JPH0689439B2 - Method for producing structural Al-Cu-Mg-Li aluminum alloy material - Google Patents
Method for producing structural Al-Cu-Mg-Li aluminum alloy materialInfo
- Publication number
- JPH0689439B2 JPH0689439B2 JP11015890A JP11015890A JPH0689439B2 JP H0689439 B2 JPH0689439 B2 JP H0689439B2 JP 11015890 A JP11015890 A JP 11015890A JP 11015890 A JP11015890 A JP 11015890A JP H0689439 B2 JPH0689439 B2 JP H0689439B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- aluminum alloy
- treatment
- strength
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は溶体化処理に続く焼入れ(冷却)を空冷又は強
制空冷によっても固溶した元素が析出せず、その後の人
工時効処理した後に高強度(50kgf/mm2以上)が得られ
る構造用アルミニウム合金材料の製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention shows that solid solution elements do not precipitate by quenching (cooling) following solution heat treatment by air cooling or forced air cooling. The present invention relates to a method for manufacturing a structural aluminum alloy material that can obtain strength (50 kgf / mm 2 or more).
ここにいう焼入とは、アルミニウム合金中のCu、Liなど
が500℃以上の加熱により、マトリックス中に溶け込ま
す溶体化処理をした後、水冷のような急冷をすることに
より、溶けこんだ元素を析出させないことであり、ここ
にいう焼入性とは、溶体化処理した後の冷却速度は小さ
くとも(例えば空冷によっても)溶けこんだ元素を析出
させない、ことである。溶けこんだ元素が多いほど、人
工時効処理で高い強度が得られる。Quenching as used here means that elements such as Cu and Li in the aluminum alloy are melted into the matrix by heating at 500 ° C or higher. After the solution treatment, the element is melted by rapid cooling such as water cooling. The hardenability referred to here means that the melted element is not precipitated even if the cooling rate after the solution treatment is small (for example, by air cooling). The more dissolved elements, the higher the strength obtained by artificial aging treatment.
[従来の技術] 従来公知のアルミニウム合金には、JIS A2024、A7075合
金のように、溶体化処理後の焼入れに際して、水冷のよ
うな大きな冷却速度で焼入れしないと、時効処理後に十
分な強度が得られない、いわゆる焼入性の悪い合金と、
JIS A6063、A 7003、7NO1合金のように、空冷程度の
冷却速度でも40kgf/mm2以下の引張強さが得られる、い
わゆる焼入性のよい合金がある。[Prior Art] Conventionally known aluminum alloys, like JIS A2024 and A7075 alloys, do not have sufficient strength after aging treatment unless quenched at a high cooling rate such as water cooling when quenching after solution treatment. Not so-called alloy with poor hardenability,
There are so-called hardenable alloys such as JIS A6063, A 7003, and 7NO1 alloys that can obtain a tensile strength of 40 kgf / mm 2 or less even at a cooling rate of about air cooling.
従来、50kgf/mm2以上の引張強さを得ようとすれば、溶
体化処理、焼入、時効という過程を経る時効硬化型のア
ルミニウム合金、いわゆる焼入性の悪い合金が用いられ
ていた。Heretofore, in order to obtain a tensile strength of 50 kgf / mm 2 or more, an age-hardening type aluminum alloy that has undergone the steps of solution treatment, quenching, and aging, that is, an alloy having poor quenchability has been used.
すなわち、構造用アルミニウム合金材料は、一般に時効
・析出型の合金が用いられ、板や棒などの製品形状とし
た後、溶体化処理、焼入れ、人工時効という熱処理を施
し、これにより合金中に微細な金属間化合物を析出さ
せ、大きな強度を得るものである。That is, as the structural aluminum alloy material, an aging / precipitation type alloy is generally used, and after it is formed into a product shape such as a plate or a bar, it is subjected to heat treatment such as solution heat treatment, quenching, and artificial aging, which results in a fine grain in the alloy. A large intermetallic compound is deposited to obtain high strength.
このような合金としてはAl−Li合金の結晶粒形状を冷間
加工で制御することにより、延性及び靱性を改善しよう
とするもの(特開昭61−23751号公報)、Al−Li−Mg−C
u系の合金で、溶体化処理後水冷により急冷し、170℃で
時効処理するもの(特開昭58−157942号公報)、Al−L
i、Al−Li−Cu、Al−Li−Cu−Mg系の合金で、電気抵抗
値及び引張強度を高めた合金(特開昭59−118848号公
報)、Al−Li−Cu−Zr系の合金で、溶体化処理後衝風空
冷等(実施例は水冷)で冷却し、過時効処理した後冷間
加工するもの(特公昭60−2644号公報)、Al−Li−Cu−
Mg系の合金で、均質化、溶体化、焼入れ及び焼戻しを行
う工程において、均質化と溶体化との処理時間を焼入れ
後の金属間化合物の寸法が0〜5μmとなるように長時
間行うもの(特開昭60−215735号公報)、Al−Li−Cu−
Mg−Zr−Mn−Zn系の合金で、溶体化処理後に、100°F/s
で冷却し、冷間加工を行った後、時効処理することによ
って、破壊靱性を向上させたもの(特開昭60−221543号
公報)等が提案されている。As such an alloy, one in which the ductility and toughness are improved by controlling the crystal grain shape of an Al-Li alloy by cold working (Japanese Patent Laid-Open No. 61-23751), Al-Li-Mg- C
u-based alloy, which is solution-quenched, water-quenched, and aged at 170 ° C (JP-A-58-157942), Al-L
i, Al-Li-Cu, Al-Li-Cu-Mg based alloys, which have improved electric resistance and tensile strength (Japanese Patent Laid-Open No. 59-118848), Al-Li-Cu-Zr based alloys. An alloy, which is cooled by blast air cooling or the like after solution treatment (water cooling in the example), is overaged, and is then cold worked (Japanese Patent Publication No. 60-2644), Al-Li-Cu-
Mg-based alloy, in which homogenization, solution treatment, quenching and tempering are performed for a long time so that the dimension of the intermetallic compound after quenching is 0 to 5 μm in the steps of homogenizing, solutionizing, quenching and tempering. (JP-A-60-215735), Al-Li-Cu-
Mg-Zr-Mn-Zn alloy, 100 ° F / s after solution treatment
It has been proposed that the fracture toughness is improved by aging treatment after cooling with a steel, cold working, and the like (JP-A-60-221543).
[発明が解決しようとする課題] 上述のように従来の構造用アルミニウム合金材料は、溶
体化処理温度から水冷のような大きな冷却速度で焼入れ
しないと、大きな化合物が析出し、十分な強度が得られ
ない、という欠点がある。又、大きな冷却速度で冷却す
ると材料にひずみが発生し、矯正などの工程が必要とな
るという欠点があった。[Problems to be Solved by the Invention] As described above, in the conventional structural aluminum alloy material, unless it is quenched at a large cooling rate such as water cooling from the solution heat treatment temperature, a large compound is precipitated and sufficient strength is obtained. There is a drawback that you can't. Further, when the material is cooled at a high cooling rate, distortion occurs in the material, and there is a drawback that a step such as straightening is required.
そこで本発明は溶体化処理後の冷却速度が小さくとも
(1〜5℃/s)十分元素を固溶させ、その後の人口時効
処理で高強度(50kgf/mm2以上)の得られるアルミニウ
ム合金材料の製造方法を提供することを目的とする。Therefore, the present invention is an aluminum alloy material that can sufficiently dissolve the element even if the cooling rate after the solution treatment is small (1 to 5 ° C / s) and can obtain high strength (50 kgf / mm 2 or more) by the subsequent artificial aging treatment. It aims at providing the manufacturing method of.
[課題を解決するための手段] 本発明による合金は、前記目的を達成するために下記の
とおりに構成される。すなわち、Cu:0.5〜3.5%、Mg:0.
5〜4.0%及びLi:2.0〜4.0%を含有し、更にZr0.05〜0.3
0%、Cr0.05〜0.30%、Mn0.05〜1.0%、V0.05〜0.30%
のうちの1種又は2種以上を含有し、残部はAlと不可避
的不純物とからなるアルミニウム合金を、溶解、鋳造を
Ar雰囲気中で行い、均質化処理及び塑性加工を通常の方
法で行った後、500℃以上で溶体化処理した後、1〜5
℃/秒の冷却速度で冷却した後、人工時効処理すること
により、析出物の平均粒子径を100nm以下としたことを
特徴とする焼入性に優れた構造用Al−Cu−Mg−Li系アル
ミニウム合金材料の製造方法である。[Means for Solving the Problems] The alloy according to the present invention is configured as follows to achieve the above object. That is, Cu: 0.5-3.5%, Mg: 0.
5 to 4.0% and Li: 2.0 to 4.0%, and Zr0.05 to 0.3
0%, Cr0.05-0.30%, Mn0.05-1.0%, V0.05-0.30%
Of the aluminum alloy containing one or more of the above and the balance Al and inevitable impurities, and melting and casting.
1 to 5 after carrying out in an Ar atmosphere, performing homogenization treatment and plastic working in the usual way, and subjecting it to solution treatment at 500 ° C or higher.
A structural Al-Cu-Mg-Li system with excellent hardenability, characterized in that the average particle size of the precipitates was 100 nm or less by performing artificial aging treatment after cooling at a cooling rate of ° C / sec. It is a manufacturing method of an aluminum alloy material.
[作用] 本発明による成分組成の意義と限定理由は、以下のとお
りである。[Operation] The meaning and limitation reason of the component composition according to the present invention are as follows.
Cu: Cuは合金材料の強度向上に効果がある。この効果は0.5
%未満では少なく、又、3.5%を超えると加熱後の冷却
時に粒界に粗大な板状のT1相(Al2CuLi)やT2相(Al6Li
3Cu)が析出しやすくなり、時効処理後の強度が低下す
る。この上限は、Zr、Cr、Mn、V等の遷移元素が含有さ
れると、T1相やT2相の析出が促進されるため、2.4%以
下が好ましい。Cu: Cu is effective in improving the strength of alloy materials. This effect is 0.5
% Less, and more than 3.5%, coarse plate-like T 1 phase (Al 2 CuLi) and T 2 phase (Al 6 Li) at grain boundaries during cooling after heating.
3 Cu) tends to precipitate and the strength after aging treatment decreases. This upper limit is preferably 2.4% or less because the inclusion of transition elements such as Zr, Cr, Mn and V promotes precipitation of the T 1 phase and the T 2 phase.
Mg: MgはCuと同様、合金材料の強度向上に効果がある。この
効果は0.5%より少ないと得られず、4.0%より多いと圧
延加工時に熱間脆性が発生し、熱間加工が困難となる。Mg: Mg, like Cu, is effective in improving the strength of alloy materials. This effect cannot be obtained if it is less than 0.5%, and if it exceeds 4.0%, hot brittleness occurs during rolling, making hot working difficult.
Li: LiはCuと同じく合金の強度向上に効果がある。Liの含有
により準安定相δ′が析出し、強度向上に貢献する。こ
の準安定相が容易には安定相にならず、又、Cu系析出物
の粗大化を阻止するため、溶体化処理後の冷却速度が小
さくとも、時効処理後高い引張強さが得られるという効
果がある。この効果は、Li含有量が少ないと得られな
い。又、4.0%より多いと安定相δ(A1Li)が析出しや
すくなり、強度が低下し、伸びや靱性も著しく低下す
る。Li: Li, like Cu, is effective in improving the strength of the alloy. The inclusion of Li precipitates a metastable phase δ ', which contributes to the improvement of strength. This metastable phase does not easily become a stable phase, and since it prevents coarsening of Cu-based precipitates, high tensile strength can be obtained after aging even if the cooling rate after solution treatment is small. effective. This effect cannot be obtained when the Li content is low. On the other hand, if it is more than 4.0%, the stable phase δ (A1Li) is likely to precipitate, the strength is lowered, and the elongation and the toughness are also remarkably lowered.
Zr、Cr、Mn、V: Zr、Cr、Mn、Vは均質化処理時に微細な(0.05〜0.2μ
m)金属間化合物として析出し、合金材料の再結晶を抑
制し、微細な結晶粒を作るとともに、強度を向上させる
ために、単独もしくは複数で含有させることがある。た
だし、これらの含有元素を、その上限値より多く含有さ
せると、均質化処理から製品に至るまでの加工熱処理に
より金属間化合物が多く形成され、溶体化処理後空冷す
ると、これらの化合物のまわりに安定相δが多く析出
し、強度が低下する。又、鋳造時に巨大な金属間化合物
を晶出し、引き続いて行われる塑性加工において欠陥と
なる。Zr, Cr, Mn, V: Zr, Cr, Mn, V are fine (0.05-0.2μ) during homogenization treatment.
m) In order to precipitate as an intermetallic compound, suppress recrystallization of the alloy material, form fine crystal grains, and improve strength, they may be contained alone or in plural. However, if these contained elements are contained in excess of the upper limit values, a large amount of intermetallic compounds are formed by the process heat treatment from homogenization treatment to the product, and if they are air-cooled after the solution treatment, they are surrounded by these compounds. A large amount of stable phase δ precipitates, and the strength decreases. In addition, a huge intermetallic compound crystallizes during casting, which becomes a defect in the subsequent plastic working.
又、その下限値未満の場合には結晶粒微細化の効果が小
さい。If it is less than the lower limit, the effect of refining the crystal grains is small.
溶解、鋳造: 溶解、鋳造をAr雰囲気中で行うのは、活性な金属である
Liを効率よく含有させるためである。Melting and casting: It is an active metal that melts and casts in Ar atmosphere.
This is for efficiently containing Li.
溶体化処理後の冷却: 溶体化処理後の冷却を空冷又は強制空冷で行うのは、冷
却時に発生するひずみを軽減させるためである。Cooling after solution treatment: Cooling after solution treatment is performed by air cooling or forced air cooling in order to reduce strain generated during cooling.
更に応用例として、押出しのような熱間加工でも水冷せ
ずに空冷のままで焼きが入れられ(空冷のままでも析出
物の析出が起らず)、又、鍛造品や超塑性形成品に対
し、空冷でも焼きがはいりやすい(空冷のままでも析出
物の析出が起らない)ことから、大きな(焼入れ)歪み
を生ずることなく溶体化処理(析出硬化元素を完全に固
溶させる冷却)を可能とするものである。Furthermore, as an application example, even when hot working such as extrusion, quenching is performed as it is with air cooling without water cooling (precipitation of precipitates does not occur even with air cooling), and for forgings and superplastic forming products. On the other hand, since it is easy to burn even with air cooling (precipitation does not occur even with air cooling), solution treatment (cooling that completely dissolves precipitation hardening elements) without causing large (quenching) strain is performed. It is possible.
[実施例] 本発明にかかる合金の実施例を以下に示す。[Examples] Examples of alloys according to the present invention are shown below.
実施例1 第1表に示す合金をAr雰囲気下において溶解、断面150m
m×200mmの鋳塊に鋳造した。鋳塊の均質化処理をAr1気
圧中で520℃、8時間行った後、鋳塊の長さ方向に30mm
に切断し、30mmを厚さとする試験鋳塊を得た。次に本鋳
塊を480℃に加熱し、厚さ6mmまで熱間圧延した。これを
350℃で軟化処理後、冷間圧延により厚さ1mmの板を得
た。得られた板を520℃のAr中で40分間溶体化処理後、
水冷(1000℃/s)、強制空冷(7℃/s)、空冷
(2℃/s)、炉冷(1×10-2℃/s)の条件で冷却し
た。カッコ内の数字は、おおよその冷却速度を示す。こ
の後、時効条件(175℃×24hr)で人工時効を施し、引
張特性を調査した。Example 1 The alloys shown in Table 1 were melted in an Ar atmosphere, the cross section was 150 m.
It was cast into a m × 200 mm ingot. After homogenizing the ingot at 520 ° C for 8 hours in Ar1 atm, 30mm in the length direction of the ingot
It was cut into pieces to obtain a test ingot having a thickness of 30 mm. Next, this ingot was heated to 480 ° C. and hot rolled to a thickness of 6 mm. this
After softening at 350 ° C, a plate with a thickness of 1 mm was obtained by cold rolling. After the solution treatment of the obtained plate in Ar at 520 ° C. for 40 minutes,
It was cooled under the conditions of water cooling (1000 ° C / s), forced air cooling (7 ° C / s), air cooling (2 ° C / s), and furnace cooling (1 x 10 -2 ° C / s). Numbers in brackets indicate approximate cooling rate. Then, artificial aging was performed under aging conditions (175 ° C x 24 hr), and the tensile properties were investigated.
試験結果を第2表に示す。発明例No.1〜7では、空冷材
の引張強さ50kg/mm2以上が得られ、又、空冷材でも水冷
材に対する強度の低下率が97%以上得られ、焼入れ性
(焼入れ感受性)がよい。 The test results are shown in Table 2. In Invention Examples Nos. 1 to 7, the tensile strength of the air-cooled material was 50 kg / mm 2 or more, and the reduction rate of the strength of the air-cooled material to the water-cooled material was 97% or more, and the hardenability (hardenability) was high. Good.
しかし、比較例のNo.8では、Zr、Cr、Mn、Vのいずれも
含有されていないので、空冷材の引張強さが49.5kg/mm2
と50kg/mm2が得られなかった。No.9、10はLi含有量が少
ないため析出物が粗大化しやすく、焼入性を低下させ、
空冷材の引張強さが28.1及び34.0kg/mm2と大幅に低下し
た。No.11はLi含有量が多いため、熱間加工性が悪く、
圧延ができなかった。又、No.12のように、Mn、Crの含
有量が多いと、巨大な金属間化合物が生成され、健全な
製品が得られなかった。No.13に焼入性の悪いアルミニ
ウム合金の代表例として7075合金を示した。本系合金は
空冷材で析出物が粗大化し、強度の低下が極めて大き
い。However, in No. 8 of the comparative example, none of Zr, Cr, Mn, and V is contained, so that the tensile strength of the air-cooled material is 49.5 kg / mm 2
And 50 kg / mm 2 could not be obtained. Since No. 9 and 10 have a small Li content, precipitates are likely to become coarse and hardenability deteriorates,
The tensile strength of the air-cooled material dropped significantly to 28.1 and 34.0 kg / mm 2 . No. 11 has a large Li content, so the hot workability is poor,
Could not be rolled. Further, as in No. 12, when the content of Mn and Cr was large, a huge intermetallic compound was generated and a sound product could not be obtained. No. 13 shows 7075 alloy as a typical example of an aluminum alloy having poor hardenability. This alloy is an air-cooled material and its precipitates become coarse and the strength is extremely reduced.
[発明の効果] 本発明合金材は溶体化後の焼入れが空冷程度の冷却速度
で冷却しても、時効処理後、十分な強度が得られるた
め、製品にひずみを与えることなく製造することができ
る。 [Effects of the Invention] The alloy material of the present invention can be manufactured without giving strain to the product because sufficient strength can be obtained after aging treatment even if quenching after solution heat treatment is cooled at a cooling rate of about air cooling. it can.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−157942(JP,A) 特開 昭59−118848(JP,A) 特開 昭60−2644(JP,A) 特開 昭60−215735(JP,A) 特開 昭60−221543(JP,A) 特開 昭61−23751(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-157942 (JP, A) JP-A-59-118848 (JP, A) JP-A-60-2644 (JP, A) JP-A-60- 215735 (JP, A) JP 60-221543 (JP, A) JP 61-23751 (JP, A)
Claims (1)
g:0.5〜4.0%及びLi:2.0〜4.0%を含有し、更にZr:0.05
〜0.30%、Cr:0.05〜0.30%、Mn:0.05〜1.0%、V:0.05
〜0.30%のうち1種又は2種以上を含有し、残部はAlと
不可避的不純物とからなるアルミニウム合金を、溶解、
鋳造をAr雰囲気中で行い、均質化処理及び塑性加工を通
常の方法で行った後、500℃以上で溶体化処理した後、
1〜5℃/秒の冷却速度で冷却した後、人工時効処理す
ることにより、析出物の平均粒子径を100nm以下とした
ことを特徴とする構造用Al−Cu−Mg−Li系アルミニウム
合金材料の製造方法。1. Cu: 0.5 to 3.5% (% is the same as% by weight or less), M
g: 0.5-4.0% and Li: 2.0-4.0%, further Zr: 0.05
~ 0.30%, Cr: 0.05 ~ 0.30%, Mn: 0.05 ~ 1.0%, V: 0.05
~ 0.30% of one or more of the above, with the balance being an aluminum alloy composed of Al and unavoidable impurities,
Casting is performed in an Ar atmosphere, homogenization treatment and plastic working are performed by a normal method, and after solution treatment at 500 ° C. or higher,
A structural Al-Cu-Mg-Li-based aluminum alloy material characterized in that the average particle size of the precipitates is 100 nm or less by artificial aging treatment after cooling at a cooling rate of 1 to 5 ° C / sec. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11015890A JPH0689439B2 (en) | 1990-04-27 | 1990-04-27 | Method for producing structural Al-Cu-Mg-Li aluminum alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11015890A JPH0689439B2 (en) | 1990-04-27 | 1990-04-27 | Method for producing structural Al-Cu-Mg-Li aluminum alloy material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14034386A Division JPS62297433A (en) | 1986-06-18 | 1986-06-18 | Structural al alloy excellent in hardenability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02290952A JPH02290952A (en) | 1990-11-30 |
JPH0689439B2 true JPH0689439B2 (en) | 1994-11-09 |
Family
ID=14528523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11015890A Expired - Lifetime JPH0689439B2 (en) | 1990-04-27 | 1990-04-27 | Method for producing structural Al-Cu-Mg-Li aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0689439B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220307119A1 (en) * | 2019-04-05 | 2022-09-29 | Arconic Technologies Llc | Methods of cold forming aluminum lithium alloys |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2338491B (en) * | 1997-02-24 | 2000-11-08 | Secr Defence | Aluminium-lithium alloys |
CN115261683B (en) * | 2022-04-04 | 2024-04-09 | 中国第一汽车股份有限公司 | Water quenching-free high-strength and high-toughness cast Al-Si alloy and preparation method thereof |
-
1990
- 1990-04-27 JP JP11015890A patent/JPH0689439B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220307119A1 (en) * | 2019-04-05 | 2022-09-29 | Arconic Technologies Llc | Methods of cold forming aluminum lithium alloys |
US12252772B2 (en) * | 2019-04-05 | 2025-03-18 | Arconic Technologies Llc | Methods of cold forming aluminum lithium alloys |
Also Published As
Publication number | Publication date |
---|---|
JPH02290952A (en) | 1990-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
EP0610006B1 (en) | Superplastic aluminum alloy and process for producing same | |
JP4577218B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability | |
US8133331B2 (en) | Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JPH0372147B2 (en) | ||
JPH027386B2 (en) | ||
JP3022922B2 (en) | Method for producing plate or strip material with improved cold rolling characteristics | |
JPH1030147A (en) | Aluminum-zinc-magnesium alloy extruded material and its production | |
JP2844411B2 (en) | Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same | |
JPH0747808B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
JP3516566B2 (en) | Aluminum alloy for cold forging and its manufacturing method | |
JPS6050864B2 (en) | Aluminum alloy material for forming with excellent bending workability and its manufacturing method | |
JPH0874012A (en) | Production of superplastic aluminum alloy | |
JPH08232035A (en) | High strength aluminum alloy material for bumper, excellent in bendability, and its production | |
JPH04353A (en) | Heat treatment for al-cu aluminum alloy ingot for working and production of extruded material using same | |
JPH0689439B2 (en) | Method for producing structural Al-Cu-Mg-Li aluminum alloy material | |
JPH0259859B2 (en) | ||
JPH07116567B2 (en) | Method for producing A1-Cu-Li-Zr superplastic plate | |
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JPH10259441A (en) | Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production | |
JPH0469220B2 (en) | ||
JP2858069B2 (en) | Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same | |
JPH0387329A (en) | Aluminum alloy material for baking finish and its manufacture |