアーの注入効率も低下
し,その結果,静電特性としては,インダクション現象
が起きたり,表面電位が低下したり,繰り返し使用時の
電位安定性が劣る等の感光体の感度上好ましくない現象
が生じる。また,画像としても均質性を欠き,微小な欠
陥を生じる。本発明の微小な一次粒子からなる,粒子径
0.2ミクロン以下の非結晶性のバナジウム系フタロシア
ニンを用いた電荷発生層は,光吸収効率の大きな均一層
であり,電荷発生層中の粒子間の空隙が少なく,繰り返
し使用時での,電位安定性,明部電位の上昇防止等の電
子写真感光体としての特性,および,画像欠陥の減少,
耐刷性等,多くの要求を満足する電子写真感光体を得る
ことができる。In the electrophotographic photoreceptor containing the above-mentioned crystalline coarse secondary particles in the charge generation layer, the number of carriers generated decreases and the photosensitivity decreases due to the decrease in the light absorption efficiency. In addition, since the charge generation layer is non-uniform, the carrier injection efficiency into the charge transfer layer is also reduced, and as a result, the electrostatic characteristics cause an induction phenomenon, a decrease in surface potential, and potential stability during repeated use. A phenomenon that is unfavorable in terms of the sensitivity of the photoreceptor, such as poor image quality, occurs. Also, the image lacks homogeneity and causes minute defects. Particle size of fine primary particles of the present invention
The charge generation layer using non-crystalline vanadium phthalocyanine of 0.2 micron or less is a uniform layer with high light absorption efficiency, there are few voids between particles in the charge generation layer, and potential stability during repeated use. , Characteristics as an electrophotographic photosensitive member such as prevention of increase in bright area potential, and reduction of image defects,
It is possible to obtain an electrophotographic photosensitive member that satisfies many requirements such as printing durability.
本発明のバナジウム系フタロシアニンは単一の化学的方
法,機械的な方法でも得られるが,より好ましくは各々
の方法により,凝集力の弱い物を作成し,更にそれらを
細かくほぐすという各種の方法の組合せによって得るこ
とができる。The vanadium-based phthalocyanine of the present invention can be obtained by a single chemical method or mechanical method, but more preferably, by each method, a substance having weak cohesive force is prepared and further loosened by various methods. It can be obtained by combination.
例えば,アシッドペースティング法,アシッドスラリー
法,等の方法で粒子間の凝集を弱め,次いで機械的処理
方法で摩砕することによりきわめて微小な一次粒子を得
ることができる。摩砕時に使用される装置としては,ニ
ーダー,バンバリーミキサー,アトライター,エッジラ
ンナーミル,ロールミル,ボールミル,サンドミル,SPE
Xミル,ホモミキサー,ディスパーザー,アジター,ジ
ョークラッシャー,スタンプミル,カッターミル,マイ
クロナイザー等あるが,これらに限られるものではな
い。また,化学的処理方法として良く知られたアシッド
ペーティング法は,95%以上の硫酸に顔料を溶解もしく
は硫酸塩にしたものを水または氷水中に注ぎ再析出させ
る方法であるが,硫酸および水を望ましくは5℃以下に
保ち,硫酸を高速撹拌された水中にゆっくりと注入する
ことにより,さらに条件良く微小な粒子を得ることが出
来る。For example, extremely fine primary particles can be obtained by weakening the agglomeration between particles by a method such as an acid pasting method or an acid slurry method, and then grinding by a mechanical treatment method. Equipment used during grinding is a kneader, Banbury mixer, attritor, edge runner mill, roll mill, ball mill, sand mill, SPE.
Examples include, but are not limited to, X mills, homomixers, dispersers, agitators, jaw crushers, stamp mills, cutter mills, and micronizers. The acid-patting method, which is well known as a chemical treatment method, is a method in which pigments are dissolved or sulphated in 95% or more sulfuric acid and poured into water or ice water for reprecipitation. Is preferably kept at 5 ° C. or lower, and sulfuric acid is slowly poured into water that is stirred at a high speed, so that fine particles can be obtained under better conditions.
その他,結晶性粒子を直接機械的処理装置できわめて長
時間摩砕する方法,アシッドペースティング法で得られ
た粒子を前記溶媒等で処理した後摩砕する方法等があ
り,またアシッドペースティング直後にごく一部,非結
晶性一次粒子を得ることも可能である。In addition, there are a method of directly grinding the crystalline particles with a mechanical treatment device for a very long time, a method of treating the particles obtained by the acid pasting method with the above-mentioned solvent and the like, and then immediately grinding. It is also possible to obtain a very small amount of amorphous primary particles.
しかし,結晶性粒子を化学的処理に続き,機械的処理を
して得られた微小粒子を前記の合成物の洗浄で用いた溶
媒等で精製した後,再び化学的処理を行なうこと,およ
びそれらのうち適当な処理を何度も繰り返すことによ
り,精製度の向上,および微粒子化が望まれることは言
うまでもない。However, following the chemical treatment of the crystalline particles, the fine particles obtained by the mechanical treatment are purified by the solvent used for washing the above-mentioned compound, and then the chemical treatment is performed again. Needless to say, it is desired to improve the degree of purification and to make the particles finer by repeating appropriate treatments many times.
本発明により得られるバナジウムを含有するフタロシア
ニン化合物は,回折角度を読み取ることの出来ない明確
な面間隔を持たない非結晶性粒子である。また,非結晶
性粒子は,昇華によっても得られる。例えば,真空下に
於て各種方法で得られた原材料のバナジウム系フタロシ
アニンを500℃〜600℃に加熱し昇華させ,基板上にすみ
やかに析出させることにより得ることができる。これら
によって得られたバナジウム系フタロシアニンは非結晶
状態であり,析出条件により微粒子になるが,更に好ま
しくは,機械的摩砕によりさらに微粒子化した粒子が良
い。また,この処理により昇華により得られた膜の吸収
ピークが750nm付近であるのに対し,機械処理後は830nm
に変化し,半導体レーザー用に適した特性になる。The vanadium-containing phthalocyanine compound obtained by the present invention is an amorphous particle having no definite interplanar spacing from which the diffraction angle cannot be read. The amorphous particles can also be obtained by sublimation. For example, it can be obtained by heating vanadium-based phthalocyanine, which is a raw material obtained by various methods, under vacuum to sublimate it by heating it to 500 ° C. to 600 ° C. and promptly depositing it on the substrate. The vanadium phthalocyanine obtained by these is in an amorphous state and becomes fine particles depending on the deposition conditions, but more preferably fine particles made by mechanical grinding. In addition, the absorption peak of the film obtained by sublimation by this treatment is around 750 nm, while that after mechanical treatment is 830 nm.
Changes to a characteristic suitable for semiconductor lasers.
観光体は,導電性基板上に,下引き層,電荷発生層,電
荷移動層の順に積層されたものが望ましいが,下引き
層,電荷移動層,電荷発生層の順で積層されたもの,下
引き層上に電荷発生剤と電荷移動剤を適当な樹脂で分散
塗工されたものでも良い。これらのバナジウム系のフタ
ロシアニンの1種以上を電荷発生剤として適当なバイン
ダーと基板上に塗工し,きわめて分散性が良く,光吸収
効率がきわめて大である電荷発生層を得ることができ
る。また電荷発生層を蒸着により得ることは公知である
が,本発明により得られた材料は,微粒子化され,粒子
間に存在した不純物が除去されるためにきわめて効率良
く蒸着することができ,蒸着用材料としても有効であ
る。The tourist body is preferably a conductive substrate on which an undercoat layer, a charge generation layer, and a charge transfer layer are stacked in this order, but an undercoat layer, a charge transfer layer, and a charge generation layer are stacked in this order. It is also possible to disperse and coat a charge generating agent and a charge transfer agent with an appropriate resin on the undercoat layer. By coating one or more of these vanadium-based phthalocyanines as a charge generating agent on a suitable binder and a substrate, a charge generating layer having extremely good dispersibility and extremely high light absorption efficiency can be obtained. Further, although it is known that the charge generation layer is obtained by vapor deposition, the material obtained by the present invention can be vaporized very efficiently because it is made into fine particles and impurities existing between the particles are removed. It is also effective as a material.
塗工は,スピンコーター,アプリケーター,スプレーコ
ーター,バーコーター,浸漬コーター,ドクターブレー
ド,ローラーコーター,カーテンコーター,ビードコー
ター装置を用いて行ない,乾燥は,望ましくは加熱乾燥
で40〜200℃,10分〜6時間の範囲で静止または送風条件
下で行なう。乾燥後,膜厚は0.01から5ミクロン,望ま
しくは0.1から1ミクロンになるように塗工される。Coating is performed using a spin coater, applicator, spray coater, bar coater, dip coater, doctor blade, roller coater, curtain coater, bead coater device, and drying is preferably heat drying at 40-200 ℃ for 10 minutes. Perform under static or blown conditions for up to 6 hours. After drying, it is applied to a film thickness of 0.01 to 5 μm, preferably 0.1 to 1 μm.
電荷発生層を塗工により形成する際に用いうるバインダ
ーとしては広範な絶縁性樹脂から選択でき,またポリ−
N−ビニルカルバゾール,ポリビニルアントラセンやポ
リビニルピレンなどの有機光導電性ポリマーから選択で
きる。好ましくは,ポリビニルブチラール,ポリアリレ
ート(ビスフェノールAとフタル酸の縮重合体など),
ポリカーボネート,ポリエステル,フエノキシ樹脂,ポ
リ酢酸ビニル,アクリル樹脂,ポリアクリルアミド樹
脂,ポリアミド,ポリビニルピリジン,セルロース系樹
脂,ウレタン樹脂,エポキシ樹脂,シリコン樹脂,ポリ
スチレン,ポリケトン,ポリ塩化ビニル,塩ビ−酸ビ共
重合体,ポリビニルアセタール,ポリアクリロニトリ
ル,フェノール樹脂,メラミン樹脂,カゼイン,ポリビ
ニルアルコール,ポリビニルピロリドン等の絶縁性樹脂
を挙げることができる。電荷発生層中に含有する樹脂
は,100重量%以下,好ましくは40重量%以下が適してい
る。またこれらの樹脂は,1種または2種以上組合せて用
いても良い。これらの樹脂を溶解する溶剤は樹脂の種類
によって異なり,後述する電荷発生層や下引き層を塗工
時に影響を与えないものから選択することが好ましい。
具体的にはベンゼン,キシレン,リグロイン,モノクロ
ルベンゼン,ジクロルベンゼンなどの芳香族炭化水素,
アセトン,メチルエチルケトン,シクロヘキサノンなど
のケトン類,メタノール,エタノール,イソプロパノー
ルなどのアルコール類,酢酸エチル,メチルセロソル
ブ,などのエステル類,四塩化炭素,クロロホルム,ジ
クロルメタン,ジクロルエタン,トリクロルエチレンな
どの脂肪族ハロゲン化炭化水素類,テトラヒドロフラ
ン,ジオキサン,エチレングリコールモノ,メチルエー
テルなどのエーテル類,N,N−ジメチルホルムアミド,N,N
−ジメチルアセトアミドなどのアミド類,およびジメチ
ルスルホキシドなどのスルホキシド類が用いられる。The binder that can be used to form the charge generation layer by coating can be selected from a wide range of insulating resins.
It can be selected from organic photoconductive polymers such as N-vinylcarbazole, polyvinylanthracene and polyvinylpyrene. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.),
Polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinyl pyridine, cellulosic resin, urethane resin, epoxy resin, silicone resin, polystyrene, polyketone, polyvinyl chloride, vinyl chloride-vinyl chloride copolymer Insulating resins such as coalesce, polyvinyl acetal, polyacrylonitrile, phenol resin, melamine resin, casein, polyvinyl alcohol, polyvinylpyrrolidone can be mentioned. The amount of the resin contained in the charge generation layer is 100% by weight or less, preferably 40% by weight or less. These resins may be used alone or in combination of two or more. The solvent that dissolves these resins varies depending on the type of the resin, and it is preferable to select a solvent that does not affect the charge generation layer or the undercoat layer described below during coating.
Specifically, aromatic hydrocarbons such as benzene, xylene, ligroin, monochlorobenzene, and dichlorobenzene,
Acetone, methyl ethyl ketone, cyclohexanone, and other ketones, methanol, ethanol, isopropanol, and other alcohols, ethyl acetate, methyl cellosolve, and other esters, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, trichloroethylene, and other aliphatic halogenated carbons Hydrogen, tetrahydrofuran, dioxane, ethylene glycol mono, ethers such as methyl ether, N, N-dimethylformamide, N, N
-Amids such as dimethylacetamide and sulfoxides such as dimethylsulfoxide are used.
電荷移動層は,電荷移動剤単体または結着剤樹脂に溶解
分散させて形成される。電荷移動物質としては電子移動
物質と正孔移動性物質があり,電子移動物質としては,
クロルアニル,ブロモアニル,テトラシアノエチレン,
テトラシアノキノジメタン,2,4,7−トリニトロ−9−フ
ルオレノン,2,4,5,7−テトラニトロ−9−フルオレノ
ン,2、4,7−トリニトロ−9−ジシアノメチレンフルオ
レノン,2,4,5,7−テトラニトロキサントン,2,4,8−トリ
ニトロチオキサントン等の電子吸引性物質やこれら電子
吸引物質を高分子化したもの等がある。The charge transfer layer is formed by dissolving and dispersing the charge transfer agent alone or in the binder resin. The charge transfer material includes an electron transfer material and a hole transfer material, and the electron transfer material includes
Chloranil, bromoanil, tetracyanoethylene,
Tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4,7-trinitro-9-dicyanomethylenefluorenone, 2,4, There are electron-withdrawing substances such as 5,7-tetranitroxanthone and 2,4,8-trinitrothioxanthone and polymers obtained by polymerizing these electron-withdrawing substances.
正孔移動物質としては,ピレン,N−エチルカルバゾー
ル,N−イソプロピルカルバゾール,N−メチル−N−フエ
ニルヒドラジノ−3−メチリデン−9−エチルカルバゾ
ール,N,N−ジフエニルヒドラジノ−3−メチリデン−9
−エチルカルバゾール,N,N−ジフエニルヒドラジノ−3
−メチリデン−10−エチルフエノチアジン,N,N−ジフエ
ニルヒドラジノ−3−メチリデン−10−エチルフエノキ
サジン,P−ジエチルアミノベンズアルデヒド−N,N−ジ
フエニルヒドラゾン,P−ジエチルアミノベンズアルデヒ
ド−N−α−ナフチル−N−フエニルヒドラゾン,P−ピ
ロリジノベンズアルデヒド−N,N−ジフエニルヒドラゾ
ン,2−メチル−4−ジベンジルアミノベンズアルデヒド
−1′−エチル−1′−ベンゾチアゾリルヒドラゾン,2
−メチル−4−ジベンジルアミノベンズアルデヒド−
1′−プロピル−1′−ベンゾチアゾリルヒドラゾン,2
−メチル−4−ジベンジルアミノベンズアルデヒド−
1′,1′−ジフェニルヒドラゾン,9−エチルカルバゾー
ル−3−カルボキサルデヒド−1′−メチル−1′−フ
ェニルヒドラゾン,1−ベンジル−1,2,3,4−テトラヒド
ロキノリン−6−カルボキシアルデヒド−1′,1′−ジ
フエニルヒドラゾン,1,3,3−トリメチルインドレニン−
ω−アルデヒド−N,N−ジフエニルヒドラゾン,P−ジエ
チルベンズアルデヒド−3−メチルベンズチアゾリノン
−2−ヒドラゾン等のヒドラゾン類,2.5−ビス(P−ジ
エチルアミノフエニル)−1.3.4−オキサジアゾール,1
−フエニル−3−(P−ジエチルアミノスチリル)−5
−(P−ジエチルアミノフエニル)ピラゾリン,1−〔キ
ノリル(2)〕−3−(P−ジエチルアミノスチリル)
−5−(P−ジエチルアミノフエニル)ピラゾリン,1−
〔ピリジル(2)〕−3−(P−ジエチルアミノスチリ
ル)−5−(P−ジエチルアミノフエニル)ピラゾリ
ン,1−〔6−メトキシ−ピリジル(2)〕−3−(P−
ジエチルアミノスチリル)−5−(P−ジエチルアミノ
フエニル)ピラゾリン,1−〔ピリジル(3)〕−3−
(P−ジエチルアミノスチリル)−5−(P−ジエチル
アミノスフエニル)ピラゾリン,1−〔レビジル(2)〕
−3−(P−ジエチルアミノスチリル)−5−(P−ジ
エチルアミノフエニル)ピラゾリン,1−〔ピリジル
(2)〕−3−(P−ジエチルアミノスチリル)−4−
メチル−5−(P−ジエチルアミノフエニル)ピラゾリ
ン,1−〔ピリジル(2)〕−3−(α−メチル−P−ジ
エチルアミノスチリル)−5−(P−ジエチルアミノフ
エニル)ピラゾリン,1−フエニル−3−(P−ジエチル
アミノスチリル)−4−メチル−5−(P−ジエチルア
ミノフエニル)ピラゾリン,1−フエニル−3−(α−ベ
ンジル−P−ジエチルアミノスチリル)−5−(P−ジ
エチルアミノフエニル)−6−ピラゾリン,スピロピラ
ゾリン等のピラゾリン類,2−(P−ジエチルアミノスチ
リル)−6−ジエチルアミノベンズオキサゾール,2−
(P−ジエチルアミノフエニル)−4−(P−ジエチル
アミノフエニル)−5−(2−クロロフエニル)オキサ
ゾール等のオキサゾール系化合物,α−フェニル−4−
N,N−ジフェニル−アミノ−スチルベン等のスチルベン
系化合物,2−(P−ジエチルアミノスチリル)−6−ジ
エチルアミノベンゾチゾール等のチアゾール系化合物,
ビス(4−ジエチルアミノ−2−メチルフエニル)−フ
エニルメタン等のトリアリールメタン系化合物,1,1−ビ
ス(4−N,N−ジエチルアミノ−2−メチルフエニル)
ヘプタン,1,1,2,2−テトラキス(4−N,N−ジメチルア
ミノ−2−メチルフエニル)エタン等のポリアリールア
ルカン類,トリフエニルアミン,ポリ−N−ビニルカル
バゾール,ポリビニルピレン,ポリビニルアントラセ
ン,ポリビニルアクリジン,ポリ−9−ビニルフエニル
アントラセン,ピレン−ホルムアルデヒド樹脂,エチル
カルバゾールホルムアルデヒド樹脂等がある。Examples of the hole transfer material include pyrene, N-ethylcarbazole, N-isopropylcarbazole, N-methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N, N-diphenylhydrazino-3-. Methylidene-9
-Ethylcarbazole, N, N-diphenylhydrazino-3
-Methylidene-10-ethylphenothiazine, N, N-diphenylhydrazino-3-methylidene-10-ethylphenoxazine, P-diethylaminobenzaldehyde-N, N-diphenylhydrazone, P-diethylaminobenzaldehyde-N -Α-naphthyl-N-phenylhydrazone, P-pyrrolidinobenzaldehyde-N, N-diphenylhydrazone, 2-methyl-4-dibenzylaminobenzaldehyde-1'-ethyl-1'-benzothiazolylhydrazone, 2
-Methyl-4-dibenzylaminobenzaldehyde-
1'-propyl-1'-benzothiazolylhydrazone, 2
-Methyl-4-dibenzylaminobenzaldehyde-
1 ', 1'-diphenylhydrazone, 9-ethylcarbazole-3-carboxaldehyde-1'-methyl-1'-phenylhydrazone, 1-benzyl-1,2,3,4-tetrahydroquinoline-6-carboxaldehyde -1 ', 1'-diphenylhydrazone, 1,3,3-trimethylindolenine-
hydrazones such as ω-aldehyde-N, N-diphenylhydrazone, P-diethylbenzaldehyde-3-methylbenzthiazolinone-2-hydrazone, 2.5-bis (P-diethylaminophenyl) -1.3.4-oxadi Azole, 1
-Phenyl-3- (P-diethylaminostyryl) -5
-(P-diethylaminophenyl) pyrazoline, 1- [quinolyl (2)]-3- (P-diethylaminostyryl)
-5- (P-diethylaminophenyl) pyrazoline, 1-
[Pyridyl (2)]-3- (P-diethylaminostyryl) -5- (P-diethylaminophenyl) pyrazoline, 1- [6-methoxy-pyridyl (2)]-3- (P-
Diethylaminostyryl) -5- (P-diethylaminophenyl) pyrazoline, 1- [pyridyl (3)]-3-
(P-Diethylaminostyryl) -5- (P-diethylaminosphenyl) pyrazoline, 1- [levidyl (2)]
-3- (P-diethylaminostyryl) -5- (P-diethylaminophenyl) pyrazoline, 1- [pyridyl (2)]-3- (P-diethylaminostyryl) -4-
Methyl-5- (P-diethylaminophenyl) pyrazoline, 1- [pyridyl (2)]-3- (α-methyl-P-diethylaminostyryl) -5- (P-diethylaminophenyl) pyrazoline, 1-phenyl- 3- (P-diethylaminostyryl) -4-methyl-5- (P-diethylaminophenyl) pyrazoline, 1-phenyl-3- (α-benzyl-P-diethylaminostyryl) -5- (P-diethylaminophenyl) -6-Pyrazoline, spiropyrazoline and other pyrazolines, 2- (P-diethylaminostyryl) -6-diethylaminobenzoxazole, 2-
Oxazole compounds such as (P-diethylaminophenyl) -4- (P-diethylaminophenyl) -5- (2-chlorophenyl) oxazole, α-phenyl-4-
Stilbene compounds such as N, N-diphenyl-amino-stilbene, thiazole compounds such as 2- (P-diethylaminostyryl) -6-diethylaminobenzothizole,
Triarylmethane compounds such as bis (4-diethylamino-2-methylphenyl) -phenylmethane, 1,1-bis (4-N, N-diethylamino-2-methylphenyl)
Polyarylalkanes such as heptane, 1,1,2,2-tetrakis (4-N, N-dimethylamino-2-methylphenyl) ethane, triphenylamine, poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, There are polyvinyl acridine, poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, ethylcarbazole formaldehyde resin and the like.
これらの有機電荷移動物質の他に,セレン,セレン−テ
ルルアモルフアスシリコン,硫化カドミウムなどの無機
材料も用いることができる。In addition to these organic charge transfer materials, inorganic materials such as selenium, selenium-telluramorphous silicon, and cadmium sulfide can also be used.
また,これらの電荷移動物質は,1種または2種以上組合
せて用いることができる。電荷移動層に用いられる樹脂
は,シリコン樹脂,ケトン樹脂,ポリメチルメタクリレ
ート,ポリ塩化ビニル,アクリル樹脂,ポリアリレー
ト,ポリエステル,ポリカーボネート,ポリスチレン,
アクリロニトリル−スチレンコポリマー,アクリロニト
リル−ブタジエンコポリマー,ポリビニルブチラール,
ポリビニルホルマール,ポリスルホン,ポリアクリルア
ミド,ポリアミド,塩素化ゴムなどの絶縁性樹脂,ポリ
−N−ビニルカルバゾール,ポリビニルアントラセン,
ポリビニルピレンなどがある。Further, these charge transfer substances can be used alone or in combination of two or more. Resins used for the charge transfer layer are silicone resin, ketone resin, polymethylmethacrylate, polyvinyl chloride, acrylic resin, polyarylate, polyester, polycarbonate, polystyrene,
Acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral,
Insulating resins such as polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, poly-N-vinylcarbazole, polyvinylanthracene,
There are polyvinylpyrene and the like.
塗工方法は,スピンコーター,アプリケーター,スプレ
ーコーター,バーコーター,浸漬コーター,ドクターブ
レード,ローラーコーター,カーテンコーター,ビード
コーター装置を用いて行ない,乾燥後膜厚は5から50ミ
クロン,望ましくは10から20ミクロンになるように塗工
されるものが良い。これらの各層に加えて,帯電性の低
下防止,接着性向上などの目的で下引き層を導電性基板
上に設けることができる。下引き層として,ナイロン6,
ナイロン66,ナイロン11,ナイロン610,共重合ナイロン,
アルコキシメチル化ナイロンなどのアルコール可溶性ポ
リアミド,ガゼイン,ポリビニルアルコール,ニトロセ
ルロース,エチレン−アクリル酸コポリマー,ゼラチ
ン,ポリウレタン,ポリビニルブチラールおよび酸化ア
ルミニウムなどの金属酸化物が用いられる。また,金属
酸化物やカーボンブラックなどの導電性粒子を樹脂中に
含有させて導電性を調整することも可能である。The coating method is spin coater, applicator, spray coater, bar coater, dip coater, doctor blade, roller coater, curtain coater, bead coater, and the film thickness after drying is 5 to 50 microns, preferably 10 to It is good that it is coated to 20 microns. In addition to each of these layers, an undercoat layer may be provided on the conductive substrate for the purpose of preventing deterioration of charging property and improving adhesiveness. As the undercoat layer, nylon 6,
Nylon 66, Nylon 11, Nylon 610, Copolymer Nylon,
Alcohol-soluble polyamides such as alkoxymethylated nylon, casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, gelatin, polyurethane, polyvinyl butyral and metal oxides such as aluminum oxide are used. It is also possible to adjust the conductivity by incorporating conductive particles such as metal oxide or carbon black into the resin.
本発明の材料は800mm以上の波長に吸収ピークがあり,
電子写真感光体として複写機,プリンターに用いられる
だけでなく,太陽電池,光電変換素子および光ディスク
用吸収材料としても好適である。The material of the present invention has an absorption peak at a wavelength of 800 mm or more,
It is suitable not only as an electrophotographic photoreceptor for copying machines and printers but also as an absorbing material for solar cells, photoelectric conversion elements and optical disks.
以下,本発明の実施例について説明する。例の中で部と
は,重量部を示す。Examples of the present invention will be described below. In the examples, “part” means “part by weight”.
実施例1 o−フタロジニトリル25.6部,五酸化バナジウム9.1部
をα−クロルナフタレン50部中で200℃にて2時間加熱
反応後,水蒸気蒸留で溶媒を除き,2%塩酸水溶液,続い
て2%水酸化ナトリウム水溶液で精製し,アセトンで洗
浄後,乾燥し,バナジルフタロシアニン(VOPc)24.3部
を得た。このバナジルフタロシアニン2部を5℃の98%
硫酸40部の中に少しずつ溶解し,その混合物を約1時
間,5℃以下の温度を保ちながら撹拌する。続いて硫酸溶
液を高速撹拌した400部の氷水中に,ゆっくりと注入
し,析出した結晶を濾過する。結晶を酸が残留しなくな
るまで蒸留水で洗浄し,アセトンで精製した後,乾燥し
て,1.8部のバナジルフタロシアニンを得た。次に,この
バナジルフタロシアニン1部をボールミルで24時間粉砕
した。Example 1 25.6 parts of o-phthalodinitrile and 9.1 parts of vanadium pentoxide were reacted by heating in 50 parts of α-chlornaphthalene at 200 ° C. for 2 hours, the solvent was removed by steam distillation, and a 2% aqueous hydrochloric acid solution was added. % Aqueous sodium hydroxide solution, washed with acetone and dried to obtain 24.3 parts of vanadyl phthalocyanine (VOPc). Add 2 parts of this vanadyl phthalocyanine to 98% at 5 ℃.
Dissolve little by little in 40 parts of sulfuric acid, and stir the mixture for about 1 hour while keeping the temperature below 5 ° C. Then, the sulfuric acid solution is slowly poured into 400 parts of ice water stirred at high speed, and the precipitated crystals are filtered. The crystals were washed with distilled water until no acid remained, purified with acetone, and then dried to obtain 1.8 parts of vanadyl phthalocyanine. Next, 1 part of this vanadyl phthalocyanine was crushed with a ball mill for 24 hours.
このようにして得たバナジルフタロシアニンは,0.2ミク
ロン以下の微細な一次粒子からなり,第1図のX線回折
図で示すように強い回折ピークはない。The vanadyl phthalocyanine thus obtained is composed of fine primary particles of 0.2 μm or less and has no strong diffraction peak as shown in the X-ray diffraction diagram of FIG.
ポリエチレンテレフタレートフィルムにアルミ蒸着した
厚さ75ミクロンのシート上に,酸化亜鉛(堺化学製SAZE
X♯2000)0.3部,ポリビニルアルコール(ケン化度86〜
89%)9.7部を混合し、エタノール500部とボールミルで
3時間分散した塗液をワイヤーバーで塗布し,70℃で3
時間加熱乾燥させ,膜厚0.5ミクロンの下引き層を持つ
シートを得た。On a 75 micron thick sheet of aluminum vapor-deposited on polyethylene terephthalate film, zinc oxide (SAZE Chemical SAZE
X # 2000) 0.3 parts, polyvinyl alcohol (saponification degree 86-
89%) 9.7 parts are mixed, 500 parts of ethanol and a coating solution dispersed in a ball mill for 3 hours are applied with a wire bar, and the mixture is applied at 70 ° C. for 3 hours.
After heat-drying for a period of time, a sheet with an undercoat layer of 0.5 micron was obtained.
前記方法で得たバナジルフタロシアニン2部をジオキサ
ン97部にフェノキシ樹脂1部(ユニオンカーバイト製PK
HH)を溶かした液に加えて,ボールミルで2時間分散し
た。この分散液を下引き層上に塗布し,100℃で2時間乾
燥させた後,0.3ミクロンの電荷発生層を形成,次に電荷
移動剤として,1−ベンジル−1,2,3,4−テトラヒドロキ
ノリン−6−カルボキシアルデヒド−1′,1′−ジフェ
ニルヒドラゾン10部,ポリエステル樹脂(東洋紡製バイ
ロン200)10部を塩化メチレン100重量部に溶かした液を
電荷発生層上に塗布,乾燥し,15ミクロンの電荷移動層
を形成し,電子写真感光体を得,その特性を測定した。2 parts of vanadyl phthalocyanine obtained by the above method and 97 parts of dioxane and 1 part of phenoxy resin (PK manufactured by Union Carbide
HH) was added to the solution and dispersed by a ball mill for 2 hours. This dispersion was applied on the undercoat layer and dried at 100 ° C for 2 hours to form a 0.3 micron charge generation layer, and then 1-benzyl-1,2,3,4- Tetrahydroquinoline-6-carboxaldehyde-1 ', 1'-diphenylhydrazone 10 parts, polyester resin (Voyron 200 made by Toyobo Co., Ltd.) 10 parts were dissolved in 100 parts by weight of methylene chloride, applied on the charge generation layer, dried, A 15 micron charge transfer layer was formed to obtain an electrophotographic photoreceptor, and its characteristics were measured.
本実施例により得られたバナジルフタロシアニンの吸収
スペクトルを第2図(実線)に示す。The absorption spectrum of vanadyl phthalocyanine obtained in this example is shown in FIG. 2 (solid line).
実施例2 実施例1の電荷移動剤の代わりに,2−メチル−4−ジベ
ンジルアミノベンズアルデヒド−1−エチル−1′−フ
タラジニルヒドラゾンを用いて同様に電子写真感光体を
作成し,その特性を測定した。Example 2 An electrophotographic photosensitive member was similarly prepared by using 2-methyl-4-dibenzylaminobenzaldehyde-1-ethyl-1'-phthalazinylhydrazone instead of the charge transfer agent of Example 1, and The properties were measured.
実施例3 実施例1の電荷移動剤の代わりに,2−メチル−4−ジベ
ンジルアミノベンズアルデヒド−1′−プロピル−1′
−ベンゾチアゾリルヒドラゾンを用いて同様に電子写真
感光体を作成し,その特性を測定した。Example 3 Instead of the charge transfer agent of Example 1, 2-methyl-4-dibenzylaminobenzaldehyde-1'-propyl-1 '
An electrophotographic photoreceptor was similarly prepared using benzothiazolyl hydrazone, and its characteristics were measured.
実施例4 o−フタロジニトリル25.6部,五酸化バナジウム9.1部
をα−クロルナフタレン50部中で200℃にて2時間加熱
し,反応後,水蒸気蒸留で溶媒を除き,2%塩酸水溶液で
精製した後,乾燥し,バナジウムフタロシアニンジクロ
ライド(VPcCl2)21.6部を得た。このバナジウムフタロ
シアニンジクロライドを実施例1と同様の方法でアシッ
ドペースティングおよびボールミル分散を行って得られ
た材料を用いて電子写真感光体を作成し,その特性を測
定した。Example 4 25.6 parts of o-phthalodinitrile and 9.1 parts of vanadium pentoxide were heated in 50 parts of α-chlornaphthalene at 200 ° C. for 2 hours, after the reaction, the solvent was removed by steam distillation, and the mixture was purified with a 2% hydrochloric acid aqueous solution. After that, it was dried to obtain 21.6 parts of vanadium phthalocyanine dichloride (VPcCl2). An electrophotographic photosensitive member was prepared using the material obtained by subjecting this vanadium phthalocyanine dichloride to acid pasting and ball mill dispersion in the same manner as in Example 1, and its characteristics were measured.
実施例5 o−フタロジニトリル25.6部,五酸化バナジウム9.1部
を250℃にて2時間加熱し,反応後,2%塩酸水溶液,続
いてアセトンで精製した後,乾燥し、モノクロルバナジ
ウムフタロシアニンジクロライド(ClVPcCl2)23.7部を
得た。このモノクロルバナジウムフタロシアニンジクロ
ライドを実施例1と同様の方法でアシッドペースティン
グおよびボールミル分散を行って得られた材料を用いて
電子写真感光体を作成し,その特性を測定した。Example 5 25.6 parts of o-phthalodinitrile and 9.1 parts of vanadium pentoxide were heated at 250 ° C. for 2 hours, and after the reaction, the product was purified with a 2% hydrochloric acid aqueous solution and then with acetone, and then dried, and monochlorovanadium phthalocyanine dichloride ( ClVPcCl2) 23.7 parts was obtained. An electrophotographic photoreceptor was prepared using the material obtained by subjecting this monochlorovanadium phthalocyanine dichloride to acid pasting and ball mill dispersion in the same manner as in Example 1 and measuring its characteristics.
本実施例により得られたモノクロルバナジウムフタロシ
アニンジクロライドの吸収スペクトルを第2図(点線)
に示す。The absorption spectrum of the monochlorovanadium phthalocyanine dichloride obtained in this example is shown in FIG. 2 (dotted line).
Shown in.
実施例6 実施例1の方法で合成および精製されたバナジルフタロ
シアニン10部を10-5Torrの真空条件下で550℃に加熱昇
華させ,冷却した基板上に析出させた。この析出物を取
り出し,ボールミルで50時間粉砕して,7.9部の微細な一
次粒子からなるバナジウムフタロシアニンを得た。この
材料を用いて,実施例1と同様に電子写真感光体を作成
し,その特性を測定した。Example 6 10 parts of vanadyl phthalocyanine synthesized and purified by the method of Example 1 was heated and sublimated at 550 ° C. under a vacuum condition of 10 −5 Torr, and deposited on a cooled substrate. The precipitate was taken out and pulverized with a ball mill for 50 hours to obtain 7.9 parts of vanadium phthalocyanine composed of fine primary particles. Using this material, an electrophotographic photosensitive member was prepared in the same manner as in Example 1, and its characteristics were measured.
比較例1 o−フタロジニトリル25.6部,五酸化バナジウム9.1部
をα−クロルナフタレン50部中で200℃にて2時間加熱
し,反応後,水蒸気蒸留で溶媒を除き,2%塩酸水溶液,
続いて2%水酸化ナトリウム水溶液で精製した後,アセ
トンで洗浄後,乾燥し,バナジルフタロシアニン24.6部
を得た。Comparative Example 1 25.6 parts of o-phthalodinitrile and 9.1 parts of vanadium pentoxide were heated in 50 parts of α-chlornaphthalene at 200 ° C. for 2 hours, after the reaction, the solvent was removed by steam distillation, and a 2% aqueous hydrochloric acid solution was added.
Then, the product was purified with a 2% aqueous sodium hydroxide solution, washed with acetone and dried to obtain 24.6 parts of vanadyl phthalocyanine.
このようにして得たバナジルフタロシアニンは,1ミクロ
ン以上の凝集および結晶性粒子からなる。このバナジル
フタロシアニンを用いて,実施例1と同様に電子写真感
光体を作成し,その特性を測定した。The vanadyl phthalocyanine thus obtained consists of aggregated and crystalline particles of 1 micron or more. Using this vanadyl phthalocyanine, an electrophotographic photosensitive member was prepared in the same manner as in Example 1 and its characteristics were measured.
このようにして作成した電子写真感光体を川口電気製静
電複写紙試験装置SP-428により−5.4KVでコロナ帯電
し,表面電(Vo)および51uxの白色光(W)を照射して
帯電量が1/2まで減少する時間から白色光半減露光量感
度(E1/2)を調べた。また,繰り返し特性の評価は−5.
4KV,コロナ線速度20m/minの条件で帯電,2秒間暗所に放
置,51uxで3秒露光の順で繰り返し,表面電位,残留電
位,感度の劣化を測定した。その結果を表1に示す。な
お残留電位(VR)は光照射3秒後の電位である。The electrophotographic photoconductor thus prepared was corona charged at −5.4 KV by an electrostatic copying paper tester SP-428 manufactured by Kawaguchi Electric Co., Ltd., and was charged by irradiating surface charge (Vo) and 51ux white light (W). The half-white light exposure sensitivity (E1 / 2) was examined from the time when the amount decreased to 1/2. Also, the evaluation of the repeatability is −5.
The surface potential, residual potential, and deterioration of sensitivity were measured by repeating charging in the order of 4 KV and corona linear velocity of 20 m / min, leaving in the dark for 2 seconds, and exposing at 51ux for 3 seconds. The results are shown in Table 1. The residual potential (VR) is the potential after 3 seconds of light irradiation.
さらに,本実施例および比較例で作成した感光体を,コ
ロナ帯電器,露光部,現像部,転写帯電部,除電露光部
およびクリーナーを持つ電子写真方式の複写機のドラム
に貼り付けた。この複写機の明部電位を−650V,暗部電
位を−150Vに設定し,5000枚の繰り返し耐久試験の後,
画像を比較した。Further, the photoconductors prepared in this example and the comparative example were attached to a drum of an electrophotographic copying machine having a corona charger, an exposure part, a development part, a transfer charging part, a charge removal exposure part and a cleaner. The light section potential of this copier was set to -650V and the dark section potential was set to -150V, and after repeated durability test of 5000 sheets,
The images were compared.
5000枚の耐久試験の結果,微小な一次粒子を用いて電荷
発生層を作成した実施例1〜6は,5000枚の耐久試験の
後に美しい画像が得られるのに対し,比較例1は白斑点
が画像上に多くあり,繰り返して耐久試験をするに従
い,白斑点はさらに多く,また大きくなり,充分な画像
は得られなかった。 As a result of the durability test of 5,000 sheets, in Examples 1 to 6 in which the charge generation layer was formed by using the fine primary particles, a beautiful image was obtained after the durability test of 5,000 sheets, whereas in Comparative Example 1, white spots were generated. There were many white spots on the image, and the number of white spots became larger and larger as the durability test was repeated, and a sufficient image could not be obtained.
静電帯電試験装置を用いて,感光体に−5.4KVのコロナ
帯電をさせた後,500Wのキセノンランプを光源とし,モ
ノクロメーター(ジョバンイボン製)で単色光として照
射し,帯電露光時の光減衰を測定した。After charging the photoreceptor to −5.4KV corona using an electrostatic charging tester, a 500W xenon lamp was used as the light source and a monochromator (manufactured by Jobin Yvon) was used to illuminate it as monochromatic light. The decay was measured.
800nmの単色光を用いた場合,半減露光量は0.50μJ/cm2
であり,650nmの単色光では0.65μJ/cm2であった。本感
光体は半導体レーザーおよびLEDの発振波長領域で高感
度を有していることがわかる。 When using 800 nm monochromatic light, the half-exposure dose is 0.50 μJ / cm 2
It was 0.65 μJ / cm 2 for 650 nm monochromatic light. It can be seen that this photoreceptor has high sensitivity in the oscillation wavelength region of semiconductor lasers and LEDs.
「発明の効果」 本発明は,非結晶性の0.2ミクロン以下の凝集のない一
次粒子からなるバナジウムを含有するフタロシアニン化
合物を開発し,使用することにより,従来の凝集粒子か
らなる顔料では達成し得なかった,極めて均一な電荷発
生層を得,それにより感度,繰り返し安定性が向上し,
極めて美しい画像を提供する電子写真感光体を作成する
ことが可能となった。また750mm以上の長波長領域およ
び650nmで高感度を有することから,半導体レーザーお
よびLEDを光源とするプリンター用感光体として最適で
ある。[Advantages of the Invention] The present invention can be achieved with conventional pigments composed of agglomerated particles by developing and using a phthalocyanine compound containing vanadium composed of non-aggregate primary particles of 0.2 micron or less. It was possible to obtain a very uniform charge generation layer, which was not possible, and sensitivity and repeatability were improved.
It has become possible to create electrophotographic photoreceptors that provide extremely beautiful images. Also, since it has a long wavelength region of 750 mm or more and high sensitivity at 650 nm, it is optimal as a photoconductor for printers using semiconductor lasers and LEDs as light sources.
第1図は本発明における実施例1のバナジルフタロシア
ニンのX線回折図,第2図は実施例1および実施例5の
バナジルフタロシアニンの吸収スペクトルをそれぞれ示
す。FIG. 1 shows the X-ray diffraction diagram of vanadyl phthalocyanine of Example 1 of the present invention, and FIG. 2 shows the absorption spectra of vanadyl phthalocyanine of Example 1 and Example 5, respectively.
Claims (5)
子で置換されていてもよい,中心核がオキシバナジウム
またはハロゲン化バナジウムであるフタロシアニンであ
って,アシッドペースティング法またはアシッドスラリ
ー法で処理し,次に機械的処理方法で磨砕してなる該フ
タロシアニンが強いX線回析ピークを示さない非結晶性
のバナジウム系フタロシアニンを用いてなることを特徴
とする光半導体材料。1. A phthalocyanine having a central nucleus of oxyvanadium or vanadium halide, which may have a benzene ring of phthalocyanine substituted with a halogen atom, which is treated by an acid pasting method or an acid slurry method, and An optical semiconductor material, characterized in that the phthalocyanine obtained by grinding by a mechanical treatment method is made of an amorphous vanadium phthalocyanine which does not show a strong X-ray diffraction peak.
あるバナジウム系フタロシアニンである特許請求の範囲
大1項記載の光半導体材料。2. The photosemiconductor material according to claim 1, which is a vanadium phthalocyanine whose primary particle system is 0.2 micrometer or less.
る電子写真感光体において,電荷発生剤がフタロシアニ
ンのベンゼン環がハロゲン原子で置換されていてもよ
い,中心核がオキシバナジウムまたはハロゲン化バナジ
ウムであるフタロシアニンで,かつ該フタロシアニンが
強いX線回析ピークを示さない非結晶性のバナジウム系
フタロシアニンであることを特徴とする電子写真感光
体。3. An electrophotographic photoreceptor comprising a charge generating agent and a charge transfer agent, wherein the charge generating agent may have a benzene ring of phthalocyanine substituted with a halogen atom, the central nucleus of which is oxyvanadium or halogenated. An electrophotographic photosensitive member comprising phthalocyanine which is vanadium and which is a non-crystalline vanadium phthalocyanine which does not show a strong X-ray diffraction peak.
〔2〕および〔3〕で表されるヒドラゾン化合物の少な
くとも1種を有効成分とする電荷移動層であることを特
徴とする特許請求の範囲第2項記載の電子写真感光体。 (紙器中,R1,R2,R3はハロゲン原子,ニトロ基,シア
ノ基,置換基を有しても良いアルキル基,アルコキシ
基,アリール基,アリールオキシ基またはアミノ基を表
わし,nは0〜4の整数を表わす。)4. A charge transfer agent comprising the following three general formulas [1],
The electrophotographic photosensitive member according to claim 2, which is a charge transfer layer containing at least one hydrazone compound represented by [2] or [3] as an active ingredient. (In the paper container, R 1 , R 2 and R 3 represent a halogen atom, a nitro group, a cyano group, an optionally substituted alkyl group, an alkoxy group, an aryl group, an aryloxy group or an amino group, and n is Represents an integer of 0-4.)
引き層を有する特許請求の範囲第3〜4項記載の電子写
真感光体。5. The electrophotographic photosensitive member according to claim 3, which has an inorganic or organic undercoat layer on the conductive support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61161973A JPH0690524B2 (en) | 1986-07-11 | 1986-07-11 | Optical semiconductor material and electrophotographic photoreceptor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61161973A JPH0690524B2 (en) | 1986-07-11 | 1986-07-11 | Optical semiconductor material and electrophotographic photoreceptor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6318361A JPS6318361A (en) | 1988-01-26 |
JPH0690524B2 true JPH0690524B2 (en) | 1994-11-14 |
Family
ID=15745599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61161973A Expired - Fee Related JPH0690524B2 (en) | 1986-07-11 | 1986-07-11 | Optical semiconductor material and electrophotographic photoreceptor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0690524B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5479041B2 (en) * | 2009-11-18 | 2014-04-23 | キヤノン株式会社 | Method for producing electrophotographic photosensitive member |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4557868A (en) * | 1984-06-26 | 1985-12-10 | Xerox Corporation | Process for preparing a phthalocyanine |
-
1986
- 1986-07-11 JP JP61161973A patent/JPH0690524B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6318361A (en) | 1988-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2561940B2 (en) | Gallium phthalocyanine compound and electrophotographic photoreceptor using the same | |
JP2782765B2 (en) | Method for producing phthalocyanine crystal | |
JP2754739B2 (en) | Phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same | |
JPH061386B2 (en) | Optical semiconductor material and electrophotographic photoreceptor using the same | |
JP2512081B2 (en) | R-type titanium phthalocyanine compound, method for producing the same, and electrophotographic photoreceptor using the same | |
JPH0560863B2 (en) | ||
JP3003664B2 (en) | Phthalocyanine crystal and electrophotographic photoreceptor using it | |
JP2870985B2 (en) | Electrophotographic photoreceptor | |
JP2589705B2 (en) | Optical semiconductor material and electrophotographic photosensitive member using the same | |
JP2775832B2 (en) | X-type metal-free phthalocyanine composition, method for producing the same, and electrophotographic photoreceptor using the same | |
JPH0530263B2 (en) | ||
JPH01123868A (en) | Quasi-noncrystalline titanium phthalocyanine compound, its production and electrophotographic material | |
JP2861116B2 (en) | Electrophotographic photoreceptor | |
JP2599165B2 (en) | Semiconductor material, manufacturing method thereof, and electrophotographic photoreceptor | |
JPH0690524B2 (en) | Optical semiconductor material and electrophotographic photoreceptor using the same | |
JP2830142B2 (en) | Electrophotographic photoreceptor | |
JPH01144057A (en) | Photosemiconductive material and electrophotographic sensitive body using same | |
JPH0529109B2 (en) | ||
JP2805915B2 (en) | Electrophotographic photoreceptor | |
JP2805896B2 (en) | Electrophotographic photoreceptor | |
JP3052354B2 (en) | Electrophotographic photoreceptor | |
JP2693955B2 (en) | Titanium phthalocyanine compound, method for producing the same, and electrophotographic photoreceptor using the same | |
JP2985254B2 (en) | Electrophotographic photoreceptor | |
JPH0299969A (en) | Electrophotographic sensitive body | |
JPH0813942B2 (en) | Quasi-amorphous titanium phthalocyanine compound and electrophotographic photoreceptor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |