JPH0690083A - Manufacture of ceramic dbc substrate - Google Patents
Manufacture of ceramic dbc substrateInfo
- Publication number
- JPH0690083A JPH0690083A JP28212291A JP28212291A JPH0690083A JP H0690083 A JPH0690083 A JP H0690083A JP 28212291 A JP28212291 A JP 28212291A JP 28212291 A JP28212291 A JP 28212291A JP H0690083 A JPH0690083 A JP H0690083A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- coating layer
- substrate
- oxide
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 39
- 239000000919 ceramic Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 87
- 229910052802 copper Inorganic materials 0.000 claims abstract description 87
- 239000010949 copper Substances 0.000 claims abstract description 87
- 239000011247 coating layer Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000005751 Copper oxide Substances 0.000 claims abstract description 14
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000007747 plating Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000004544 sputter deposition Methods 0.000 claims abstract description 6
- 238000001771 vacuum deposition Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract 1
- 238000000489 vacuum metal deposition Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910002855 Sn-Pd Inorganic materials 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、セラミックスDBC基
板の製造方法に関し、特に本発明は、銅回路板をセラミ
ックス基板に強固に接着させることのできるセラミック
スDBC基板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ceramics DBC substrate, and more particularly, the present invention relates to a method of manufacturing a ceramics DBC substrate capable of firmly adhering a copper circuit board to the ceramics substrate.
【0002】[0002]
【従来の技術】最近の半導体部品は、大電力化、モジュ
ール化、高集積化、高信頼性化および低価格化が急速に
進んでいる。これらの実現のためにセラミックス基板上
に直接銅回路板を接着し、放熱性を大幅に向上させ、か
つ銅回路上に直接半導体を実装することのできる放熱性
の優れた半導体実装基板(以下、DBC基板と称する)
が実現されており、例えばパワートランジスタモジュー
ル、高周波パワートランジスタ、大容量パワートランジ
スタあるいはイグナイタ用パワートランジスタ等にアル
ミナDBC基板や窒化アルミニウムDBC基板が実用化
されている。2. Description of the Related Art Recent semiconductor components are rapidly increasing in power consumption, modularization, high integration, high reliability and low price. In order to realize these, a copper circuit board is directly bonded onto a ceramic substrate to significantly improve heat dissipation, and a semiconductor mounting board with excellent heat dissipation capable of directly mounting a semiconductor on the copper circuit (hereinafter, (Referred to as DBC substrate)
Alumina DBC substrates and aluminum nitride DBC substrates have been put to practical use in, for example, power transistor modules, high frequency power transistors, large capacity power transistors, power transistors for igniters and the like.
【0003】[0003]
【発明が解決しようとする課題】ところで、前述の如き
DBC基板における銅回路板の接着方法としては、基板
表面の酸化物とCuOの共融相を介して接着する方法が
一般的であるが、処理条件のコントロールが難しく、し
かも接着強度の点でやや信頼性に欠ける欠点を有してい
た。By the way, as a method of adhering a copper circuit board on a DBC substrate as described above, a method of adhering an oxide on the surface of the substrate and a eutectic phase of CuO is generally used. It was difficult to control the processing conditions, and had a drawback that it was slightly unreliable in terms of adhesive strength.
【0004】本発明は、このような課題を解決するため
になされたものであり、前記DBC基板における銅回路
板を強固に接着する方法を提供することを目的とする。The present invention has been made to solve the above problems, and an object thereof is to provide a method for firmly adhering a copper circuit board on the DBC substrate.
【0005】[0005]
【課題を解決するための手段】本発明者は、このような
課題を解決すべく種々検討した結果、セラミックス基板
の表面に薄い金属銅被膜層を形成した後、前記金属銅被
膜層の上に酸化銅を介して銅板を載置し加熱することに
より、極めて強固に接着することができることを見出し
た。As a result of various studies to solve such problems, the present inventor found that after forming a thin metallic copper coating layer on the surface of a ceramic substrate, the thin metallic copper coating layer was formed on the metallic copper coating layer. It has been found that a strong adhesion can be achieved by placing and heating a copper plate via copper oxide.
【0006】次に本発明のセラミックスDBC基板の製
造方法について詳細に説明する。Next, the method for manufacturing the ceramics DBC substrate of the present invention will be described in detail.
【0007】本発明によれば、セラミックス基板の表面
にスパッタリング法、化学銅めっき法および真空蒸着法
から選ばれるいずれかの方法で金属銅被膜層を形成する
ことが必要である。その理由は、セラミックス基板の表
面に直接形成される金属銅被膜層は、その後に銅回路板
が接着されるため、極めて強固にセラミックス基板の表
面に接着していることが重要であり、前記スパッタリン
グ法、化学銅めっき法および真空蒸着法は、いずれもセ
ラミックス基板の表面に極めて強固に接着された金属銅
被膜層を形成することができるからである。なお、前記
セラミックス基板の表面は、予め清浄化処理やアンカー
となる凹凸加工を施しておくことが有利である。According to the present invention, it is necessary to form the metal copper coating layer on the surface of the ceramic substrate by any method selected from the sputtering method, the chemical copper plating method and the vacuum deposition method. The reason is that it is important that the metal copper coating layer formed directly on the surface of the ceramic substrate is extremely strongly adhered to the surface of the ceramic substrate because the copper circuit board is adhered thereafter. This is because any of the method, the chemical copper plating method, and the vacuum deposition method can form the metal copper coating layer that is extremely strongly adhered to the surface of the ceramic substrate. It is advantageous that the surface of the ceramic substrate is previously subjected to a cleaning treatment or an unevenness process as an anchor.
【0008】前記金属銅被膜層の厚さは、0.3〜5μ
mの範囲であることが有利である。その理由は、0.3
μmより薄いと金属銅被膜層に銅回路板を効率的に接着
させることが困難であるからであり、一方5μmより厚
い金属銅被膜層は、形成に長時間を要し効率的でないか
らである。また本発明によれば、前記スパッタリング
法、化学銅めっき法あるいは真空蒸着法によって形成さ
れた金属被膜層は、形成された後1068〜1075℃
の温度で熱処理を施すことが有利である。The thickness of the metallic copper coating layer is 0.3-5 μm.
Advantageously, it is in the range m. The reason is 0.3
This is because if it is thinner than μm, it is difficult to efficiently adhere the copper circuit board to the metal copper coating layer, while on the other hand, the metal copper coating layer thicker than 5 μm takes a long time to form and is not efficient. . Further, according to the present invention, the metal coating layer formed by the sputtering method, the chemical copper plating method or the vacuum deposition method is 1068 to 1075 ° C. after being formed.
It is advantageous to carry out the heat treatment at a temperature of.
【0009】本発明によれば、セラミックス基板の表面
の金属銅被膜層の上に酸化銅を介して銅回路板を載置し
加熱することが必要である。その理由は、金属銅被膜層
の上に酸化銅を介して銅回路板を載置し加熱することに
より、酸化銅によって銅の融点を低下させることがで
き、極めて容易にしかも強固に金属銅被膜層と銅回路板
を接着することができるからである。なお、前記スパッ
タリング法、化学銅めっき法および真空蒸着法等によっ
て金属銅被膜層を直接厚く形成することも考えられる
が、前記方法はいずれも膜の生成速度が極めて遅いた
め、効率的でない。According to the present invention, it is necessary to place and heat the copper circuit board on the metal copper coating layer on the surface of the ceramic substrate via the copper oxide. The reason is that the copper melting point of copper can be lowered by copper oxide by placing a copper circuit board on the metal copper coating layer via copper oxide and heating it, and it is extremely easy and strong. This is because the layers can be bonded to the copper circuit board. Although it is conceivable to directly form a thick metal copper coating layer by the sputtering method, the chemical copper plating method, the vacuum deposition method, or the like, any of the above methods is not efficient because the rate of film formation is extremely slow.
【0010】本発明によれば、前記金属銅被膜層と銅回
路板との間の酸化銅は、金属銅被膜層あるいは銅回路板
のいずれか少なくとも一方の表面に形成された酸化被膜
であることが好ましい。その理由は、前記酸化銅は、前
記金属銅被膜層と銅回路板の表面の融点を低下させて、
金属銅被膜層と銅回路板を融合させる目的で介在させる
ものであり、前記金属銅被膜層あるいは銅回路板のいず
れか少なくとも一方の表面に形成された酸化被膜は、極
めて効率的に金属銅被膜層あるいは銅回路板の表面を溶
融させることができるからである。According to the present invention, the copper oxide between the metallic copper coating layer and the copper circuit board is an oxide coating formed on at least one surface of the metallic copper coating layer and the copper circuit board. Is preferred. The reason is that the copper oxide reduces the melting points of the surfaces of the metal copper coating layer and the copper circuit board,
The metal copper coating layer and the copper circuit board are interposed for the purpose of fusing, and the oxide coating formed on the surface of at least one of the metal copper coating layer and the copper circuit board is a metal copper coating extremely efficiently. This is because the layer or the surface of the copper circuit board can be melted.
【0011】本発明によれば、前記酸化被膜の厚さの合
計が0.3〜5μmであることが好ましい。その理由
は、0.3μmより薄いと金属銅被膜層あるいは銅回路
板の表面を効率的に溶融させることが困難であるからで
あり、一方5μmより厚いと溶融量の制御が困難にな
り、均一な接着層を形成することが困難になるからであ
る。According to the present invention, the total thickness of the oxide film is preferably 0.3 to 5 μm. The reason is that if it is thinner than 0.3 μm, it is difficult to efficiently melt the surface of the metallic copper coating layer or the copper circuit board, while if it is thicker than 5 μm, it becomes difficult to control the melting amount, and it becomes uniform. This is because it becomes difficult to form an excellent adhesive layer.
【0012】本発明によれば、前記セラミックス基板の
表面の金属銅被膜層の上に酸化銅を介して銅回路板を載
置し加熱する際の加熱温度は、1068〜1075℃の
範囲内であることが好ましい。その理由は、1068℃
より低いと酸化銅と銅の共晶相を形成することができ
ず、一方1075℃より高いと銅回路板自体が溶融して
しまうからである。According to the present invention, the heating temperature when the copper circuit board is placed on the metallic copper coating layer on the surface of the ceramic substrate via copper oxide and heated is within the range of 1068 to 1075 ° C. Preferably there is. The reason is 1068 ℃
If it is lower than this, the eutectic phase of copper oxide and copper cannot be formed, while if it is higher than 1075 ° C., the copper circuit board itself is melted.
【0013】本発明によれば、前記セラミックス基板と
しては、酸化アルミニウム、酸化ベリリウムあるいは窒
化アルミニウム等のセラミックス基板を使用することが
できる。According to the present invention, as the ceramic substrate, a ceramic substrate made of aluminum oxide, beryllium oxide, aluminum nitride or the like can be used.
【0014】次に本発明を実施例によって詳細に説明す
る。Next, the present invention will be described in detail with reference to examples.
【0015】[0015]
【実施例】(実施例1) (1) 市販のアルミナ焼結体基板の表面をGC#70
0の砥粒で研削した後、イソプロピルアルコールの5%
水溶液中に浸漬し、超音波洗浄した後、Sn−Pd液に
浸漬し核付与処理を行い、化学銅めっき液に0.5時間
浸漬して銅めっき処理を行った。 (2) 前記銅めっき処理後、400℃の空気中で1時
間加熱した後、さらに1000℃の窒素ガス中で1時間
加熱し、次いで厚さ0.3mmの銅板を載せて1072
℃の窒素ガス中で10分間加熱して銅板を接合した。上
記工程によって得られたセラミックス基板と銅板とは極
めて強固に接着していることが認められた。Example (Example 1) (1) The surface of a commercially available alumina sintered body substrate was GC # 70.
5% of isopropyl alcohol after grinding with 0 grain
After immersion in an aqueous solution and ultrasonic cleaning, it was immersed in a Sn-Pd solution for nucleation treatment, and immersed in a chemical copper plating solution for 0.5 hours to perform copper plating treatment. (2) After the copper plating treatment, it is heated in air at 400 ° C. for 1 hour, then further heated in nitrogen gas at 1000 ° C. for 1 hour, and then a copper plate having a thickness of 0.3 mm is placed on it 1072
The copper plates were joined by heating in nitrogen gas at 0 ° C for 10 minutes. It was confirmed that the ceramic substrate and the copper plate obtained by the above steps were extremely strongly bonded.
【0016】(実施例2) (1) 平均粒径が0.8μm、酸素含有率が0.9重
量%の窒化アルミニウム粉末1000gと、純度が9
9.9重量%のY2 O3 50gと、アクリル樹脂系バイ
ンダー110gと、エチルアルコール180gと酢酸エ
チル180gとをボールミル中に装入し、24時間混合
した後、ドクターブレード法で1mmの厚さのシートを
成形した。 (2) 前記工程で得たシート状成形体を、脱脂炉に装
入し窒素気流中で300℃迄2℃/minの割合で昇温
し、脱脂処理を行った。 (3) 前記脱脂処理を施した接合体をAlN坩堝中に
装入し、1850℃で2時間焼結した。坩堝周辺の雰囲
気は窒素気流とした。 (4) 前記工程で得た焼結体をGC#700の砥粒で
研削して表面のYAG層を除去した後、100℃の蒸留
水中に2時間浸漬した。 (5) さらに、約70℃に調節されたNaOH15
%、m−エタノールアミン2%,水83%の混合液に2
分間浸漬して脱脂処理した後、Sn−Pd液に浸漬し核
付与処理を行い、化学銅めっき液に0.5時間浸漬して
銅めっき処理を行い、0.5μmのめっき層を形成し
た。 (6) 前記銅めっき処理後、400℃の空気中で1時
間加熱した後さらに1200℃の窒素気流中で1時間加
熱し、厚さ0.3mmの銅板を載せて1072℃の窒素
ガス中で10分間加熱して銅板を接合した。 上記工程によって得られたセラミックス基板と銅板とは
極めて強固に接着していることが認められた。Example 2 (1) 1000 g of aluminum nitride powder having an average particle size of 0.8 μm and an oxygen content of 0.9% by weight, and a purity of 9
50 g of 9.9% by weight of Y 2 O 3 , 110 g of an acrylic resin binder, 180 g of ethyl alcohol and 180 g of ethyl acetate were charged in a ball mill and mixed for 24 hours, and then a thickness of 1 mm by a doctor blade method. Sheet was molded. (2) The sheet-shaped molded product obtained in the above step was placed in a degreasing furnace and heated to 300 ° C. at a rate of 2 ° C./min in a nitrogen stream to perform degreasing treatment. (3) The degreased bonded body was placed in an AlN crucible and sintered at 1850 ° C. for 2 hours. The atmosphere around the crucible was a nitrogen stream. (4) The sintered body obtained in the above step was ground with abrasive grains of GC # 700 to remove the surface YAG layer, and then immersed in distilled water at 100 ° C. for 2 hours. (5) Furthermore, NaOH 15 adjusted to about 70 ° C
%, M-ethanolamine 2%, water 83% 2
After immersion for a minute and degreasing treatment, it was immersed in an Sn-Pd solution for nucleation treatment, and immersed in a chemical copper plating solution for 0.5 hour for copper plating treatment to form a 0.5 μm plated layer. (6) After the copper plating treatment, it is heated in air at 400 ° C. for 1 hour and further heated in a nitrogen stream at 1200 ° C. for 1 hour, and a copper plate having a thickness of 0.3 mm is placed on it in nitrogen gas at 1072 ° C. It heated for 10 minutes and joined the copper plate. It was confirmed that the ceramic substrate and the copper plate obtained by the above steps were extremely strongly bonded.
【0017】(実施例3) (1) 前記実施例2と同様にして得た焼結体をGC#
700の砥粒で研削して表面のYAG層を除去した後、
100℃の蒸留水中に2時間浸漬した。 (2) さらに、イソプロピルアルコールの5%水溶液
中に浸漬し、超音波洗浄した後、0.7μm/時間の析
出速度で銅スパッタ処理を施し、2μmの厚さのスパッ
タ膜を形成した。 (3) 次いで、400℃の空気中で1時間加熱した
後、1000℃の窒素ガス中で1時間加熱し、次いで厚
さ0.3mmの銅板を載せて1072℃の窒素ガス中で
10分間加熱して銅板を接合した。 上記工程によって得られたセラミックス基板と銅板とは
極めて強固に接着していることが認められた。Example 3 (1) A sintered body obtained in the same manner as in Example 2 was used as GC #.
After grinding with 700 abrasive grains to remove the YAG layer on the surface,
It was immersed in distilled water at 100 ° C. for 2 hours. (2) Further, after immersion in a 5% aqueous solution of isopropyl alcohol and ultrasonic cleaning, copper sputter processing was performed at a deposition rate of 0.7 μm / hour to form a sputtered film having a thickness of 2 μm. (3) Next, after heating in air at 400 ° C. for 1 hour, heating in nitrogen gas at 1000 ° C. for 1 hour, then placing a copper plate having a thickness of 0.3 mm and heating in nitrogen gas at 1072 ° C. for 10 minutes Then, the copper plates were joined. It was confirmed that the ceramic substrate and the copper plate obtained by the above steps were extremely strongly bonded.
【0018】[0018]
【発明の効果】本発明によれば、セラミックス基板の表
面に薄い金属銅被膜層を形成した後、前記金属銅被膜層
の上に酸化銅を介して銅板を載置し加熱することによ
り、極めて強固に接着することができる。According to the present invention, a thin metal copper coating layer is formed on the surface of a ceramic substrate, and then a copper plate is placed on the metal copper coating layer via copper oxide and heated, whereby Can be firmly bonded.
Claims (3)
グ法、化学銅めっき法および真空蒸着法から選ばれるい
ずれかの方法で金属銅被膜層を形成した後、前記金属銅
被膜層の上に酸化銅を介して銅回路板を載置し加熱する
ことを特徴とするセラミックスDBC基板の製造方法。1. A metal copper coating layer is formed on the surface of a ceramic substrate by a method selected from a sputtering method, a chemical copper plating method, and a vacuum deposition method, and copper oxide is interposed on the metal copper coating layer. A method for manufacturing a ceramics DBC substrate, which comprises placing a copper circuit board on the substrate and heating it.
は、金属銅被膜層あるいは銅回路板のいずれか少なくと
も一方の表面に形成された酸化被膜であり、その厚さの
合計が0.3〜5μmである請求項1記載のセラミック
スDBC基板の製造方法。2. The copper oxide between the metallic copper coating layer and the copper plate is an oxide coating formed on at least one surface of either the metallic copper coating layer or the copper circuit board, and the total thickness thereof is The method for manufacturing a ceramics DBC substrate according to claim 1, having a thickness of 0.3 to 5 μm.
の範囲内である請求項1記載のセラミックスDBC基板
の製造方法。3. The heating temperature is 1068 to 1075 ° C.
The method for manufacturing a ceramics DBC substrate according to claim 1, wherein the method is within the range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28212291A JP3422495B2 (en) | 1991-10-01 | 1991-10-01 | Manufacturing method of ceramic DBC substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28212291A JP3422495B2 (en) | 1991-10-01 | 1991-10-01 | Manufacturing method of ceramic DBC substrate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002369438A Division JP3636706B2 (en) | 2002-12-20 | 2002-12-20 | Ceramic DBC substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0690083A true JPH0690083A (en) | 1994-03-29 |
JP3422495B2 JP3422495B2 (en) | 2003-06-30 |
Family
ID=17648412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28212291A Expired - Lifetime JP3422495B2 (en) | 1991-10-01 | 1991-10-01 | Manufacturing method of ceramic DBC substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3422495B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5727727A (en) * | 1995-02-02 | 1998-03-17 | Vlt Corporation | Flowing solder in a gap |
US5808358A (en) * | 1994-11-10 | 1998-09-15 | Vlt Corporation | Packaging electrical circuits |
US5876859A (en) * | 1994-11-10 | 1999-03-02 | Vlt Corporation | Direct metal bonding |
US5945130A (en) * | 1994-11-15 | 1999-08-31 | Vlt Corporation | Apparatus for circuit encapsulation |
US6960278B2 (en) * | 2001-09-21 | 2005-11-01 | Alstom | Method of improving the properties of adhesion of a non-oxide ceramic substrate before gluing it |
JP2009170875A (en) * | 2007-12-21 | 2009-07-30 | Murata Mfg Co Ltd | Multilayer ceramic electronic component and method for manufacturing the same |
EP2072483A3 (en) * | 2007-12-18 | 2010-09-01 | High Conduction Scientific Co., Ltd. | Ceramic-copper foil bonding method |
US9418790B2 (en) | 2007-12-21 | 2016-08-16 | Murata Manufacturing Co., Ltd. | Method for manufacturing a multilayer ceramic electronic component |
CN108688278A (en) * | 2018-04-11 | 2018-10-23 | 南京大学 | A kind of PTFE bases PCB copper-clad plates and compression method |
CN118239797A (en) * | 2024-03-26 | 2024-06-25 | 江苏富乐华功率半导体研究院有限公司 | Preparation method of high-reliability ZTA ceramic copper-clad substrate |
-
1991
- 1991-10-01 JP JP28212291A patent/JP3422495B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159772A (en) * | 1994-11-10 | 2000-12-12 | Vlt Corporation | Packaging electrical circuits |
US6119923A (en) * | 1994-11-10 | 2000-09-19 | Vlt Corporation | Packaging electrical circuits |
US5876859A (en) * | 1994-11-10 | 1999-03-02 | Vlt Corporation | Direct metal bonding |
US5906310A (en) * | 1994-11-10 | 1999-05-25 | Vlt Corporation | Packaging electrical circuits |
US5938104A (en) * | 1994-11-10 | 1999-08-17 | Vlt Corporation | Direct metal bonding |
US5808358A (en) * | 1994-11-10 | 1998-09-15 | Vlt Corporation | Packaging electrical circuits |
US6096981A (en) * | 1994-11-10 | 2000-08-01 | Vlt Corporation | Packaging electrical circuits |
US6403009B1 (en) * | 1994-11-15 | 2002-06-11 | Vlt Corporation | Circuit encapsulation |
US5945130A (en) * | 1994-11-15 | 1999-08-31 | Vlt Corporation | Apparatus for circuit encapsulation |
US6710257B2 (en) | 1994-11-15 | 2004-03-23 | Vlt Corporation | Circuit encapsulation |
US5727727A (en) * | 1995-02-02 | 1998-03-17 | Vlt Corporation | Flowing solder in a gap |
US6960278B2 (en) * | 2001-09-21 | 2005-11-01 | Alstom | Method of improving the properties of adhesion of a non-oxide ceramic substrate before gluing it |
EP2072483A3 (en) * | 2007-12-18 | 2010-09-01 | High Conduction Scientific Co., Ltd. | Ceramic-copper foil bonding method |
JP2009170875A (en) * | 2007-12-21 | 2009-07-30 | Murata Mfg Co Ltd | Multilayer ceramic electronic component and method for manufacturing the same |
US9418790B2 (en) | 2007-12-21 | 2016-08-16 | Murata Manufacturing Co., Ltd. | Method for manufacturing a multilayer ceramic electronic component |
CN108688278A (en) * | 2018-04-11 | 2018-10-23 | 南京大学 | A kind of PTFE bases PCB copper-clad plates and compression method |
CN118239797A (en) * | 2024-03-26 | 2024-06-25 | 江苏富乐华功率半导体研究院有限公司 | Preparation method of high-reliability ZTA ceramic copper-clad substrate |
Also Published As
Publication number | Publication date |
---|---|
JP3422495B2 (en) | 2003-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3422495B2 (en) | Manufacturing method of ceramic DBC substrate | |
EP0623415B1 (en) | Method of making cathode targets comprising silicon | |
CN109136848B (en) | Method for connecting aluminum nitride ceramic plate and metal based on PVD (physical vapor deposition) deposition method | |
CN111876728A (en) | Preparation method of gold-tin alloy film | |
US5045400A (en) | Composition for and method of metallizing ceramic surface, and surface-metallized ceramic article | |
JP2003188316A (en) | Ceramic dbc substrate and its manufacturing method | |
JPS6022347A (en) | Substrate for mounting semiconductor elements | |
JPS6184037A (en) | Aluminium nitride base ceramics substrate | |
JPH0359036B2 (en) | ||
JPH07278804A (en) | Pure ti target for formation of sputtering thin film | |
JPH1068072A (en) | ITO cylindrical target and method for producing the same | |
JPS60181269A (en) | Target for sputtering | |
JP2563809B2 (en) | Aluminum nitride substrate for semiconductors | |
JP2003089883A (en) | Functional element and method of manufacturing the same | |
JPS5814541A (en) | Substrate for semiconductor element | |
JP2972878B1 (en) | Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same | |
JPH03252382A (en) | Aluminum nitride substrate and production thereof | |
JPS6117475A (en) | Direct joining method of metal parts and ceramic parts | |
JP2003119071A (en) | Alumina sintered body and method for producing the same | |
JP2001207275A (en) | Corrosion resistant member and chamber constituent member | |
JPH0653353A (en) | Solder preform substrate | |
JP2004176117A (en) | Method of metallizing copper to ceramics surface | |
JPS61102744A (en) | Substrate for semiconductor device and its manufacturing method | |
JPH04235246A (en) | Alloy for metalizing for ceramics and metalizing method | |
JPH05275557A (en) | Manufacture of ceramic circuit board for power module use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090425 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100425 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120425 |