JPH0689886A - Ultra-fine processing method - Google Patents
Ultra-fine processing methodInfo
- Publication number
- JPH0689886A JPH0689886A JP23987492A JP23987492A JPH0689886A JP H0689886 A JPH0689886 A JP H0689886A JP 23987492 A JP23987492 A JP 23987492A JP 23987492 A JP23987492 A JP 23987492A JP H0689886 A JPH0689886 A JP H0689886A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- processed
- marker
- scanning
- drift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 8
- 239000000523 sample Substances 0.000 claims abstract description 36
- 239000003550 marker Substances 0.000 claims abstract description 24
- 230000005684 electric field Effects 0.000 claims abstract description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 abstract description 5
- 238000012545 processing Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
(57)【要約】
【目的】 STM 加工方法に関し,試料温度のドリフトに
対する位置ずれの補正を可能にすることを目的とする。
【構成】 1)被加工面に探針を対向させ, 該探針を走
査させながら該探針の先端から放射または吸収される電
子流あるいは電界により, 該被加工面上の複数位置に穴
または突起を形成してマーカとし, 該マーカの位置を複
数の走査速度で測定し,得られた位置ずれのデータから
該針の先端と該被加工面との相対的な位置のドリフト量
を求め, 該ドリフト量を描画データに取り込んで探針の
走査速度,印加電圧, 電流を制御して描画を行う,2)
既知の表面構造を有する被加工面において, 前記マーカ
の代わりに該被加工面の形状を用いるように構成する。
(57) [Summary] [Purpose] The purpose of the STM processing method is to enable correction of positional deviation due to drift of the sample temperature. [Structure] 1) A probe is made to face the surface to be processed, and while scanning the probe, electron flow or electric field emitted or absorbed from the tip of the probe causes holes or holes to be formed at a plurality of positions on the surface to be processed. A protrusion is formed as a marker, the position of the marker is measured at a plurality of scanning speeds, and the amount of drift in the relative position between the tip of the needle and the surface to be processed is obtained from the obtained positional deviation data, Drawing the drift amount into the drawing data and controlling the scanning speed of the probe, applied voltage, and current to perform drawing, 2)
In the surface to be processed having a known surface structure, the shape of the surface to be processed is used instead of the marker.
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置等の超微細構
造を形成する加工方法に関する。半導体デバイス技術の
流れとして, 集積度の増大と機能の向上がある。前者に
対しては微細加工技術の開発が不可欠である。後者に対
しては量子効果を利用したデバイスの開発が行われてい
るが, 量子機能は100nm 以下の微小構造の中で起こりや
すいため,やはり微細加工技術の開発が不可欠である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing method for forming an ultrafine structure such as a semiconductor device. The trend of semiconductor device technology is to increase the degree of integration and improve the function. For the former, development of fine processing technology is indispensable. For the latter, devices using the quantum effect are being developed, but since quantum functions are likely to occur in microstructures of 100 nm or less, development of microfabrication technology is indispensable.
【0002】半導体装置の微細加工は主にフォトリソグ
ラフィが用いられており, その限界は数100nm である。
さらに微細な加工を行うためにイオンビームや電子ビー
ムを用いた加工技術が開発され, その限界は数10nmと考
えられる。これより小さな微細加工には新たな技術が必
要になる。Photolithography is mainly used for fine processing of semiconductor devices, and its limit is several 100 nm.
In order to perform finer processing, processing technology using ion beam or electron beam has been developed, and its limit is considered to be several tens nm. New technology is required for smaller microfabrication.
【0003】次世代の超微細加工技術として有望なもの
に走査トンネル顕微鏡(STM) を用いた加工技術がある。
STM は元来原子の配列を立体的に観察するためのもので
あるが,STM 測定針が鋭利なために小さな電圧でその先
端から電子ビームの放射または吸収が可能である。これ
を利用して図4に示されるように基板2に近接させた探
針1により基板2に微小な穴を開けたり(探針に正の電
圧印加),微小な突起を形成する(探針に負の電圧印
加)ことができる。この加工技術を用いて世界最小の文
字が描画されたり,また,基板上に散らばった原子を一
つずつ針で移動させて文字の形に並べ変えることも可能
となった。A promising next-generation ultrafine processing technology is a processing technology using a scanning tunneling microscope (STM).
STM is originally for observing the arrangement of atoms three-dimensionally, but because the STM measuring needle is sharp, it is possible to emit or absorb an electron beam from its tip with a small voltage. Utilizing this, as shown in FIG. 4, the probe 1 brought close to the substrate 2 makes a minute hole in the substrate 2 (a positive voltage is applied to the probe) or a minute protrusion is formed (the probe). Negative voltage can be applied). Using this processing technology, the world's smallest letters can be drawn, and atoms scattered on the substrate can be moved one by one with a needle to rearrange them into letter shapes.
【0004】しかし,このような技術はSTM による加工
技術の可能性を模索する段階であり,実用化のためには
多くの課題を克服しなければならない。However, such a technique is in the stage of exploring the possibility of a processing technique using STM, and many problems must be overcome for practical use.
【0005】[0005]
【従来の技術】従来のSTM による描画においては, 電子
ビーム描画と同様に,テレビの走査と同じラスタ走査と
一筆書きと同様なベクタ走査の2種類がある。2. Description of the Related Art There are two types of conventional STM drawing, similar to electron beam drawing, that is, raster scanning, which is the same as television scanning, and vector scanning, which is the same as one-stroke writing.
【0006】ラスタ走査においては探針が描画しようと
する位置に来たときに,探針に電圧を印加する。これに
対してベクタ走査では電圧を印加したまま探針を移動さ
せるので,一筆書きにならない複雑なパターンの描画は
できないため,通常はラスタ走査が採用されている。In raster scanning, a voltage is applied to the probe when the probe reaches a position to be drawn. On the other hand, in vector scanning, since the probe is moved while voltage is applied, it is not possible to draw a complicated pattern that is not a single stroke, so raster scanning is usually adopted.
【0007】ところが,ラスタ走査では試料温度が僅か
に変動しても試料位置が変動するため,描画した像に歪
みが生ずる。10-4℃の温度変動に対して 1Å程度の位置
ずれがある。この影響は, 描画領域が大きくなると無視
できなくなる。However, in raster scanning, even if the sample temperature slightly fluctuates, the sample position fluctuates, so that the drawn image is distorted. There is a misalignment of about 1Å with a temperature fluctuation of 10 -4 ° C. This effect cannot be ignored if the drawing area becomes large.
【0008】試料温度の変化は描画条件により異なるの
で,描画用の制御装置に予め補正データを入れておくこ
とはできない。Since the change of the sample temperature varies depending on the drawing conditions, it is impossible to previously store the correction data in the drawing control device.
【0009】[0009]
【発明が解決しようとする課題】従来例では, 試料温度
のドリフトに対する補正ができず,正確な描画ができな
かった。In the conventional example, the drift of the sample temperature could not be corrected, and accurate drawing could not be performed.
【0010】本発明は試料温度のドリフトに対する位置
ずれの補正を可能にするSTM 加工方法の提供を目的とす
る。An object of the present invention is to provide an STM processing method capable of correcting a positional deviation with respect to a sample temperature drift.
【0011】[0011]
【課題を解決するための手段】上記課題の解決は,1)
被加工面の任意の複数位置においてマーカを設定する第
1の工程と,該マーカの位置を複数の走査速度で複数回
測定し,特定の該マーカの複数回の測定における位置ず
れのデータから探針の先端と該被加工面との相対的な位
置のドリフト量を求める第2の工程と,該ドリフト量に
基づいて該探針を制御し,描画を行う第3の工程とを有
する超微細加工方法,あるいは,2)前記第1の工程
は,被加工面に探針を対向させ, 該探針を走査させなが
ら該探針の先端から放射または吸収される電子流あるい
は電界により, 該被加工面上の複数位置に穴または突起
からなるマーカを形成する工程を含む前記1)記載の超
微細加工方法により達成される。[Means for Solving the Problems] 1)
The first step of setting a marker at arbitrary plural positions on the surface to be machined, measuring the position of the marker plural times at plural scanning speeds, and searching from the data of positional deviation in the plural times measurement of the specific marker. Ultra-fine having a second step of obtaining a drift amount of a relative position between the tip of the needle and the surface to be processed, and a third step of controlling the probe based on the drift amount and performing drawing Processing method, or 2) In the first step, the probe is opposed to the surface to be processed, and while scanning the probe, the probe is scanned by an electron flow or an electric field radiated or absorbed from the tip of the probe. This is achieved by the ultrafine processing method described in 1) above, which includes the step of forming markers composed of holes or protrusions at a plurality of positions on the processing surface.
【0012】さらに,既知の表面構造を有する被加工面
において, 前記マーカの代わりに該被加工面の形状を用
いることができる。Further, in the work surface having a known surface structure, the shape of the work surface can be used instead of the marker.
【0013】[0013]
【作用】図1は本発明の原理説明図である。被加工基板
2の上に温度ドリフトを測定するための基準となるマー
カ3を描画領域の内部または外部に2点以上形成する。FIG. 1 is a diagram for explaining the principle of the present invention. Two or more markers 3 serving as a reference for measuring the temperature drift are formed on the substrate 2 to be processed inside or outside the drawing area.
【0014】図において,白丸はマーキングしようとす
る位置,黒丸は実際のマーキング位置を示し,走査順で
最後のマーカ34の位置では,最初のマーカ31から最後の
マーカ34までの時間経過に伴う温度変化により矢印のよ
うにX方向,Y方向にドリフト(位置ズレ)が起こる。In the figure, the white circle indicates the position to be marked, the black circle indicates the actual marking position, and at the position of the last marker 34 in the scanning order, the temperature with the passage of time from the first marker 31 to the last marker 34. Due to the change, drift (positional deviation) occurs in the X and Y directions as indicated by the arrow.
【0015】描画前に探針をラスタ走査しながら,探針
に電圧を印加することにより複数のマーカを予め形成し
ておく。次に描画の直前に異なる走査速度で複数回マー
カ位置を検出する。この結果よりドリフト速度を求め
(図3参照),予め制御装置に入力した画像データにド
リフト速度の補正を行ってから描画するようにしている
ため,ドリフトによる歪みを補正した描画が可能とな
る。Before drawing, a plurality of markers are formed in advance by applying a voltage to the probe while raster-scanning the probe. Next, immediately before drawing, the marker position is detected multiple times at different scanning speeds. Since the drift velocity is obtained from this result (see FIG. 3) and the drift velocity is corrected in the image data input in advance to the control device before the drawing, it is possible to perform the drawing in which the distortion due to the drift is corrected.
【0016】[0016]
【実施例】図2(A) 〜(D) は本発明の実施例を説明する
平面図である。被加工基板として,シリコン(Si)ウエハ
上に,Ge-Se 膜とAg-Se 膜をそれぞれスパッタリングお
よびメッキにより被着したものを用いる。Ag-Se 膜表面
にはAg電極を設けて,これと探針間に電圧を印加すよう
にする。Embodiments FIGS. 2A to 2D are plan views illustrating an embodiment of the present invention. The substrate to be processed is a silicon (Si) wafer on which a Ge-Se film and an Ag-Se film are deposited by sputtering and plating, respectively. An Ag electrode is provided on the surface of the Ag-Se film, and a voltage is applied between this and the probe.
【0017】探針はPtの針を機械研磨によりその先端を
尖らせたものを用いる。この針を用いて予め高配向焼結
グラファイトの表面の原子像を観察し, 先端が十分鋭利
であることを確認する。形状の測定は, 探針に+ 1 Vの
電圧を印加し,0.1 nAの電流を流して行う。As the probe, a Pt needle having a sharpened tip by mechanical polishing is used. Using this needle, the atomic image on the surface of highly oriented sintered graphite is observed in advance, and it is confirmed that the tip is sufficiently sharp. The shape is measured by applying a voltage of +1 V to the probe and applying a current of 0.1 nA.
【0018】マーキングと描画は, 探針がラスタ走査の
途上で所定位置に達したときに, 探針の電圧と電流を+
3 V,0.1 nA として, Ag-Se 膜に穴を開けることによ
り行う。この際の1画面の走査線数は 256本, 横方向の
移動ステップ数も 256とする。For marking and drawing, when the probe reaches a predetermined position on the way of raster scanning, the voltage and current of the probe are +
This is done by making holes in the Ag-Se film at 3 V and 0.1 nA. At this time, the number of scanning lines in one screen is 256, and the number of moving steps in the horizontal direction is 256.
【0019】以下にSTM 描画装置を使って「F」の描画
を行うときの具体的な工程を順に説明する。 (1) 基板上に走査面積75nm×75nmの走査領域4を設定す
る〔図2(A) 〕。 (2) 走査時間を30秒とし,50nm□の領域の4隅にマーキ
ングを行うように制御装置を設定し,この条件でマーキ
ングを行う。この時ドリフトのためマーカ32〜34は正方
形の4隅からずれた位置につけられる。〔図2(B) 〕 マーカ31は初期の走査位置のため正確な位置につけられ
ているるが, マーカ32〜34は走査の後段においてつけら
れるため時間経過に伴う温度変化による位置ずれを生ず
る。 (3)次に, 15秒, 30秒, 60秒, 90秒, 120 秒の5通りの
走査時間で基板の表面状態の観察を行い,マーカ位置を
測定する。各走査時間で測定したマーカ位置のずれか
ら,図3よりドリフト速度を算出する。Specific steps for drawing "F" using the STM drawing apparatus will be described below in order. (1) A scanning area 4 having a scanning area of 75 nm × 75 nm is set on the substrate [FIG. 2 (A)]. (2) Set the scanning time to 30 seconds, set the controller so that marking is performed at the four corners of the 50 nm square region, and perform marking under these conditions. At this time, the markers 32 to 34 are attached at positions deviated from the four corners of the square due to drift. [FIG. 2 (B)] The marker 31 is attached at an accurate position because it is the initial scanning position, but the markers 32 to 34 are attached in the latter stage of scanning, so that the position shift due to temperature change occurs. (3) Next, the surface condition of the substrate is observed for five scanning times of 15 seconds, 30 seconds, 60 seconds, 90 seconds, and 120 seconds, and the marker position is measured. The drift velocity is calculated from FIG. 3 from the displacement of the marker position measured at each scanning time.
【0020】図3はドリフト速度を求める図で,走査時
間(秒)に対するX軸およびY軸方向のマーカの位置ず
れ(nm)の関係を示す。走査時間が長くなるほど, 基板温
度の変化が大きいためマーカの位置ずれ量が大きくなっ
ている。直線の傾斜がドリフト速度(nm/s) を表す。FIG. 3 is a diagram for obtaining the drift velocity, and shows the relationship of the positional deviation (nm) of the marker in the X-axis and Y-axis directions with respect to the scanning time (second). The longer the scanning time, the larger the change in the substrate temperature, and the larger the amount of displacement of the marker. The slope of the straight line represents the drift velocity (nm / s).
【0021】得られたドリフト速度を基に,予め制御装
置に登録しておいた描画データを補正する。 (4)「F」の描画を行う〔図2(C) 〕。補正をしないで
描画すると図2(D) の点線で示されるように画像は歪
む。Based on the obtained drift velocity, the drawing data registered in advance in the control device is corrected. (4) Draw "F" [Fig. 2 (C)]. When the image is drawn without correction, the image is distorted as shown by the dotted line in FIG.
【0022】この実施例ではマーカに穴を用いたが,探
針に負電圧を印加して形成した突起を用いてもよい。ま
た,被描画基板の表面形状が分かっており,この形状が
安定している場合は,マーカの代わりにその形状を観察
して,歪みの量からドリフト速度を求めることもでき
る。例えば,Si(111) 基板表面の 7×7 構造やグラファ
イト表面の形状をマーカの代わりに利用できる。この場
合は画像が複雑であり大規模な画像処理装置が必要であ
る。Although a hole is used as the marker in this embodiment, a protrusion formed by applying a negative voltage to the probe may be used. If the surface shape of the substrate to be drawn is known and this shape is stable, the shape can be observed instead of the marker and the drift velocity can be obtained from the amount of strain. For example, the 7 × 7 structure of the Si (111) substrate surface or the shape of the graphite surface can be used instead of the marker. In this case, the image is complicated and a large-scale image processing device is required.
【0023】上記の方法でマーカまたは既知構造の形状
を異なる走査速度でその位置検出を行い, 温度によるド
リフト速度を測定する手法は, 描画だけでなく観察時の
像の補正にも有効である。The method of detecting the position of the shape of the marker or the known structure at different scanning speeds by the above method and measuring the drift speed due to temperature is effective not only for drawing but also for correction of the image at the time of observation.
【0024】次に, 得られたドリフト速度を基に,予め
制御装置に登録しておいた描画データを補正する過程を
順に説明する。 (1) 描画データの登録 画面左上の座標(0,0) 画面右下の座標(X,Y) としてプロット位置(Px ,Py )を登録する。(図2
参照) 次いで, 描画速度を登録する。 (2) ドリフト速度測定 図3より最小自乗方を用いてx方向とy方向のドリフト
速度Dx ,Dy を求める。 (3)描画データ補正 画面左上の座標(0,0)からロット位置(Px ,
Py )までに要する時間をtx ,ty とし, Px →Px −Dx ・tx Py →Py −Dy ・ty とデータを書き換える。Next, the process of correcting the drawing data registered in advance in the controller based on the obtained drift velocity will be described in order. (1) Registration of drawing data Register the plot position (P x , P y ) as the coordinate (0, 0) at the upper left of the screen as the coordinate (X, Y) at the lower right of the screen. (Fig. 2
Reference) Next , the drawing speed is registered. (2) Drift Velocity Measurement From FIG. 3, the drift velocities D x and D y in the x direction and the y direction are obtained using the method of least squares. (3) Drawing data correction Lot position (P x , from the coordinates (0, 0) on the upper left of the screen)
The P y) the time required to t x, and t y, rewrite the P x → P x -D x · t x P y → P y -D y · t y and data.
【0025】ここで,tx ,ty は描画速度とラスタ走
査時に左端かち右端に戻る速度を含んだ関数として表さ
れる。 (4)描画開始Here, t x and t y are expressed as a function including the drawing speed and the speed of returning from the left end to the right end during raster scanning. (4) Start drawing
【0026】[0026]
【発明の効果】本発明によれば,試料温度のドリフトに
対する位置ずれの補正を可能にし,正確なSTM 加工がで
きるようになった。According to the present invention, it becomes possible to correct the positional deviation due to the drift of the sample temperature, and the accurate STM processing can be performed.
【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.
【図2】 本発明の実施例を説明する平面図FIG. 2 is a plan view illustrating an embodiment of the present invention.
【図3】 ドリフト速度を求める図[Fig. 3] Diagram for obtaining drift velocity
【図4】 STM による加工例の説明図[Figure 4] Explanatory drawing of an example of processing by STM
1 探針 2 被加工基板 3,31, 32, 33, 34 マーカ 4 走査領域 1 probe 2 substrate to be processed 3, 31, 32, 33, 34 marker 4 scanning area
Claims (2)
カを設定する第1の工程と, 該マーカの位置を複数の走査速度で複数回測定し,特定
の該マーカの複数回の測定における位置ずれのデータか
ら探針の先端と該被加工面との相対的な位置のドリフト
量を求める第2の工程と, 該ドリフト量に基づいて該探針を制御し,描画を行う第
3の工程とを有することを特徴とする超微細加工方法。1. A first step of setting a marker at arbitrary plural positions on a surface to be processed, a position of the marker is measured plural times at plural scanning speeds, and a specific position of the marker in plural measurements. A second step of obtaining a drift amount of a relative position between the tip of the probe and the surface to be processed from the deviation data, and a third step of controlling the probe based on the drift amount and performing drawing. An ultrafine processing method comprising:
向させ, 該探針を走査させながら該探針の先端から放射
または吸収される電子流あるいは電界により, 該被加工
面上の複数位置に穴または突起からなるマーカを形成す
る工程を含むことを特徴とする請求項1記載の超微細加
工方法。2. In the first step, the probe is opposed to the surface to be processed, and the surface to be processed is caused by an electron flow or an electric field emitted or absorbed from the tip of the probe while scanning the probe. 2. The ultrafine processing method according to claim 1, further comprising the step of forming markers composed of holes or protrusions at a plurality of upper positions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23987492A JPH0689886A (en) | 1992-09-09 | 1992-09-09 | Ultra-fine processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23987492A JPH0689886A (en) | 1992-09-09 | 1992-09-09 | Ultra-fine processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0689886A true JPH0689886A (en) | 1994-03-29 |
Family
ID=17051169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23987492A Withdrawn JPH0689886A (en) | 1992-09-09 | 1992-09-09 | Ultra-fine processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0689886A (en) |
-
1992
- 1992-09-09 JP JP23987492A patent/JPH0689886A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7279046B2 (en) | Method and apparatus for aligning patterns on a substrate | |
JP2966189B2 (en) | Scanning probe microscope | |
US5204531A (en) | Method of adjusting the size of the area scanned by a scanning probe | |
CN107004554B (en) | Using online nanometer detection in the chip of process flow and the electroanalysis of chip chamber and process control | |
EP0442630A2 (en) | Combined scanning electron and scanning tunnelling microscope apparatus and method | |
JPH02116044A (en) | Method and device for deforming surface in submicron scale | |
JPH07201300A (en) | Layout overlay for fib operation | |
US5365072A (en) | Repositionable substrate for microscopes | |
JP2005037205A (en) | Scanning probe microscope and measuring method of the same | |
US6171165B1 (en) | Precision alignment of microcolumn tip to a micron-size extractor aperture | |
JP6918657B2 (en) | Substrate observation device, coating device and positioning method | |
JPH0689886A (en) | Ultra-fine processing method | |
CN108573844A (en) | The control method and control program of focused ion beam apparatus | |
JP2001194284A (en) | Probe scanning method | |
JP2012123942A (en) | Charged particle beam device and charged particle beam irradiation method | |
US20080055344A1 (en) | Fast dip for reduced wicking in nanolithograhic ink delivery | |
JP2000266659A (en) | Cantilever for scanning probe microscope | |
JP4050873B2 (en) | Probe scanning control method and scanning probe microscope | |
JP2002014025A (en) | Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method | |
JPH11219680A (en) | Focused ion beam processing method | |
JPH04215005A (en) | Image processing method for scanning tunneling microscope | |
JPH0850872A (en) | Sample surface observation method, interatomic force microscope, fine working method, and fine working device | |
JP4080933B2 (en) | Probe position correction method | |
JP3597613B2 (en) | Scanning probe microscope | |
JPH05172510A (en) | Method for measuring shape of surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |