JPH0687185A - Laminated molding - Google Patents
Laminated moldingInfo
- Publication number
- JPH0687185A JPH0687185A JP5170433A JP17043393A JPH0687185A JP H0687185 A JPH0687185 A JP H0687185A JP 5170433 A JP5170433 A JP 5170433A JP 17043393 A JP17043393 A JP 17043393A JP H0687185 A JPH0687185 A JP H0687185A
- Authority
- JP
- Japan
- Prior art keywords
- laminated
- molded body
- resin
- lamination
- laminated molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 claims abstract description 34
- 239000011347 resin Substances 0.000 claims abstract description 34
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 16
- 238000000465 moulding Methods 0.000 claims abstract description 15
- 239000000853 adhesive Substances 0.000 claims abstract description 14
- 230000001070 adhesive effect Effects 0.000 claims abstract description 14
- 239000011229 interlayer Substances 0.000 claims abstract description 8
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 32
- -1 polypropylene Polymers 0.000 claims description 15
- 238000010030 laminating Methods 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000004513 sizing Methods 0.000 claims description 4
- 238000003475 lamination Methods 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 12
- 230000035939 shock Effects 0.000 abstract description 12
- 239000000835 fiber Substances 0.000 description 19
- 239000007822 coupling agent Substances 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 239000006096 absorbing agent Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920006284 nylon film Polymers 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000012756 surface treatment agent Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- KNTKCYKJRSMRMZ-UHFFFAOYSA-N 3-chloropropyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CCCCl KNTKCYKJRSMRMZ-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- TVTRDGVFIXILMY-UHFFFAOYSA-N 4-triethoxysilylaniline Chemical compound CCO[Si](OCC)(OCC)C1=CC=C(N)C=C1 TVTRDGVFIXILMY-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011145 styrene acrylonitrile resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
Landscapes
- Vibration Dampers (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、衝突、落下等による衝
撃エネルギーを吸収し、緩衝効果を発揮する積層成形品
およびその製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated molded article which absorbs impact energy due to collision, drop and the like and exerts a cushioning effect, and a method for producing the same.
【0002】[0002]
【従来の技術】自動車や走行機器の衝突に於いて、緩衝
効果を発揮する緩衝体がその衝突エネルギーを吸収し、
機器本体又は運転者を保護する役目を果たしている。従
来より用いられている緩衝体は、樹脂発泡体を構造体表
面に貼り合わせたものや、コイルバネ、ベローズの如き
形状に折り曲げ加工した金属製筒状体や板状体、また
は、空気圧や油圧を利用したシリンダー状緩衝機等であ
る。緩衝体自体に機器固定力、例えば、ハンドルと軸間
を固定し保持させる場合には金属製緩衝体やシリンダー
状緩衝機やコイルバネ等が用いられる。金属製緩衝体の
場合はエネルギーを吸収する折り曲げ部分の形状に特徴
を付与する必要があり、またその折り曲げ部分の構造お
よび成形も複雑でかつ困難であった。一方シリンダー状
緩衝機は重量が重い欠点を有しており、コイルバネは衝
撃エネルギーを蓄積し衝突後そのエネルギーを開放し衝
突物を壊す欠点を有している。2. Description of the Related Art In a collision of an automobile or a traveling device, a cushioning body that exhibits a cushioning effect absorbs the collision energy,
It plays the role of protecting the equipment body or the driver. Conventionally used shock absorbers are those in which resin foam is attached to the surface of the structure, metal cylinders and plates that are bent into shapes such as coil springs and bellows, or air pressure and hydraulic pressure. It is a cylindrical shock absorber used. When the shock absorber itself has a device fixing force, for example, when a handle and a shaft are fixed and held, a metal shock absorber, a cylindrical shock absorber, a coil spring, or the like is used. In the case of a metal shock absorber, it is necessary to give a characteristic to the shape of the bent portion that absorbs energy, and the structure and molding of the bent portion are complicated and difficult. On the other hand, the cylindrical shock absorber has a drawback of being heavy in weight, and the coil spring has a drawback of accumulating impact energy and releasing the energy after a collision to destroy a collision object.
【0003】[0003]
【発明が解決しようとする課題】また、熱可塑製樹脂に
20容量%以上の強化繊維を含浸させた厚み 0.1〜1mmの
樹脂板を積層成形して得られる成形体を緩衝体として用
いる試みがなされている。この場合、成形体は金属類に
比較して、軽量であり、軽量緩衝体として各種の用途に
利用されている。しかしながら、成形体は金属に比べて
弾性率が低く、わずかな変形により成形体が破壊に至
り、成形体が吸収する衝突エネルギーが少ないという問
題があった。従って、積層成形品の限界歪み量以上の衝
撃力が加えられた場合は積層成形品は破断して衝撃力を
完全に緩衝することは出来ない。従来の積層成形品の弾
性的変形量は少ないので、大きな衝撃力を緩衝すること
は困難であり、従って幅広い衝撃力に対応させることが
出来ないという問題があった。そこで本発明は、軽量で
構造が簡単で、且つ衝撃吸収力の大きな積層成形品を提
供することを技術課題とする。[PROBLEMS TO BE SOLVED BY THE INVENTION]
Attempts have been made to use a molded body obtained by laminating a resin plate having a thickness of 0.1 to 1 mm impregnated with 20% by volume or more of reinforcing fiber as a buffer. In this case, the molded body is lighter in weight than metals and is used as a lightweight cushioning body for various purposes. However, there is a problem that the molded body has a lower elastic modulus than that of metal, the molded body is destroyed by a slight deformation, and the collision energy absorbed by the molded body is small. Therefore, when an impact force exceeding the limit strain amount of the laminated molded product is applied, the laminated molded product is broken and the impact force cannot be completely buffered. Since the amount of elastic deformation of the conventional laminated molded product is small, it is difficult to absorb a large impact force, so that there is a problem that it is not possible to cope with a wide range of impact forces. Therefore, it is a technical object of the present invention to provide a laminated molded product that is lightweight, has a simple structure, and has a large impact absorbing power.
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記の問
題を解決すべく鋭意検討を重ねた結果、従来の繊維強化
樹脂板積層成形品は、積層間に気泡、剥離、蒸着不良等
の欠陥が存在すると、荷重を受けて変形した場合、欠陥
部分から剥離や亀裂が進展し積層間破壊及び強化繊維の
部分破断が発生し、耐荷重は増えずに変位が増大するこ
とを認識した。従来技術においては、積層間の欠陥が存
在しない様に成形することが、第1の技術課題であった
が、本発明者らは、この様な荷重−変位特性は弾性エネ
ルギーを大きく蓄積している点において衝撃力を緩衝す
る上では好ましい破壊挙動であることに着目し、複合材
積層体の層間強度を積極的に制御することにより、緩衝
エネルギーの吸収量が調節できることを見出して本発明
に至ったものである。すなわち本発明は、熱可塑性樹脂
に20容量%以上の強化繊維を含浸させた厚み0.1〜1m
m の樹脂板を積層成形して得られる成形体であって、該
成形体を構成する積層面に外力によりずれ変形を生じる
箇所を設けたことを特徴とする積層成形体を提供するも
のである。As a result of intensive studies to solve the above problems, the inventors of the present invention have found that conventional fiber-reinforced resin plate laminated molded articles have air bubbles, peeling, vapor deposition defects, etc. between the laminated layers. In the presence of defects, we recognized that when deformed under load, peeling and cracks develop from the defective parts, interlaminar fracture and partial breakage of reinforcing fibers occur, and displacement increases without increasing load capacity. . In the prior art, it was the first technical problem to perform molding so that there was no defect between the stacked layers, but the present inventors have found that such load-displacement characteristics cause a large accumulation of elastic energy. In view of the fact that it is a preferable fracture behavior in buffering the impact force in view of the fact that the absorption amount of buffer energy can be adjusted by positively controlling the interlaminar strength of the composite laminate, the present invention was found. It has come. That is, the present invention is a thermoplastic resin impregnated with 20% by volume or more of reinforcing fiber thickness 0.1 to 1 m
A molded article obtained by laminating and molding a resin plate of m, wherein a laminated surface forming the molded article is provided with a portion that is displaced and deformed by an external force. .
【0005】上記した本発明において、外力によりずれ
変形を生じる積層面の層間接着力がずれ変形を生じない
積層面の層間接着力を 100とした場合、80以下になるよ
うに設計されることが好ましい。上記の設計を具体化す
る1つの手段は、外力によりずれ変形を生じる積層面に
非接着部を設けることである。上記の手段の好ましい態
様は、積層成形体の衝撃を受ける部位の積層面面積を 1
00とした場合、衝撃を受ける部位の非接着部の積層面面
積を5 〜60% の範囲とすることであり、この場合にお
いて、非接着部が複数層において成形される場合は、各
層の接着部面積の総和である。積層成形体より好ましい
態様においては、上記の積層部分は、半径5mm以上、好
ましくは20mm以下の曲等を有する積層角で成形される。
上記した本発明によれば、プリプレグを積層した複合材
を用い、積層間の層間強度を制御することにより、変形
量が大きく、比較的低い力で破壊が開始し、破壊におけ
るエネルギー吸収の大きい緩衝体が得られるという効果
を発揮する。In the above-mentioned present invention, the interlayer adhesive force of the laminated surface which is displaced and deformed by an external force is designed to be 80 or less when the interlayer adhesive force of the laminated surface which is not displaced and deformed is 100. preferable. One means of embodying the above design is to provide a non-bonded portion on the stacking surface that undergoes a shear deformation due to an external force. A preferred embodiment of the above means is that the laminated surface area of the portion of the laminated molded body to be impacted is 1
When 00 is set, the laminated surface area of the non-adhesive part of the part to be impacted is in the range of 5 to 60%. In this case, when the non-adhesive part is molded in multiple layers, the adhesion of each layer It is the total of the area. In a more preferable embodiment than the laminated molded body, the laminated portion is molded with a laminating angle having a radius of 5 mm or more, preferably 20 mm or less.
According to the above-described present invention, by using a composite material in which prepregs are laminated and controlling the interlaminar strength between the laminations, the deformation amount is large, the fracture starts with a relatively low force, and the buffer with large energy absorption in the fracture is used. It has the effect of gaining a body.
【0006】本発明の樹脂板とは、前記強化繊維に前記
樹脂を浸み込ませたものであり、厚みは通常 0.1〜1mm
の範囲のものである。樹脂板を積層して成形品にした場
合、成形品の厚みは通常3〜10mm程度、より一般的には
3〜5mm程度である。積層間の層間強度の制御法として
は、積層間の一部に加えられた外力により擦れやすい構
造および形状を導入することがあげられる。これは、外
力が加わると特に大きく変形が起きる部分を積極的に作
ることにより、より効率的に達成される。1つの積層間
強度の制御方法としては、積層間の一部に剥離を容易に
起こし得る部分を設けることがあげられる。容易に剥離
を起こし得る部分とは、積層間の樹脂が接触を妨げら
れ、接着強度が著しく低下する部分を意味し、具体的に
は使用された樹脂と接着性の乏しい樹脂フィルムを配置
したり、樹脂と接着性に乏しいワニス、グリース、離型
剤を塗布したり、プリブレグの成形温度で発泡剤を層間
の一部に配置したり、樹脂が含浸されていない織布を層
間に配置することによって得られる。The resin plate of the present invention is the above-mentioned reinforcing fiber impregnated with the above-mentioned resin, and its thickness is usually 0.1 to 1 mm.
It is in the range of. When resin plates are laminated to form a molded product, the thickness of the molded product is usually about 3 to 10 mm, and more generally about 3 to 5 mm. As a method of controlling the interlaminar strength between the laminated layers, it is possible to introduce a structure and a shape that are easily rubbed by an external force applied to a part between the laminated layers. This can be achieved more efficiently by positively creating a portion in which particularly large deformation occurs when an external force is applied. One method of controlling the strength between laminated layers is to provide a portion where peeling can easily occur in a part between laminated layers. The part that can easily peel off means a part where the resin between the laminates is prevented from contacting and the adhesive strength is remarkably reduced. Specifically, a resin film having poor adhesiveness with the used resin is arranged. Applying a varnish, grease, or mold release agent that has poor adhesiveness with resin, placing a foaming agent in a part of the layers at the molding temperature of the prepreg, or placing a woven cloth not impregnated with resin between the layers. Obtained by
【0007】非接合部の積層は使用する強化繊維を含む
樹脂板の強度と吸収するべき衝撃力の関係により決定さ
れるが、通常は衝撃力を受ける面の面積を60%以下が望
ましく、更に好ましくは5〜60%の範囲である。衝撃力
を受ける面の面積に対する非接合部の面積が5〜60%の
範囲を外れる場合は、成形品の衝撃力緩衝効果が充分に
得られない。また、好ましい剥離層の層数は目的により
適宜選択されるが成形品厚み3mm当り通常2〜5層の範
囲である。複数の剥離層を設ける場合は、近接した剥離
層に設けることが好ましい。また、同一剥離層内におけ
る剥離部と非剥離部との関係位置は、図2および図6に
示すような適宜の位置に定めることができ、剥離部を複
数層に設ける場合もほぼ同様である。The lamination of the non-bonded portion is determined by the relationship between the strength of the resin plate containing the reinforcing fibers to be used and the impact force to be absorbed. Normally, the area of the face receiving the impact force is preferably 60% or less. It is preferably in the range of 5 to 60%. When the area of the non-bonded portion with respect to the area of the surface receiving the impact force is outside the range of 5 to 60%, the impact force buffering effect of the molded product cannot be sufficiently obtained. The preferred number of release layers is appropriately selected depending on the purpose, but is usually in the range of 2 to 5 layers per 3 mm of the thickness of the molded product. When a plurality of release layers are provided, they are preferably provided in adjacent release layers. Further, the relational position between the peeling portion and the non-peeling portion in the same peeling layer can be set to an appropriate position as shown in FIGS. 2 and 6, and when the peeling portion is provided in a plurality of layers, it is almost the same. .
【0008】また、他の好ましい方法としては、ガラス
繊維織物を層間に配置し、接着強度を低下させることも
出来る。この場合のガラス繊維織物の面積も使用する強
化繊維を含む樹脂板の強度と吸収するべき衝撃力の関係
により決定されるが、通常は衝撃力を受ける面の面積の
60%以下が望ましく、概ね上記の場合と同様に設計する
ことができる。しかしながら、織物にこだわる必要はな
く、繊維の方向性を利用して適宜配置することもでき
る。As another preferable method, a glass fiber woven fabric may be arranged between the layers to reduce the adhesive strength. The area of the glass fiber woven fabric in this case is also determined by the relationship between the strength of the resin plate containing the reinforcing fibers used and the impact force to be absorbed, but normally the area of the surface receiving the impact force is
It is preferably 60% or less, and can be designed in the same manner as in the above case. However, it is not necessary to stick to the woven fabric, and it is possible to arrange them appropriately by utilizing the directionality of the fibers.
【0009】積層間剥離強度の更に好ましい制御方法と
しては、上記の制御方法の採用に加えて荷重が加わった
時に、優先的に層間ずれが起こる積層角で積層した部分
を設けることである。この方法による場合の変形は、積
層面内でなく、積層方向と垂直方向に発生するので、積
層成形品の表面と裏面で曲率の差が積層面内でのずれ発
生の引き金部分、例えば壁の部分、具体的には例えば図
1のWの面、図7の10の部分に荷重方向に対して平衡
な面を形成しない波板状或いはジグザク状の折り返し構
造を部分的付与することにより達成される。このとき、
折り返し部分の角が鋭利な角度であるとその部分に荷重
が集中して加わり、積層間のずれの発生に先駆けて折り
返し部分の角が折れる。状況に応じて角部分には半径5
mm以上、好ましくは20mm以下の曲率を有する積層角で成
形することが好ましい。As a more preferable method for controlling the peel strength between layers, in addition to adopting the above-mentioned control method, there is provided a portion laminated at a laminating angle at which delamination occurs preferentially when a load is applied. Since the deformation in the case of this method occurs not in the laminating plane but in the direction perpendicular to the laminating direction, the difference in curvature between the front surface and the back surface of the laminated molded product causes a shift in the laminating surface, such as a wall. This can be achieved by partially providing a corrugated or zigzag folded structure that does not form a balanced surface with respect to the load direction to a portion, specifically, for example, the surface W in FIG. 1 or the portion 10 in FIG. It At this time,
If the corner of the folded-back portion is a sharp angle, the load is concentrated and applied to that portion, and the corner of the folded-back portion is bent prior to the occurrence of displacement between the stacked layers. Depending on the situation, corners have a radius of 5
It is preferable to form at a lamination angle having a curvature of not less than mm, preferably not more than 20 mm.
【0010】積層板の成形方法は、樹脂板を所定の形状
に裁断して重ね合わせた後、通常採用されるオートクレ
ーブによる成形方法や、加熱プレスによる成形方法等が
採用される。本発明の積層成形体は、かかる構成をとる
ことにより、成形体に外力が加わると、積層部の一部の
層間接着力が、他の積層部に比較して層間接着力が弱い
ため、この箇所を中心に破壊がはじまる。この破壊はま
ず積層間のずれが生じ、外力を吸収しながら破壊に至
る。この場合の成形体の衝撃吸収力は、元の成形体に比
べて大きく、さらに破壊時の弾性率が低くなっている
為、衝撃時のショックが小さくなり、人体を衝撃時のシ
ョックから保護する効果は大きい。As a method for molding the laminated plate, after a resin plate is cut into a predetermined shape and superposed, a molding method which is usually adopted by an autoclave, a molding method by a heating press and the like are adopted. The laminated molded body of the present invention has such a structure that when an external force is applied to the molded body, the interlayer adhesive force of a part of the laminated portion is weaker than that of the other laminated portion. Destruction begins around the point. This breakage first causes a gap between the stacked layers, which leads to breakage while absorbing external force. In this case, the shock absorbing power of the molded body is larger than that of the original molded body, and the elastic modulus at the time of breaking is low, so the shock at the time of impact is small and the human body is protected from the shock at the time of impact. The effect is great.
【0011】本発明において、強化繊維とは、ガラス繊
維、炭素繊維、ボロン繊維、チタン繊維、アルミナ繊
維、ナイロン繊維、テトロン繊維、ポリエチレン繊維、
アラミド繊維、ジュートの如き天然繊維、ステンレス繊
維の如き金属繊維等強度向上に効果を発揮し得る繊維状
物を意味し、繊維状物であれば特に材質は限定しない。
強化繊維の形態は、連続繊維状のロービングヤーン、ト
ウという名称で知られているものを一方向と配列したも
のや、織布、チョップトストランドマット及び、これら
の組み合わせであってもよい。これらの強化繊維は通常
3〜50μmのフィラメントを 200〜12000 本収束したも
のを1単位として用い、繊維の含有量は積層品の強度を
決定する因子であり実用的に使用可能な量は20容量%以
上であり、30容量%以上であることが好ましい。強化繊
維の含有量は、適用される用途の必要強度と緩衝効果に
依存するが、一般に構造体として用いる点から20〜70容
量%の範囲がよく、好ましくは40〜60容量%が好適であ
る。また、強化繊維の表面に樹脂と密着性を向上させる
為に表面処理剤、例えばシランカップリング剤単体やシ
ランカップリング剤を含んだ集束剤等で処理されている
ことが好ましい。In the present invention, the reinforcing fibers are glass fibers, carbon fibers, boron fibers, titanium fibers, alumina fibers, nylon fibers, tetron fibers, polyethylene fibers,
It means a fibrous material capable of exerting an effect of improving the strength such as aramid fiber, natural fiber such as jute, metal fiber such as stainless fiber, and the material is not particularly limited as long as it is a fibrous material.
The form of the reinforcing fiber may be a continuous fiber roving yarn, a yarn known as a tow arranged in one direction, a woven fabric, a chopped strand mat, or a combination thereof. These reinforcing fibers are usually made by converging 200 to 12000 filaments of 3 to 50 μm as one unit, and the fiber content is a factor that determines the strength of the laminated product, and the practically usable amount is 20 volumes. % Or more, and preferably 30% by volume or more. The content of the reinforcing fiber depends on the required strength and the buffering effect of the application to which it is applied, but from the point of use as a structure, it is generally in the range of 20 to 70% by volume, preferably 40 to 60% by volume. . In addition, it is preferable that the surface of the reinforcing fiber is treated with a surface treatment agent such as a silane coupling agent alone or a sizing agent containing the silane coupling agent in order to improve the adhesion to the resin.
【0012】ガラス繊維の場合のカップリング剤は、組
み合わせる樹脂に応じて最適なものを選ぶ必要があり以
下その具体例を例挙する。ナイロン樹脂であれば、γ−
アミノプロピル−トリメトキシシラン、N−β−(アミ
ノエチル)−γ−アミノプロピル−トリメトキシトラン
等を使用する。ポリカーボネート樹脂であれば、γ−ア
ミノプロピル−トリメトキシシラン、N−β−(アミノ
エチル)−γ−アミノプロピル−トリメトキシシラン等
を使用する。ポリエチレンテレフタレートまたはポリブ
チレンテレフタレートであれば、β−(3,4−エポキ
シシクロヘキシル)エチル−トリメトキシシラン、γ−
グリシドキシ−プロピルトリメトキシシラン、γ−アミ
ノプロピル−トリメトキシシラン等を使用する。ポリエ
チレンまたはポリプロピレンであれば、ビニルトリメト
キシシラン、ビニル−トリス−(2−メトキシエトキ
シ)シラン、γ−メタクリロキシ−プロピルトリメトキ
シシラン、γ−アミノプロピル−トリメトキシシラン等
を使用する。ポリフェニレンオキシド、ポリフェニレン
スルフィド、ポリスルフォン、ポリエーテルサルフォ
ン、ポリエーテルケトン、ポリエーテルエーテルケト
ン、ポリイミド、ポリアリレート、フッ素樹脂であれ
ば、上述したカップリング剤も当然使用出来るが、その
外に、N−(β−アミノエチル)−γ−アミノプロピル
メチルジメトキシシラン、γ−クロロプロピルメチルジ
メトキシシラン、γ−メルカプトプロピルトリメトキシ
シラン、p−アミノフェニルトリエトキシシラン等が使
用できる。In the case of glass fiber, it is necessary to select the most suitable coupling agent according to the resin to be combined, and specific examples thereof will be given below. For nylon resin, γ-
Aminopropyl-trimethoxysilane, N-β- (aminoethyl) -γ-aminopropyl-trimethoxytran and the like are used. If it is a polycarbonate resin, γ-aminopropyl-trimethoxysilane, N-β- (aminoethyl) -γ-aminopropyl-trimethoxysilane and the like are used. If it is polyethylene terephthalate or polybutylene terephthalate, β- (3,4-epoxycyclohexyl) ethyl-trimethoxysilane, γ-
Glycidoxy-propyltrimethoxysilane, γ-aminopropyl-trimethoxysilane and the like are used. For polyethylene or polypropylene, vinyltrimethoxysilane, vinyl-tris- (2-methoxyethoxy) silane, γ-methacryloxy-propyltrimethoxysilane, γ-aminopropyl-trimethoxysilane and the like are used. If polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyimide, polyarylate, or fluororesin is used, the above-mentioned coupling agent can be used, but in addition, N -(Β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, p-aminophenyltriethoxysilane and the like can be used.
【0013】ガラス繊維以外の場合は、物性を第一に考
える時は、集束剤やカップリング剤を使用しない場合も
あるが、作業性が悪くなるのでアミン硬化型のエポキシ
樹脂をカップリング剤として処理する場合が多く、その
具体例としてはビスフェノールA型エポキシ樹脂、エポ
キシノボラック樹脂、脂環式エポキシ樹脂、脂肪族エポ
キシ樹脂、グリシジルエステル型樹脂を使用することが
出来る。カップリング剤を繊維表面に施す方法は以下の
通りである。即ち、集束剤を除去した繊維に、カップリ
ング剤を 0.1〜3重量%溶解した液を、浸漬、噴霧塗布
等の手段により完全に含浸させる。このカップリング剤
溶液を含んだ繊維を60〜120 ℃で乾燥し、カップリング
剤を繊維表面に反応させる。乾燥時間は溶媒が揮散して
しまう時間で充分で15〜20分位である。カップリング剤
を溶解する溶媒は、使用する表面処理剤に応じて、pH
2.0〜12.0位に調整した水を用いる場合と、エタノー
ル、トルエン、アセトン、キシレン等の有機溶剤を単独
で、或いは混合して使用する場合とがある。含浸用樹脂
は前記表面処理剤との親和性を高める様な改質剤、例え
ば無水マレイン酸をグラフトしたポリプロピレンを添加
することは有意義である。When a material other than glass fiber is used, a sizing agent or a coupling agent may not be used when the physical properties are considered first, but since the workability is deteriorated, an amine-curable epoxy resin is used as a coupling agent. In many cases, a bisphenol A type epoxy resin, an epoxy novolac resin, an alicyclic epoxy resin, an aliphatic epoxy resin, or a glycidyl ester type resin can be used. The method of applying the coupling agent to the fiber surface is as follows. That is, the fiber from which the sizing agent has been removed is completely impregnated with a solution in which 0.1 to 3% by weight of the coupling agent is dissolved by means such as dipping or spray coating. The fiber containing the coupling agent solution is dried at 60 to 120 ° C. to allow the coupling agent to react with the surface of the fiber. The drying time is sufficient to evaporate the solvent, which is about 15 to 20 minutes. The solvent that dissolves the coupling agent depends on the pH used, depending on the surface treatment agent used.
There are cases where water adjusted to 2.0 to 12.0 is used, and cases where organic solvents such as ethanol, toluene, acetone, and xylene are used alone or as a mixture. To the impregnating resin, it is significant to add a modifier that enhances the affinity with the surface treatment agent, for example, polypropylene grafted with maleic anhydride.
【0014】本発明の樹脂は、熱可塑性樹脂、熱硬化性
樹脂のいずれでも使用でき、熱可塑性樹脂では、ポリス
チレン、スチレン−アクリロニトリル樹脂、ABS樹
脂、ポリエチレン、ポリプロピレン、ポリカーボネー
ト、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ナイロン系樹脂、ポリフェニレンエーテル、
ポリフェニレンサルファイド、ポリエーテルイミド、ポ
リサルフォン、ポリエーテルサルフォン、ポリイミド、
ポリエーテルニトリル、ポリエーテルケトン等が代表的
であり、熱硬化性樹脂としては、不飽和ポリエステル樹
脂、ビニルエステル樹脂、ウレタン樹脂、エポキシ樹
脂、フェノール樹脂等が代表的である。上記のものは樹
脂同志又は他の樹脂、例えばゴム系エラストマー樹脂と
を複数組み合わせたものも適用し得る。さらに樹脂に例
えば、ウイスカー、タルク、マイカ、ガラス短繊維、炭
素短繊維、グラファイト等の無機充填材を添加し、樹脂
の弾性率を調節したものも使用できる。The resin of the present invention may be either a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include polystyrene, styrene-acrylonitrile resin, ABS resin, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate and polybutylene terephthalate. , Nylon resin, polyphenylene ether,
Polyphenylene sulfide, polyether imide, polysulfone, polyether sulfone, polyimide,
Polyether nitrile, polyether ketone, etc. are typical, and as the thermosetting resin, unsaturated polyester resin, vinyl ester resin, urethane resin, epoxy resin, phenol resin, etc. are typical. As the above, a combination of resins or a combination of other resins, for example, a plurality of rubber-based elastomer resins can be applied. Further, it is possible to use a resin in which an inorganic filler such as whiskers, talc, mica, short glass fibers, short carbon fibers, or graphite is added to adjust the elastic modulus of the resin.
【0015】[0015]
【実施例】次に本発明の詳細を代表的実施例により説明
する。 実施例1 γ−アミノプロピル−トリメトキシシランを塗布した直
径13μmのガラスフィラメント1800本を一束にしたガラ
ス繊維を80本を一方向に配列したシートにポリプロピレ
ン樹脂を含浸させ、ガラス繊維含有量50容量%に調節し
た 0.2mmのプリプレグシート1を製造した。こりプリプ
レグシート1を用いて、プリプレグの繊維の方向を0°
とした時に、上から順に0°/90°/0°/90°/0°
/0°/0°/90°/0°になる様に図2に示す寸法で
10層重ね合わせ、上側から第3層目、第5層目、第7層
目に第2図A、B、Cに示す位置に巾10mm、長さ30mmの
ナイロンフィルム(厚さ50μm)をそれぞれ配置して、
非接合部を作り、 200℃に加熱した金型に積層体を投入
し10kg/cm2 の圧力で10分間加圧した後、圧力を保った
まま、10℃/分の冷却速度で50℃迄冷却後脱型し、図1
に示す成形品を得た。この時の非接合部の面積は、第1
図に示した衝撃を吸収する縦壁部分Wの面積の18%であ
った。この成形物のフランジ部を図8に示したように、
長さ 150mm巾150mm 厚さ20mmの鉄板にボルトで固定し、
成形品中央部に長さ 100mm巾 100mm厚さ20mmの鉄板を乗
せ、インストロン社製材料試験機1125型を使用して上面
に圧縮荷重を加え荷重−変位挙動を測定した。試験の結
果は第3図の荷重−変位曲線に示す如く、変形量の増大
にかかわらず、破壊応力が一定な常態が保たれ、エネル
ギー吸収が大きい事が説明された。図3の縦座様のベー
スライン(通常X軸と定義されている)と荷重−変位曲
線で囲まれる部分の面積を求めたものを歪みエネルギー
と定義されているが、歪みエネルギーが大きいほど衝撃
力に対する緩衝力は大きいと判断できる。この場合の歪
みエネルギーは61J(ジュール)であった。表1に破
壊力、破壊時の変形利用、歪みエネルギーをまとめて示
す。The details of the present invention will be described below with reference to typical examples. Example 1 A sheet in which 1800 glass fibers bundled with γ-aminopropyl-trimethoxysilane and having a diameter of 1800 glass filaments having a diameter of 13 μm are bundled into one direction and 80 fibers are arranged in one direction is impregnated with a polypropylene resin, and the glass fiber content is 50. A 0.2 mm prepreg sheet 1 adjusted to volume% was manufactured. Using the prepreg sheet 1, set the fiber direction of the prepreg to 0 °.
, 0 ° / 90 ° / 0 ° / 90 ° / 0 ° from top to bottom
/ 0 ° / 0 ° / 90 ° / 0 °
10 layers are piled up, and a nylon film (thickness: 50 μm) with a width of 10 mm and a length of 30 mm is respectively placed at the positions shown in FIGS. 2A, 2B and 2C from the upper side to the third layer, the fifth layer and the seventh layer. Place it
Make a non-bonded part, put the laminated body in a mold heated to 200 ℃, pressurize at 10kg / cm 2 for 10 minutes, and then keep the pressure and cool to 50 ℃ at 10 ℃ / min. After cooling, demolding,
A molded product shown in was obtained. The area of the non-bonded part at this time is the first
It was 18% of the area of the vertical wall portion W that absorbs the impact shown in the figure. As shown in FIG. 8, the flange portion of this molded product is
150 mm long, 150 mm wide, 20 mm thick, fixed to an iron plate with bolts,
An iron plate having a length of 100 mm, a width of 100 mm and a thickness of 20 mm was placed on the center of the molded product, and a load-displacement behavior was measured by applying a compressive load to the upper surface using an Instron material testing machine Model 1125. As shown in the load-displacement curve of FIG. 3, the results of the test explained that the normal state where the fracture stress is constant is maintained and the energy absorption is large regardless of the increase of the deformation amount. The strain energy is defined as the area of the portion surrounded by the vertical seat-like baseline (usually defined as the X-axis) and the load-displacement curve in FIG. 3, and is defined as the strain energy. It can be judged that the buffering force against the force is large. The strain energy in this case was 61 J (joule). Table 1 shows the breaking force, deformation utilization at the time of breaking, and strain energy.
【0016】比較例1 実施例1で用いた成形品に於いて、非接合部のない成形
品を作成し、実施例1と同一の評価を行った。第4図に
示す如く破壊開始力が高く、歪みエネルギーは20Jと
小さいもので、緩衝体に用い得るものではなかった。表
1に破壊力、破壊時の変形量、歪みエネルギーをまとめ
て示す。 比較例2 実施例1と同様な方法で第1図に示した成形品を成形し
た。但し、非接合部の大きさは巾40mm、長さ26mmとし
た。この時の非接合部の面積は衝撃を吸収する第1図に
示した縦壁部分Wの面積の62.4%であった。この成形品
を実施例1と同様な評価を行ったが、第5図に示すよう
破壊開始力が低く、歪みエネルギーは3Jと小さいもの
で緩衝体に用いられるものではなかった。表1に破壊
力、破壊時の変形量、歪みエネルギーをまとめて示す。Comparative Example 1 In the molded product used in Example 1, a molded product having no non-bonded portion was prepared and evaluated in the same manner as in Example 1. As shown in FIG. 4, the fracture initiation force was high and the strain energy was as small as 20 J, which was not suitable for a buffer. Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy. Comparative Example 2 The molded product shown in FIG. 1 was molded in the same manner as in Example 1. However, the size of the non-bonded portion was 40 mm in width and 26 mm in length. The area of the non-bonded portion at this time was 62.4% of the area of the vertical wall portion W shown in FIG. This molded product was evaluated in the same manner as in Example 1. However, as shown in FIG. 5, the fracture initiation force was low and the strain energy was as small as 3 J, which was not used as a buffer. Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy.
【0017】実施例2 実施例1と同様にしてプリプレグシート1を積層し、図
2に示したA、B、Cの部分に、ナイロンフィルムのか
わりにシリコーングリース(信越シリコーン社製KF−
54)を20μmの厚さに塗布した。実施例1と同様な方
法で成形し、荷重試験を行った。歪みエネルギーが大き
く緩衝体に用いられる能力を持った成形体が得られた。
費用1に破壊力、破壊時の変形量、歪みエネルギーをま
とめて示す。Example 2 A prepreg sheet 1 was laminated in the same manner as in Example 1 and silicone grease (KF-manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of the nylon film at the portions A, B and C shown in FIG.
54) was applied to a thickness of 20 μm. Molding was carried out in the same manner as in Example 1 and a load test was conducted. A molded body having a large strain energy and an ability to be used as a buffer body was obtained.
Cost 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy together.
【0018】実施例3 実施例1と同様に積層し成形品を得た。但し、A、B、
Cの部分はナイロンフィルムの代わりに一平方メートル
当り 102gのガラスクロスを使用した。実施例1と同様
な方法で成形し、荷重試験を行った。歪みエネルギーが
大きく緩衝体に用いられる能力を持った成形体が得られ
た。表1に破壊力、破壊時の変形量、歪みエネルギーを
まとめて示す。Example 3 Lamination was carried out in the same manner as in Example 1 to obtain a molded product. However, A, B,
In the portion C, 102 g of glass cloth per square meter was used instead of the nylon film. Molding was carried out in the same manner as in Example 1 and a load test was conducted. A molded body having a large strain energy and an ability to be used as a buffer body was obtained. Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy.
【0019】実施例4 実施例1と同様に積層し成形品を得た。但し、A、B、
Cの部分はナイロンフィルムの代わりに一平方メートル
当り30gのポリエステル製の不繊布を使用した。実施例
1と同様な方法で成形し、荷重試験を行った。歪みエネ
ルギーが大きく緩衝体に用いられる能力を持った成形体
が得られた。表1に破壊力、破壊時の変形量、歪みエネ
ルギーをまとめて示す。Example 4 Lamination was carried out in the same manner as in Example 1 to obtain a molded product. However, A, B,
In the part C, a non-woven cloth made of polyester of 30 g per square meter was used instead of the nylon film. Molding was carried out in the same manner as in Example 1 and a load test was conducted. A molded body having a large strain energy and an ability to be used as a buffer body was obtained. Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy.
【0020】実施例5 実施例1と同様に積層し成形品を得た。但し、A、B、
Cの部分はナイロンフィルムの代わりに発泡剤である
α,α’−アゾビスイソブチルニトリルを厚さ10μmに
なる様に散布した。Example 5 Lamination was performed in the same manner as in Example 1 to obtain a molded product. However, A, B,
In the portion C, instead of the nylon film, α, α'-azobisisobutylnitrile, which is a foaming agent, was sprayed to a thickness of 10 μm.
【0021】実施例1と同様な方法で成形し、荷重試験
を行った。歪みエネルギーが大きく緩衝体に用いられる
能力を持った成形体が得られた。表1に破壊力、破壊時
の変形量、歪みエネルギーをまとめて示す。Molding was carried out in the same manner as in Example 1 and a load test was conducted. A molded body having a large strain energy and an ability to be used as a buffer body was obtained. Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy.
【0022】実施例6 プリプレグシート1をプリプレグの各層の繊維の方向が
実施例1と同じになる様に図6に示す寸法で10層重合わ
せた積層体を準備した。但し、本実施例では非接合部D
の大きさは23mm縦10mmで、荷重を受ける縦壁部分の面積
の51%である。外力が加わった時に積層間がずれ易い形
状として図7の10に示す様に縦壁部分に波板状の形状を
持った成形体を、 200℃に加熱した全型に積層体を投入
し10mm/mmの圧力で10分間加圧した後、圧力を保ったま
ま、10℃/分の冷却速度で50℃迄冷却後脱型し、図7に
示す成形品を得た。この時得られた成形品の液板の折り
返し部分11の角の曲率半径は6mmであった。実施例1と
同様な方法で荷重試験を行った。歪みエネルギーが大き
く緩衝体に用いられる能力を持った成形体が得られた。
表1に破壊力、破壊時の変形量、歪みエネルギーをまと
めて示す。Example 6 A laminate was prepared by stacking 10 layers of the prepreg sheet 1 in the dimensions shown in FIG. 6 so that the fiber directions of the layers of the prepreg were the same as in Example 1. However, in this embodiment, the non-bonded portion D
The size is 23mm and 10mm, which is 51% of the vertical wall area under load. As shown in 10 of Fig.7, the shape with corrugated plate shape on the vertical wall is used as a shape that makes it easy for the layers to shift when an external force is applied. After pressurizing at a pressure of 10 mm / mm for 10 minutes, the pressure was maintained, the temperature was cooled to 50 ° C. at a cooling rate of 10 ° C./minute, and the mold was removed to obtain a molded product shown in FIG. The radius of curvature of the corner of the folded portion 11 of the liquid plate of the molded product obtained at this time was 6 mm. A load test was conducted in the same manner as in Example 1. A molded body having a large strain energy and an ability to be used as a buffer body was obtained.
Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy.
【0023】比較例3 実施例6と同様にして成形品を得た。但し、成形品の波
板折り返し部分11の角のエネルギーは小さいもので緩衝
体に用いられるものではなかった。表1に破壊力、破壊
時の変形量、歪みエネルギーをまとめて示す。Comparative Example 3 A molded product was obtained in the same manner as in Example 6. However, the energy of the corners of the folded-back portion 11 of the corrugated sheet of the molded product was small and was not used as a buffer. Table 1 shows the breaking force, the amount of deformation at the time of breaking, and the strain energy.
【0024】実施例7 プリプレグシート1を用いてプリプレグの繊維の方向を
0°とした時に、上から順に0°/90°/0°/90°/
0°/90°/0°/90°/0°/90°/90°/90°/90
°/0°/90°/0°90°/0°/90°/0°90°/0
°になる様に図6に示す寸法で22層重合わせた。但し本
例の場合非接合部は、上から11層目と12層目の間だけに
入れた。実施例1と同様な条件で成形を行い、図2に示
す成形品を得た。実施例1と同様な方法で荷重試験の結
果、上から11層目と12層目の間にだけ層間のずれが発生
していたが、他の層間ではずれが発生していなかった。
歪みエネルギーが大きく緩衝体に用いられる能力を持っ
た成形体が得られた。表1に破壊力、破壊時の変形量、
歪みエネルギーをまとめて示す。 Example 7 When the fiber direction of the prepreg was set to 0 ° using the prepreg sheet 1, 0 ° / 90 ° / 0 ° / 90 ° /
0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 ° / 90 ° / 90 ° / 90
° / 0 ° / 90 ° / 0 ° 90 ° / 0 ° / 90 ° / 0 ° 90 ° / 0
Twenty-two layers were laminated with the dimensions shown in FIG. However, in the case of this example, the non-bonded portion was provided only between the 11th and 12th layers from the top. Molding was performed under the same conditions as in Example 1 to obtain a molded product shown in FIG. As a result of the load test in the same manner as in Example 1, the interlayer displacement occurred only between the 11th and 12th layers from the top, but the displacement did not occur between the other layers.
A molded body having a large strain energy and an ability to be used as a buffer body was obtained. Table 1 shows the breaking force and the amount of deformation at the time of breaking.
The strain energy is shown collectively.
【0025】[0025]
【発明の効果】本発明による積層成形品は、軽量で構造
が簡単で、且つ衝撃吸収力が大きく緩衝体として有用で
ある。The laminated molded product according to the present invention is lightweight, has a simple structure, and has a large impact absorbing power, and is useful as a buffer.
【図1】本発明の一実施態様の成形体を示す。FIG. 1 shows a molded body according to one embodiment of the present invention.
【図2】図1に示した成形体の展開図を示す。FIG. 2 is a developed view of the molded body shown in FIG.
【図3】成形体の圧縮破壊時の変形層と破壊力の関係を
示す。FIG. 3 shows a relationship between a deformation layer and a breaking force at the time of compression failure of a molded body.
【図4】成形体の圧縮破壊時の変形量と破壊力の関係を
示す。FIG. 4 shows the relationship between the amount of deformation and the breaking force at the time of compression failure of a molded body.
【図5】成形体の圧縮破壊時間の変形量と破壊力の関係
を示す。FIG. 5 shows the relationship between the amount of deformation and the breaking force during compression failure of a compact.
【図6】図7に示した成形体の展開図を示す。6 shows a developed view of the molded body shown in FIG.
【図7】本発明の他の実施態様の成形体を示す。FIG. 7 shows a molded body according to another embodiment of the present invention.
【図8】成形体の圧縮試験におけるフランジ部の固定方
法を示す図である。FIG. 8 is a diagram showing a method of fixing a flange portion in a compression test of a molded body.
フロントページの続き (72)発明者 坂井 英男 神奈川権横浜市栄区笠間町1190番地 三井 東圧化学株式会社内Front Page Continuation (72) Inventor Hideo Sakai Kanagawa Gon 1190 Kasama-cho, Sakae-ku, Yokohama Mitsui Toatsu Chemical Co., Ltd.
Claims (9)
を含浸させた厚み0.1〜1mmの樹脂板を積層成形して得
られる成形体であって、該成形体を構成する積層面に外
力によりずれ変形を生じる箇所を設けたことを特徴とす
る積層成形体。1. A molded body obtained by laminating a resin plate having a thickness of 0.1 to 1 mm in which a thermoplastic resin is impregnated with 20% by volume or more of a reinforcing fiber, and an external force is applied to a laminating surface constituting the molded body. A laminated molded article, characterized in that it is provided with a portion that causes a shear deformation.
間接着力がずれ変形を生じない積層面の層間接着力を 1
00とした場合、80以下になるように設計されている請求
項1記載の積層成形体。2. An interlayer adhesive force of a laminated surface which causes a shear deformation due to an external force, and an interlayer adhesive force of a laminated surface which does not cause a shear deformation.
The laminated molded body according to claim 1, which is designed so that when it is 00, it is 80 or less.
接着部を設けてなる請求項1記載の積層成形体。3. The laminated molded body according to claim 1, wherein a non-adhesive portion is provided on a laminated surface which is displaced and deformed by an external force.
面積を 100とした場合、衝撃を受ける部位の非接着部の
積層面面積が5〜60%の範囲である請求項1記載の積層
成形体。4. The laminate according to claim 1, wherein the laminated surface area of the non-adhesive portion of the impacted portion is in the range of 5 to 60% when the laminated surface area of the cushioned portion of the laminated molded body is 100. Molded body.
合は、各非接着部面積の総和である請求項1記載の積層
成形体。5. The laminated molded body according to claim 1, wherein when the non-adhesive portion is formed in a plurality of layers, it is the sum of the areas of the non-adhesive portions.
を、半径5〜20mmの範囲の曲率を有する積層角で成形し
て得られる請求項1記載の積層成形体。6. The laminated molded body according to claim 1, which is obtained by molding the laminated surface of a portion of the laminated molded body which receives an impact with a laminating angle having a curvature in the range of 5 to 20 mm in radius.
量%の範囲である請求項1記載の積層成形体。7. The laminated molded body according to claim 1, wherein the amount of the reinforcing fibers in the laminated molded body is in the range of 20 to 70% by volume.
またはシランカップリング剤を含む集束剤で処理される
請求項1記載の積層成形体。8. The laminated molded product according to claim 1, wherein the surface of the reinforcing fiber is treated with a silane coupling agent or a sizing agent containing the silane coupling agent.
る請求項1記載の積層成形体。9. The laminated molded article according to claim 1, wherein the thermoplastic resin is a polypropylene resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5170433A JPH0687185A (en) | 1992-07-22 | 1993-07-09 | Laminated molding |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-195177 | 1992-07-22 | ||
JP19517792 | 1992-07-22 | ||
JP5170433A JPH0687185A (en) | 1992-07-22 | 1993-07-09 | Laminated molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0687185A true JPH0687185A (en) | 1994-03-29 |
Family
ID=26493424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5170433A Pending JPH0687185A (en) | 1992-07-22 | 1993-07-09 | Laminated molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0687185A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005510636A (en) * | 2001-11-27 | 2005-04-21 | ビーティージー・インターナショナル・リミテッド | Secondary processing of polypropylene sheet |
JP2005238837A (en) * | 2004-01-29 | 2005-09-08 | Toray Ind Inc | Frp laminate structure |
WO2009084505A1 (en) * | 2007-12-27 | 2009-07-09 | Delta Tooling Co., Ltd. | Impact absorbing structure, shell type frame member, and seat structure |
US8052913B2 (en) | 2003-05-22 | 2011-11-08 | Propex Operating Company Llc | Process for fabricating polymeric articles |
JP2013177129A (en) * | 2013-04-22 | 2013-09-09 | Delta Tooling Co Ltd | Shell-shaped frame member and seat structure |
WO2024058006A1 (en) * | 2022-09-14 | 2024-03-21 | 東洋紡エムシー株式会社 | Impact-absorbing member |
-
1993
- 1993-07-09 JP JP5170433A patent/JPH0687185A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8021592B2 (en) | 2001-11-27 | 2011-09-20 | Propex Operating Company Llc | Process for fabricating polypropylene sheet |
JP2005510636A (en) * | 2001-11-27 | 2005-04-21 | ビーティージー・インターナショナル・リミテッド | Secondary processing of polypropylene sheet |
JP4949608B2 (en) * | 2001-11-27 | 2012-06-13 | ビーティージー・インターナショナル・リミテッド | Secondary processing of polypropylene sheet |
US8268439B2 (en) | 2003-05-22 | 2012-09-18 | Propex Operating Company, Llc | Process for fabricating polymeric articles |
US8052913B2 (en) | 2003-05-22 | 2011-11-08 | Propex Operating Company Llc | Process for fabricating polymeric articles |
US8871333B2 (en) | 2003-05-22 | 2014-10-28 | Ian MacMillan Ward | Interlayer hot compaction |
US9403341B2 (en) | 2003-05-22 | 2016-08-02 | Propex Operating Company Llc | Interlayer hot compaction |
US10850479B2 (en) | 2003-05-22 | 2020-12-01 | Canco Hungary Investment Ltd. | Process for fabricating polymeric articles |
JP2005238837A (en) * | 2004-01-29 | 2005-09-08 | Toray Ind Inc | Frp laminate structure |
WO2009084505A1 (en) * | 2007-12-27 | 2009-07-09 | Delta Tooling Co., Ltd. | Impact absorbing structure, shell type frame member, and seat structure |
US8376456B2 (en) | 2007-12-27 | 2013-02-19 | Delta Tooling Co., Ltd. | Impact absorbing structural body, shell type frame member and seat structure |
JP2013177129A (en) * | 2013-04-22 | 2013-09-09 | Delta Tooling Co Ltd | Shell-shaped frame member and seat structure |
WO2024058006A1 (en) * | 2022-09-14 | 2024-03-21 | 東洋紡エムシー株式会社 | Impact-absorbing member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0370148B1 (en) | Impact resistent composites | |
US4968545A (en) | Composite tube and method of manufacture | |
JP4420466B2 (en) | High performance composite | |
JPH08506534A (en) | Composite molding apparatus and molding method for high-pressure co-curing molding of a lightweight honeycomb core composite product having a sloped surface using a low-density, stabilized sloped honeycomb core, and product manufactured thereby | |
RU2531196C2 (en) | Improved composite materials | |
WO2002004197A1 (en) | Contoured metal structural members and methods for making the same | |
KR960004107B1 (en) | Laminated Molded Products | |
JPH04312237A (en) | Laminated vibration damping material and fiber having the damping material in the inner layer Reinforced composite material and method for producing the same | |
JPH0687185A (en) | Laminated molding | |
JP3272519B2 (en) | Laminated body and method for producing the same | |
JPH08197668A (en) | Laminated structure of fiber reinforced resin | |
JP2002105223A (en) | Paperless prepreg and manufacturing method | |
JP3127947B2 (en) | Composite molding | |
EP0370147B1 (en) | Tubular composite construction | |
JP2016070389A (en) | Damping structure and damping material | |
JPH0768679A (en) | Impact-resistant laminated structure | |
WO2006013623A1 (en) | Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure | |
JP2705319B2 (en) | Method for producing carbon fiber reinforced composite material | |
JPH04251714A (en) | Manufacture of carbon fiber reinforced composite material | |
JP2006103305A (en) | Substrate for preform | |
JPH08121996A (en) | Light weight impact resistant material | |
JP3179971B2 (en) | Composite molding | |
JP2003305741A (en) | Manufacturing method for laminated structure | |
JPH0671742A (en) | Method of molding drape | |
JP2003200510A (en) | Method for manufacturing honeycomb sandwich panel |