[go: up one dir, main page]

JPH0687066A - Production of copper-coated steel wire - Google Patents

Production of copper-coated steel wire

Info

Publication number
JPH0687066A
JPH0687066A JP24163992A JP24163992A JPH0687066A JP H0687066 A JPH0687066 A JP H0687066A JP 24163992 A JP24163992 A JP 24163992A JP 24163992 A JP24163992 A JP 24163992A JP H0687066 A JPH0687066 A JP H0687066A
Authority
JP
Japan
Prior art keywords
steel wire
copper
wire
nozzle
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24163992A
Other languages
Japanese (ja)
Inventor
Haruo Tominaga
晴夫 冨永
Teruyuki Takayama
輝之 高山
Kenichi Miyauchi
賢一 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP24163992A priority Critical patent/JPH0687066A/en
Publication of JPH0687066A publication Critical patent/JPH0687066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To produce a copper-coated steel wire capable of evading the breakage of a nozzle inserted with a seed wire arranged at the bottom part of a crucible and the breaking of the seed wire, uniform in the thickness of the coated layer and excellent in the adhesion of the coated layer and the seed wire. CONSTITUTION:The hole diameter of an equal diameter straight part 21b in a hole provided in a nozzle 21 arranged at the bottom part of the crucible 1 for holding molten copper is set at larger than the diameter of the steel wire as the seed wire 7 by 0.05-0.40mm and the length of this equal diameter straight part 21b is made to be 5-30mm. Further, the atmosphere of passage where the seed wire 2 enters to the crucible 1 after cleaning the surface of the steel wire is made to be inert gas or weak reducing gas atmosphere at 160-600mmHg absolute pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディップフォーミング法
による銅被覆鋼線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-coated steel wire by a dip forming method.

【0002】[0002]

【従来の技術】従来から、銅荒引線の製造方法としてデ
ィップフォーミング法が知られている。図1はこのディ
ップフォーミング法による銅荒引線の製造方法を示す模
式的断面図である。
2. Description of the Related Art Conventionally, a dip forming method has been known as a method for manufacturing a copper rough drawn wire. FIG. 1 is a schematic sectional view showing a method for manufacturing a copper rough-drawn wire by the dip forming method.

【0003】るつぼ1は黒鉛等の耐火物からなり、その
底部には種線7が挿通する種線挿入部2が設けられてい
る。また、このるつぼ1には、溶解炉3から溶融銅供給
口4を経て溶融銅5が供給されるようになっている。更
に、るつぼ1の下方にはキャプスタン8を備えたハウジ
ング12が設けられている。種線7は、ハウジング12
の入口部に配設された皮剥ぎダイ6によりその表面層が
除去された後、キャプスタン8に巻取られ、このキャプ
スタン8から種線挿入部2を通り、るつぼ1内に入るよ
うになっている。るつぼ1内では、種線7の周囲に溶融
銅が付着し、銅被覆線9が形成される。
The crucible 1 is made of a refractory material such as graphite, and a seed wire insertion portion 2 through which a seed wire 7 is inserted is provided at the bottom of the crucible 1. Further, the molten copper 5 is supplied to the crucible 1 from the melting furnace 3 through the molten copper supply port 4. Further, below the crucible 1, a housing 12 having a capstan 8 is provided. Seed line 7 is housing 12
After the surface layer has been removed by the peeling die 6 arranged at the entrance of the device, the film is wound on the capstan 8 and passes through the seed wire insertion part 2 from the capstan 8 to enter the crucible 1. Has become. In the crucible 1, molten copper is attached around the seed wire 7 to form a copper-coated wire 9.

【0004】るつぼ1の上方には冷却塔10がるつぼ1
に連結して設けられている。るつぼ1から引き上げられ
た銅被覆線9は、この冷却塔10において水冷され所定
の温度にまで降温される。そして、この冷却塔10から
出た銅被覆線9は、熱間圧延機(図示せず)により連続
的に圧延され、所定の直径に仕上げられる。
Above the crucible 1, a cooling tower 10 is provided.
It is provided by connecting to. The copper-coated wire 9 pulled up from the crucible 1 is water-cooled in the cooling tower 10 and cooled to a predetermined temperature. Then, the copper-coated wire 9 coming out of the cooling tower 10 is continuously rolled by a hot rolling mill (not shown) and finished to have a predetermined diameter.

【0005】ところで、特開昭39-18204号には、皮剥ぎ
ダイ6で表面層が除去された種線7の表面を清浄に保
ち、銅被覆線9の表面にふくれ及びピンホール等の欠陥
が発生することを防止するために、ハウジング12に設
けられた排気口13に真空ポンプを接続し、ハウジング
12内を真空雰囲気に保持して銅被覆線を製造する技術
が開示されている。また、特開昭60-184461号には、真
空ポンプ等の設備コスト及びメンテナンスコストを低減
するために、ハウジング12内を大気圧以上の圧力の不
活性ガス又は弱還元性ガス雰囲気とすることが開示され
ている。更に、高温に曝され且つ種線7が摺動する種線
挿入部2には、耐熱性及び耐磨耗性が優れていることか
ら一般的にMo基合金等からなるブシュ部材(ノズル)
が設けられているが、特開昭60-255255号には、特に鋼
線を種線とした場合に、種線7の摺動によりブシュ部材
から発生する微細な破片が種線と銅被覆層との間に混入
して伸線加工時における断線及び伸線工程の効率が低下
の原因となることを防止するために、前記ブシュ部材と
して、ジルコニア系セラミックス、炭化珪素系セラミッ
クス又は窒化珪素系セラミックスを主成分とするセラミ
ックス材料により形成することが開示されている。
By the way, in JP-A-39-18204, the surface of the seed wire 7 whose surface layer has been removed by the skinning die 6 is kept clean, and the surface of the copper-coated wire 9 has defects such as blisters and pinholes. In order to prevent the occurrence of the above, a technique is disclosed in which a vacuum pump is connected to the exhaust port 13 provided in the housing 12 and the inside of the housing 12 is maintained in a vacuum atmosphere to manufacture a copper-coated wire. Further, in JP-A-60-184461, in order to reduce the equipment cost and maintenance cost of a vacuum pump or the like, the inside of the housing 12 is made to be an inert gas atmosphere having a pressure higher than atmospheric pressure or a weak reducing gas atmosphere. It is disclosed. Furthermore, since the seed wire insertion portion 2 which is exposed to high temperature and on which the seed wire 7 slides has excellent heat resistance and wear resistance, it is generally a bush member (nozzle) made of a Mo-based alloy or the like.
JP-A-60-255255 discloses that, when a steel wire is used as the seed wire, fine debris generated from the bushing member due to sliding of the seed wire 7 causes the seed wire and the copper coating layer. And zirconia-based ceramics, silicon carbide-based ceramics, or silicon nitride-based ceramics as the bushing member in order to prevent disconnection during wire drawing and deterioration of the efficiency of the wire drawing process. It is disclosed that it is formed of a ceramic material containing as a main component.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た方法を組み合わせて銅被覆鋼線を製造しようとする
と、以下に示す問題点がある。
However, when an attempt is made to manufacture a copper-coated steel wire by combining the above-mentioned methods, there are the following problems.

【0007】図2はるつぼの種線挿入部を示す断面図で
ある。るつぼ本体1aの底部には種線挿通孔を有するノ
ズル21が取り付けられている。種線挿通孔は、その下
部部分が種線7を案内するために下方に広がった円錐状
のテーパー部21aとなっており、上部部分が円筒状の
空間である等径直線部21bとなっている。この等径直
線部21bは、通常、その孔径が種線7の直径よりも0.
50mm程度大きく設定されており、長さ(上下方向の長
さ)が約20mmに設定されている。
FIG. 2 is a sectional view showing the seed line insertion portion of the crucible. A nozzle 21 having a seed line insertion hole is attached to the bottom of the crucible body 1a. The lower portion of the seed wire insertion hole is a conical taper portion 21a that spreads downward to guide the seed wire 7, and the upper portion thereof is a constant-diameter linear portion 21b that is a cylindrical space. There is. This equal-diameter straight line portion 21b usually has a hole diameter smaller than the diameter of the seed wire 7.
The length is set to about 50 mm, and the length (vertical length) is set to about 20 mm.

【0008】従来のディップフォーミング法において銅
被覆鋼線を製造する場合に、図1に示すハウジング12
内を真空とすると、るつぼ底部の溶融銅には、るつぼ内
の湯丈に相当する圧力と外気圧(1気圧)との合計の圧
力が加わる。即ち、通常、るつぼ内には約800mmの湯丈
があるから、純銅溶湯の場合、るつぼ底部の溶融銅には
圧力にして湯丈分で約0.7気圧の圧力が加わっており、
対真空にすれば約1.7気圧の圧力が加わっていることに
なる。このように、ハウジング内を真空とすると、約1.
7気圧もの大きな圧力がるつぼ底部の溶融銅に加わるた
め、ハウジング内が真空でない場合に比してノズル21
の内面と種線7との間の空隙に溶融銅が差し込む深さが
大きくなる。
When a copper-coated steel wire is manufactured by the conventional dip forming method, the housing 12 shown in FIG. 1 is used.
When the inside is evacuated, the molten copper at the bottom of the crucible receives a total pressure of the pressure corresponding to the height of the molten metal in the crucible and the external pressure (1 atm). That is, normally, since there is a bath height of about 800 mm in the crucible, in the case of pure copper molten metal, about 0.7 atmospheric pressure is applied to the molten copper at the bottom of the crucible by the pressure,
If it is made anti-vacuum, a pressure of about 1.7 atm is being applied. In this way, when the inside of the housing is evacuated, about 1.
Since a large pressure of 7 atm is applied to the molten copper at the bottom of the crucible, the nozzle 21 is
The depth at which the molten copper is inserted into the gap between the inner surface of and the seed line 7 becomes large.

【0009】ところで、銅被覆鋼線を製造するには、M
o基合金製のノズルでは鋼線の摺動によって焼き付きが
生じるため、セラミックス製ノズルを使用することが必
要である。ノズルを例えば窒化珪素系セラミックスで形
成したとすると、セラミックスはMo基合金に比して熱
伝導率が著しく低いため、るつぼ内の溶融銅が種線とノ
ズル内面との間に差し込みやすくなる。即ち、Mo基合
金からなるノズルのようにノズル自体の熱伝導率が高け
れば、ノズル内面と種線との間の空隙に差し込んだ溶融
銅はノズルの放熱冷却効果によって直ちに凝固し、凝固
した金属は種線の周囲に付着した状態で種線の上方への
走行に伴って再びるつぼ内へ戻って、その凝固金属上に
さらに溶融銅が凝固するから、ノズルのテーパー部まで
溶融銅が差し込んでしまうようなことはない。しかしな
がら、ハウジング内を真空とし且つ窒化珪素系セラミッ
クスの如く熱伝導率が低い材料をノズルに用いた場合
は、ノズルの放熱冷却効果が悪いため、ノズル内面と種
線との間に差し込んだ溶融銅がテーパー部にまで至り、
このテーパー部で溶融銅が凝固すれば、凝固金属はテー
パー部の面に沿った楔状となる。この楔状凝固金属が種
線の周囲に付着した状態で種線の走行に伴って上方に引
き上げられれば、ノズルが破壊されてしまうか又は種線
が破断してしまう虞れがあり、その結果、操業の続行が
不可能となることもある。
By the way, in order to manufacture a copper-coated steel wire, M
Since a nozzle made of o-based alloy causes seizure due to sliding of the steel wire, it is necessary to use a nozzle made of ceramics. If the nozzle is made of, for example, silicon nitride ceramics, the ceramic has a remarkably lower thermal conductivity than the Mo-based alloy, so that the molten copper in the crucible is likely to be inserted between the seed wire and the inner surface of the nozzle. That is, if the thermal conductivity of the nozzle itself is high like a nozzle made of Mo-based alloy, the molten copper inserted into the gap between the inner surface of the nozzle and the seed line is immediately solidified by the heat radiation cooling effect of the nozzle and solidified metal. Is attached to the periphery of the seed wire and returns to the inside of the crucible as it travels above the seed wire, and molten copper further solidifies on the solidified metal.Therefore, the molten copper is inserted into the tapered portion of the nozzle. There is nothing to lose. However, when the inside of the housing is evacuated and a material having a low thermal conductivity such as silicon nitride-based ceramics is used for the nozzle, the heat radiation and cooling effect of the nozzle is poor, and therefore molten copper inserted between the inner surface of the nozzle and the seed wire is used. Reaches the taper part,
When the molten copper solidifies in this tapered portion, the solidified metal becomes a wedge shape along the surface of the tapered portion. If the wedge-shaped solidified metal adheres to the periphery of the seed wire and is pulled upward as the seed wire travels, the nozzle may be broken or the seed wire may be broken, and as a result, It may be impossible to continue the operation.

【0010】また、セラミックス製のノズルを使用し且
つハウジング内を大気圧以上の不活性ガス又は弱還元性
ガス雰囲気とした場合は、前述のようにるつぼ内の溶融
銅がノズル内面と種線との間に差し込まれることがな
く、従って長時間安定した操業を行なうことができて、
ブローホール等の欠陥を生じることを回避できるもの
の、種線がるつぼ内に入った瞬間に溶融銅と種線との間
にガスの巻き込みが発生し、このガスのために熱交換さ
れにくくなって溶融銅の凝固量が減少するため、被覆層
の厚さが不均一になったり、被覆層と種線との密着性が
低下するなど品質が低下する原因になるという問題点が
ある。
Further, when a ceramic nozzle is used and the inside of the housing is set to an atmosphere of an inert gas or a weak reducing gas at atmospheric pressure or higher, the molten copper in the crucible forms the inner surface of the nozzle and the seed line as described above. It is not inserted between the two, so you can operate stably for a long time,
Although it is possible to avoid causing defects such as blowholes, gas entrapment occurs between the molten copper and the seed wire at the moment when the seed wire enters the crucible, and this gas makes it difficult for heat exchange. Since the solidification amount of the molten copper is reduced, there are problems that the thickness of the coating layer becomes non-uniform, the adhesion between the coating layer and the seed wire is reduced, and the quality is reduced.

【0011】本発明はかかる問題点に鑑みてなされたも
のであって、ノズル内面と種線との間に溶融銅が差し込
むことに起因するノズルの破壊及び種線の断線等を回避
できて、被覆層の厚さが均一であり且つ被覆層と種線と
の密着性が良好な銅被覆鋼線を製造できる銅被覆鋼線の
製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and it is possible to avoid breakage of the nozzle and disconnection of the seed line due to the insertion of molten copper between the inner surface of the nozzle and the seed line, An object of the present invention is to provide a method for producing a copper-coated steel wire, which is capable of producing a copper-coated steel wire having a uniform thickness of the coating layer and good adhesion between the coating layer and the seed wire.

【0012】[0012]

【課題を解決するための手段】本発明に係る銅被覆鋼線
の製造方法は、鋼線の表面を清浄化し、この鋼線をるつ
ぼ内に保持された溶融銅中に浸漬してその周囲に溶融銅
を付着凝固させ、その後熱間圧延加工を施して銅被覆鋼
線を得る銅被覆鋼線の製造方法において、前記鋼線の表
面を清浄化してから前記溶融銅中に浸漬するまでの間の
前記鋼線の通路雰囲気を絶対圧で160乃至600mmHgの不活
性ガス又は弱還元性ガス雰囲気とし、前記るつぼの底部
に前記鋼線が挿通する挿通孔を備えたセラミックス製ノ
ズルを配置し、前記挿通孔の等径直線部の長さを5乃至3
0mmとし、前記等径直線部の孔径を前記鋼線の直径より
も0.05乃至0.40mmだけ大きく設定したことを特徴とす
る。
A method for producing a copper-coated steel wire according to the present invention comprises: cleaning the surface of a steel wire; immersing the steel wire in molten copper held in a crucible; In the method for producing a copper-coated steel wire in which molten copper is adhered and solidified and then hot-rolled to obtain a copper-coated steel wire, from the time of cleaning the surface of the steel wire to the immersion in the molten copper The passage atmosphere of the steel wire is 160 to 600 mmHg of an inert gas or an atmosphere of weak reducing gas in absolute pressure, the ceramic nozzle having an insertion hole through which the steel wire is inserted at the bottom of the crucible is arranged, Adjust the length of the straight line of equal diameter of the insertion hole from 5 to 3
The diameter of the straight line is equal to 0 mm, and the diameter of the straight line is set to be 0.05 to 0.40 mm larger than the diameter of the steel wire.

【0013】なお、本願において銅とは、純銅及び銅合
金のことをいう。
In the present application, copper means pure copper and copper alloy.

【0014】[0014]

【作用】本願発明者等は、銅被覆鋼線を製造する際のハ
ウジング内の不活性ガス又は弱還元性ガスの圧力及びセ
ラミックス製ノズルの等径直線部の形状(孔径及び直線
長さ)と、操業の安定性、凝固量の均一性及び被覆層と
種線との密着性との関係を調べた。その結果、以下のこ
とが判明した。
The present inventors have found that the pressure of the inert gas or the weak reducing gas in the housing when manufacturing the copper-coated steel wire and the shape (hole diameter and linear length) of the equal-diameter straight line portion of the ceramic nozzle. , The stability of the operation, the uniformity of the solidification amount, and the relationship between the adhesion between the coating layer and the seed wire were investigated. As a result, the following was revealed.

【0015】即ち、ハウジング内の圧力が絶対圧にして
160mmHg未満では、るつぼ底部に配設されるノズルの挿
入孔の等径直線部における孔径を種線の直径よりも0.05
mmだけ大きくし、この等径直線部の長さを5乃至30mmと
しても、ノズルへの湯(溶融銅)の差し込みが認められ
た。また、差し込みを回避せんとして前記等径直線部の
長さを35mmにしたり、又は孔径を種線径+0.04mmとした
場合は、鋼線が等径直線部を通過するときに鋼線の曲が
りによる抵抗のためノズルの欠損に至ることがあった。
そして、ハウジング内の圧力を絶対圧にして160mmHg以
上とし、且つ、等径直線部の孔径を種線の直径より0.05
乃至0.40mmだけ大きくし、等径直線部の長さを5乃至30m
mとすることによって、ノズル欠損を回避できると共に
種線挿入部への湯の差し込みが実質的に無視できるよう
になり、被覆層厚さの均一性及び鋼線と被覆層との密着
性が良好な銅被覆鋼線を製造できることが判明した。
That is, the pressure inside the housing is made absolute.
If it is less than 160 mmHg, the hole diameter in the equal-diameter straight line portion of the insertion hole of the nozzle arranged at the bottom of the crucible is 0.05 than the diameter of the seed wire.
Even if the length of the straight line having the same diameter is 5 to 30 mm, the hot water (molten copper) can be inserted into the nozzle. If the length of the equal-diameter linear portion is set to 35 mm or the hole diameter is set to the seed wire diameter +0.04 mm to prevent insertion, the steel wire bends when passing through the equal-diameter linear portion. Due to the resistance of the nozzle, the nozzle may be damaged.
The pressure inside the housing is 160 mmHg or more in absolute pressure, and the hole diameter of the equal-diameter straight line portion is 0.05 mm or less than the diameter of the seed wire.
Up to 0.40 mm and the length of the straight part of equal diameter is 5 to 30 m
By setting m, it is possible to avoid nozzle deficiency and practically ignore the insertion of hot water into the seed wire insertion part, resulting in good uniformity of coating layer thickness and good adhesion between steel wire and coating layer. It was found that various copper-coated steel wires can be manufactured.

【0016】一方、更にハウジング内の圧力を上昇させ
て銅被覆鋼線の製造を試みたところ、ハウジング内の絶
対圧力が600mmHgを超え、620mmHg付近になると、製造さ
れた銅被覆鋼線の鋼線と銅被覆層の密着性に不具合が生
じた。つまり、クリッパーで切断したときの端面で鋼線
と銅被覆層との剥離を生じ始めることが判明した。更
に、ハウジング内の絶対圧力が760mmHgを超えた場合
(即ち、大気圧を超えた場合)には、被覆層の厚さが不
均一な部分が生じることが判明した。この密着性不良及
び被覆層厚さが不均一になるメカニズムは、種線である
鋼線の表面の微小な凹凸(キャプスタンでの線同士のこ
すれによる凹凸及びピンチローラでの圧痕等)に巻き込
まれたガスが、溶融銅中を通過する際に断熱材として作
用して種線の周囲に付着した溶融銅の凝固を遅らせ、鋼
線と溶融銅との間で十分に熱交換されない部分を生じ、
その部分は銅被覆層が薄くなるか又は密着性が悪くなる
ためと考えられる。本発明はこのような実験結果に基づ
いてなされたものである。
On the other hand, when the pressure in the housing was further increased and an attempt was made to produce a copper-coated steel wire, when the absolute pressure in the housing exceeded 600 mmHg and reached around 620 mmHg, the steel wire of the copper-coated steel wire produced There was a problem in the adhesiveness between the copper coating layer and. That is, it was found that peeling between the steel wire and the copper coating layer started to occur on the end surface when cut with the clipper. Further, it has been found that when the absolute pressure in the housing exceeds 760 mmHg (that is, when the atmospheric pressure is exceeded), the coating layer has a non-uniform thickness. The mechanism of poor adhesion and uneven coating layer thickness is involved in minute irregularities on the surface of the steel wire, which is the seed wire (unevenness due to rubbing between wires with a capstan, indentation with pinch rollers, etc.). The generated gas acts as a heat insulating material when passing through the molten copper and delays the solidification of the molten copper adhering to the periphery of the seed wire, resulting in a portion where heat is not sufficiently exchanged between the steel wire and the molten copper. ,
It is considered that the copper coating layer becomes thin or the adhesion is deteriorated at that portion. The present invention has been made based on such experimental results.

【0017】即ち、本発明においては、鋼線(種線)の
表面を清浄化してからこの鋼線を溶融銅中に浸漬するま
での間の前記鋼線の通路雰囲気を絶対圧で160乃至600mm
Hgの範囲とし、且つ、るつぼ底部に配設するノズルの挿
通孔の等径直線部の孔径を前記鋼線の直径よりも0.05乃
至0.40mmだけ大きく設定し、この等径直線部の長さを5
乃至30mmとすることによって、ノズルの内面と鋼線との
間に溶融銅が差し込むことを防止する。これによって、
挿入孔下部(テーパー部)で溶融銅が凝固することによ
るノズルの破壊及び種線としての鋼線の断線を有効に防
止することが可能となり、更には、鋼線と銅被覆層との
密着性不良及び銅被覆層厚さが不均一になることを防止
できる。
That is, in the present invention, the passage atmosphere of the steel wire (seed wire) between the cleaning of the surface and the immersion of the steel wire in the molten copper is 160 to 600 mm in absolute pressure.
In the range of Hg, and, set the hole diameter of the equal-diameter straight line portion of the insertion hole of the nozzle arranged at the bottom of the crucible by 0.05 to 0.40 mm larger than the diameter of the steel wire, and set the length of this equal-diameter straight line portion. Five
The thickness of 30 to 30 mm prevents molten copper from being inserted between the inner surface of the nozzle and the steel wire. by this,
It is possible to effectively prevent the destruction of the nozzle and the breakage of the steel wire as the seed wire due to the solidification of molten copper in the lower part of the insertion hole (tapered part), and further, the adhesion between the steel wire and the copper coating layer. It is possible to prevent defects and uneven thickness of the copper coating layer.

【0018】溶融銅の差し込みを回避することだけを考
慮すれば、前記鋼線の通路雰囲気のガスの種類は任意で
あるが、鋼線の酸化防止の観点から、前記鋼線の通路雰
囲気は不活性ガス又は弱還元性ガス雰囲気とすることが
必要である。また、鋼線の酸化防止は、鋼線が皮剥ぎ等
によって清浄化された段階から行なう必要がある。そこ
で、本発明では、鋼線の表面を清浄化してから種線挿入
部までの間の雰囲気を前述のような所定の圧力の不活性
ガス又は弱還元性ガス雰囲気とする。
Although only the kind of gas in the passage atmosphere of the steel wire is arbitrary considering only avoiding the insertion of molten copper, the passage atmosphere of the steel wire is not restricted from the viewpoint of preventing oxidation of the steel wire. It is necessary to use an atmosphere of active gas or weakly reducing gas. Further, it is necessary to prevent the oxidation of the steel wire from the stage where the steel wire has been cleaned by peeling or the like. Therefore, in the present invention, the atmosphere from the cleaning of the surface of the steel wire to the seed wire insertion portion is set to the inert gas atmosphere or the weak reducing gas atmosphere having the predetermined pressure as described above.

【0019】なお、ノズルの材質としては、溶融銅に対
する耐溶損性及び耐熱衝撃性が優れていることから、炭
化珪素系セラミックス、窒化珪素系セラミックス及びジ
ルコニア系セラミックスからなる群から選択された少な
くとも1種のセラミックスを主成分とするセラミックス
材料を使用することが好ましい。
The nozzle material is at least one selected from the group consisting of silicon carbide ceramics, silicon nitride ceramics, and zirconia ceramics because it has excellent resistance to molten copper and thermal shock resistance. It is preferable to use a ceramic material whose main component is a kind of ceramic.

【0020】[0020]

【実施例】次に、本発明の実施例についてその比較例と
比較して説明する。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples.

【0021】図1,2に示す装置を使用して、以下に示
す条件で銅被覆鋼線の製造を試みた。
An attempt was made to manufacture a copper-coated steel wire under the following conditions using the apparatus shown in FIGS.

【0022】実施例1 0.15重量%のCを含有する直径が12.70mmの鋼線を種線
とし、等径直線部の孔径が12.75mm(鋼線径+0.05m
m)、長さが30mmの窒化珪素系セラミックス製ノズルを
用い、ハウジング内をN2 ガスで満たすと共に、このハ
ウジング内の圧力を絶対圧で160mmHgとし、るつぼ内に
は湯丈が800mmとなるように純銅溶湯を供給しつつ、鋼
線を連続走行させて、銅被覆鋼線を製造した。その結
果、ノズル欠損も溶融銅の差し込みも生じず、10時間
を超える長時間に亘って安定した操業を行うことができ
た。また、製造後の銅被覆鋼線の被覆層の厚さの均一性
は良好であり、鋼線と銅被覆層との密着性も良好であっ
た。
Example 1 A steel wire having a diameter of 12.70 mm containing 0.15% by weight of C was used as a seed wire, and a hole diameter of a straight line having an equal diameter was 12.75 mm (steel wire diameter +0.05 m).
m), using a nozzle made of silicon nitride ceramics with a length of 30 mm, the inside of the housing is filled with N 2 gas, the absolute pressure of the housing is 160 mmHg, and the height of the molten metal in the crucible is 800 mm. While supplying the pure copper molten metal to the steel wire, the steel wire was continuously run to manufacture a copper-coated steel wire. As a result, no nozzle defect or insertion of molten copper occurred, and stable operation could be performed for a long time of more than 10 hours. Further, the uniformity of the coating layer of the copper-coated steel wire after production was good, and the adhesion between the steel wire and the copper coating layer was also good.

【0023】実施例2 ノズルの等径直線部の孔径を13.10mm(鋼線径+0.40m
m)とし、長さを5mmとした以外は実施例1と同様にして
操業を行った。その結果、実施例1と同様に、10時間
を超える長時間に亘って安定した操業を行うことができ
た。また、製造後の銅被覆鋼線の被覆層の厚さの均一性
は良好であり、鋼線と銅被覆層との密着性も良好であっ
た。
Example 2 The hole diameter of the straight part of equal diameter of the nozzle was 13.10 mm (steel wire diameter +0.40 m).
m) and the operation was carried out in the same manner as in Example 1 except that the length was 5 mm. As a result, similar to Example 1, stable operation could be performed for a long time exceeding 10 hours. Further, the uniformity of the coating layer of the copper-coated steel wire after production was good, and the adhesion between the steel wire and the copper coating layer was also good.

【0024】実施例3 ハウジング内の圧力を絶対圧で600mmHgとした以外は実
施例2と同一の条件で操業を行った。その結果、実施例
1,2と同様に、10時間を超える長時間に亘って安定
した操業を行うことができた。また、製造後の銅被覆鋼
線の被覆層の厚さの均一性は良好であり、鋼線と銅被覆
層との密着性も良好であった。
Example 3 The operation was performed under the same conditions as in Example 2 except that the pressure inside the housing was 600 mmHg in absolute pressure. As a result, similar to Examples 1 and 2, stable operation could be performed for a long time exceeding 10 hours. Further, the uniformity of the coating layer of the copper-coated steel wire after production was good, and the adhesion between the steel wire and the copper coating layer was also good.

【0025】比較例1 ノズルの等径直線部の孔径を12.75mm(鋼線径+0.05m
m)とし、長さを5mmとし、ハウジング内の圧力を絶対圧
で150mmHgとした以外は実施例1と同一条件で操業を試
みた。その結果、るつぼ予熱の段階では鋼線走行による
ノズル欠損を生じなかったものの、出湯時に種線挿入孔
への湯の差し込みにより、ノズルのテーパー部で溶融銅
がテーパー部の面に沿って楔状に凝固し、この楔状凝固
部分が種線周囲に付着した状態で種線の走行に伴って上
方へ引き上げられて、ノズルの破壊及び種線の破断が発
生し、操業の続行が不可能となった。
Comparative Example 1 The diameter of the straight line portion of the nozzle is 12.75 mm (steel wire diameter +0.05 m).
m), the length was 5 mm, and the pressure inside the housing was 150 mmHg in absolute pressure, and an operation was attempted under the same conditions as in Example 1. As a result, although the nozzle was not damaged by running the steel wire during the preheating of the crucible, the molten copper was wedged along the surface of the taper part at the taper part of the nozzle due to the insertion of the hot water into the seed wire insertion hole during tapping. It solidifies, and the wedge-shaped solidified portion adheres to the periphery of the seed line and is pulled up as the seed line travels, causing breakage of the nozzle and breakage of the seed line, making it impossible to continue operation. .

【0026】比較例2 ノズルの等径直線部の長さを30mmとした以外は比較例1
と同一の条件で操業を試みた。その結果、比較例1と同
様に、ノズルの欠損は生じないものの、湯の差し込みに
起因するノズルの破壊及び種線の破断が発生した。
Comparative Example 2 Comparative Example 1 except that the length of the straight line of equal diameter of the nozzle was 30 mm.
Attempted to operate under the same conditions as. As a result, similar to Comparative Example 1, although the nozzle was not damaged, the nozzle and the seed line were broken due to the insertion of the hot water.

【0027】比較例3 ノズルの等径直線部の長さを35mmとした以外は比較例1
と同一の条件で操業を試みた。その結果、るつぼ予熱の
段階で鋼線走行によってノズル欠損が生じ、操業するに
至らなかった。
Comparative Example 3 Comparative Example 1 except that the length of the straight line of equal diameter of the nozzle was 35 mm.
Attempted to operate under the same conditions as. As a result, nozzle failure occurred due to running of the steel wire during the preheating of the crucible, and the operation could not be achieved.

【0028】比較例4 ノズルの等径直線部の孔径を12.74mm(鋼線径+0.04m
m)とし、長さを30mmとした以外は比較例1と同一の条
件で操業を試みた。その結果、るつぼ予熱の段階で鋼線
走行によってノズル欠損が生じ、操業するに至らなかっ
た。
Comparative Example 4 The diameter of the straight line portion of the nozzle is 12.74 mm (steel wire diameter +0.04 m).
m) and an operation was attempted under the same conditions as in Comparative Example 1 except that the length was 30 mm. As a result, nozzle failure occurred due to running of the steel wire during the preheating of the crucible, and the operation could not be achieved.

【0029】比較例5 ノズルの等径直線部の長さを4mmとした以外は実施例1
と同一の条件で操業を試みた。その結果、比較例1と同
様に、ノズルの欠損は生じないものの、湯の差し込みに
起因するノズルの破壊及び種線の破断が発生した。
Comparative Example 5 Example 1 except that the length of the equal-diameter straight line portion of the nozzle was 4 mm.
Attempted to operate under the same conditions as. As a result, similar to Comparative Example 1, although the nozzle was not damaged, the nozzle and the seed line were broken due to the insertion of the hot water.

【0030】比較例6 ノズルの等径直線部の孔径を13.15mm(種線径+0.45m
m)とした以外は実施例2と同一の条件で操業を試み
た。その結果、比較例1と同様に、ノズルの欠損は生じ
ないものの、湯の差し込みに起因するノズルの破壊及び
種線の破断が発生した。
Comparative Example 6 The hole diameter of the straight line portion of the nozzle having the same diameter is 13.15 mm (seed wire diameter +0.45 m).
An operation was attempted under the same conditions as in Example 2 except that m) was used. As a result, similar to Comparative Example 1, although the nozzle was not damaged, the nozzle and the seed line were broken due to the insertion of the hot water.

【0031】比較例7 ハウジング内の圧力を絶対圧で600mmHgとし、ノズルの
等径直線部の孔径を13.15mm(種線径+0.45mm)とした
以外は実施例1と同一の条件で操業を試みた。その結
果、比較例1と同様に、ノズルの欠損は生じないもの
の、湯の差し込みに起因するノズルの破壊及び種線の破
断が発生した。
Comparative Example 7 The operation was carried out under the same conditions as in Example 1 except that the pressure in the housing was 600 mmHg in absolute pressure, and the hole diameter of the straight line portion of the equal diameter of the nozzle was 13.15 mm (seed wire diameter +0.45 mm). I tried. As a result, similar to Comparative Example 1, although the nozzle was not damaged, the nozzle and the seed line were broken due to the insertion of the hot water.

【0032】比較例8 ハウジング内の圧力を絶対圧で620mmHgとした以外は実
施例1と同一の条件で操業を行なった。その結果、出湯
時の差し込みも生じず、安定して操業できて、銅被覆層
の均一性も良好であった。しかし、製造後の銅被覆鋼線
における鋼線と銅被覆層との密着性は、クリッパーでの
切断面から芳しくないことが判明した。
Comparative Example 8 Operation was carried out under the same conditions as in Example 1 except that the pressure inside the housing was 620 mmHg in absolute pressure. As a result, insertion was not caused when tapping hot water, stable operation was possible, and the uniformity of the copper coating layer was good. However, it was found that the adhesion between the steel wire and the copper coating layer in the copper-coated steel wire after production was not good from the cut surface with the clipper.

【0033】比較例9 ハウジング内の圧力を絶対圧で762mmHgとした以外は実
施例1と同一の条件で操業を行なった。その結果、出湯
前のるつぼ予熱時の種線走行時にはノズル欠損及び出湯
時の湯の差し込みも生じず、安定して操業できた。しか
し、銅被覆層厚さはところどころにおいて不均一となっ
ており、当然ながらそのような箇所においては、鋼線と
銅被覆層との密着性は悪かった。
Comparative Example 9 Operation was carried out under the same conditions as in Example 1 except that the pressure inside the housing was 762 mmHg in absolute pressure. As a result, the nozzle was not damaged and the hot water was not inserted at the time of running the seed wire during the preheating of the crucible before the hot water was discharged, and stable operation was possible. However, the thickness of the copper coating layer was not uniform in some places, and naturally, in such a place, the adhesion between the steel wire and the copper coating layer was poor.

【0034】これらの実施例及び比較例におけるハウジ
ング内の絶対圧力、ノズルの等径直線部の孔径及び長さ
を下記表1に、操業の安定性及び品質を下記表2にまと
めて示す。但し、表1のノズル孔径の欄は、種線の直径
との差で示した。また、表2のノズル欠損の欄は、ノズ
ル欠損がない場合を○、ノズル欠損が発生した場合を×
で示した。また、湯差し込みの欄は、溶融銅の差し込み
によりノズルの破壊又は種線の破断が発生した場合を
×、いずれも発生しない場合を○で示した。更に被覆均
一性の欄は、銅被覆層の厚さが均一である場合を○、不
均一である場合を×で示した。更に、密着性の欄は、銅
被覆層と種線との密着性が良好の場合を○、密着性が十
分でない場合を×で示した。
The absolute pressure inside the housing, the hole diameter and the length of the straight part of the equal diameter of the nozzle in these Examples and Comparative Examples are summarized in Table 1 below, and the stability and quality of operation are summarized in Table 2 below. However, the column of nozzle hole diameter in Table 1 is shown by the difference from the diameter of the seed line. In addition, in the nozzle defect column of Table 2, the case where there is no nozzle defect is ○, and the case where nozzle defect occurs is ×.
Indicated by. In addition, in the column of hot water insertion, x indicates that nozzle breakage or seed line breakage occurred due to insertion of molten copper, and o indicates when neither occurred. Further, in the column of coating uniformity, the case where the thickness of the copper coating layer is uniform is shown by ◯, and the case where the thickness is not uniform is shown by x. Further, in the column of adhesion, the case where the adhesion between the copper coating layer and the seed wire is good is indicated by ◯, and the case where the adhesion is not sufficient is indicated by x.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】この表1,2から、ハウジング内の圧力が
絶対圧で160乃至600mmHgであり、且つ、種線挿入部ノズ
ルの等径直線部の孔径が種線の直径よりも0.05乃至0.40
mmだけ大きく、長さが5乃至30mmの場合においてのみ、
安定した操業が行え、銅被覆層の均等性及び密着性も良
好であることがわかる。
From Tables 1 and 2, the pressure in the housing is 160 to 600 mmHg in absolute pressure, and the diameter of the straight line portion of the seed wire insertion portion nozzle is 0.05 to 0.40 than the diameter of the seed wire.
Only when mm is large and length is 5 to 30 mm,
It can be seen that stable operation can be performed and the uniformity and adhesion of the copper coating layer are good.

【0038】なお、上述の実施例では溶融金属として純
銅を使用し、種線として鋼(炭素鋼)を使用した場合に
ついて説明したが、種線がFe−Cr合金(ステンレス
鋼)である場合、又は溶融金属として銅合金を用いた場
合においても、同様の効果が得られることは勿論であ
る。また、ノズルの材質としては、前述の実施例では窒
化珪素系セラミックスを用いた場合について説明した
が、炭化珪素系セラミックス又はジルコニア系セラミッ
クスの場合でも同様の効果を得ることができる。更に、
上述の実施例では、いずれもハウジング内を窒素ガス雰
囲気としたが、アルゴンガス等の不活性ガス及び水素ガ
スを各1体積%、一酸化炭素を4体積%を含有し残部が
窒素ガスからなる弱還元性ガスでも同様の効果を得るこ
とができる。
In the above-mentioned embodiment, the case where pure copper is used as the molten metal and steel (carbon steel) is used as the seed wire has been explained. However, when the seed wire is Fe--Cr alloy (stainless steel), Alternatively, it is needless to say that the same effect can be obtained even when a copper alloy is used as the molten metal. Further, as the material of the nozzle, the case where the silicon nitride ceramics is used has been described in the above embodiment, but the same effect can be obtained also in the case of the silicon carbide ceramics or the zirconia ceramics. Furthermore,
In each of the above-described embodiments, the inside of the housing is made to be a nitrogen gas atmosphere, but an inert gas such as argon gas and hydrogen gas each contain 1 volume%, carbon monoxide contains 4 volume%, and the balance consists of nitrogen gas. The same effect can be obtained with a weak reducing gas.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、溶
融銅を保持するるつぼの底部に、所定の形状の等径直線
部を有するセラミックス製ノズルを配置し、鋼線の表面
を清浄化した後から溶融銅浸漬までの間の鋼線の通路雰
囲気を絶対圧で160乃至600mmHgの不活性ガス又は弱還元
性ガス雰囲気として銅被覆鋼線を製造するから、ノズル
の破壊及び種線の断線等を回避できて、被覆層の厚さが
均一であり且つ被覆層と種線との密着性が良好な銅被覆
鋼線を製造することができる。
As described above, according to the present invention, the ceramic nozzle having the equal-diameter straight line portion of a predetermined shape is arranged at the bottom of the crucible for holding the molten copper to clean the surface of the steel wire. Since the steel wire passage atmosphere between the immersion and the immersion of the molten copper is made into an atmosphere of an inert gas of 160 to 600 mmHg or an atmosphere of weak reducing gas at absolute pressure, the copper-coated steel wire is manufactured. It is possible to produce a copper-coated steel wire having a uniform coating layer thickness and good adhesion between the coating layer and the seed wire.

【図面の簡単な説明】[Brief description of drawings]

【図1】ディップフォーミング法による銅荒引線の製造
方法を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing a method for manufacturing a copper rough wire by a dip forming method.

【図2】るつぼの種線挿入部を示す断面図である。FIG. 2 is a cross-sectional view showing a seed line insertion portion of a crucible.

【符号の説明】[Explanation of symbols]

1;るつぼ 2;種線挿入部 3;溶解炉 4;溶融銅供給口 5;溶融銅 6;皮剥ぎダイ 7;種線 8;キャプスタン 9;鋼被覆線 10;冷却塔 12;ハウジング 21;ノズル 21a;テーパー部 21b;等径直線部 1; crucible 2; seed wire insertion part 3; melting furnace 4; molten copper supply port 5; molten copper 6; peeling die 7; seed wire 8; capstan 9; steel coated wire 10; cooling tower 12; housing 21; Nozzle 21a; Tapered portion 21b; Equal-diameter linear portion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼線の表面を清浄化し、この鋼線をるつ
ぼ内に保持された溶融銅中に浸漬してその周囲に溶融銅
を付着凝固させ、その後熱間圧延加工を施して銅被覆鋼
線を得る銅被覆鋼線の製造方法において、前記鋼線の表
面を清浄化してから前記溶融銅中に浸漬するまでの間の
前記鋼線の通路雰囲気を絶対圧で160乃至600mmHgの不活
性ガス又は弱還元性ガス雰囲気とし、前記るつぼの底部
に前記鋼線が挿通する挿通孔を備えたセラミックス製ノ
ズルを配置し、前記挿通孔の等径直線部の長さを5乃至3
0mmとし、前記等径直線部の孔径を前記鋼線の直径より
も0.05乃至0.40mmだけ大きく設定したことを特徴とする
銅被覆鋼線の製造方法。
1. A surface of a steel wire is cleaned, the steel wire is immersed in molten copper held in a crucible, the molten copper is adhered and solidified around the molten copper, and then hot rolling is applied to the copper coating. In the method for producing a copper-coated steel wire for obtaining a steel wire, the passage atmosphere of the steel wire between the cleaning of the surface of the steel wire and the immersion in the molten copper is 160 to 600 mmHg of inertness in absolute pressure. A gas or weak reducing gas atmosphere, a ceramic nozzle provided with an insertion hole through which the steel wire is inserted at the bottom of the crucible, and the length of the equal-diameter straight line portion of the insertion hole is 5 to 3
The method for producing a copper-coated steel wire is characterized in that the hole diameter of the straight line of equal diameter is set to 0 mm and is set to be larger than the diameter of the steel wire by 0.05 to 0.40 mm.
【請求項2】 前記ノズルは、炭化珪素系セラミック
ス、窒化珪素系セラミックス及びジルコニア系セラミッ
クスからなる群から選択された少なくとも1種のセラミ
ックスを主成分とするセラミックス材料からなることを
特徴とする請求項1に記載の銅被覆鋼線の製造方法。
2. The nozzle is made of a ceramic material containing at least one ceramic selected from the group consisting of silicon carbide ceramics, silicon nitride ceramics and zirconia ceramics as a main component. 1. The method for producing a copper-coated steel wire according to 1.
JP24163992A 1992-09-10 1992-09-10 Production of copper-coated steel wire Pending JPH0687066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24163992A JPH0687066A (en) 1992-09-10 1992-09-10 Production of copper-coated steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24163992A JPH0687066A (en) 1992-09-10 1992-09-10 Production of copper-coated steel wire

Publications (1)

Publication Number Publication Date
JPH0687066A true JPH0687066A (en) 1994-03-29

Family

ID=17077311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24163992A Pending JPH0687066A (en) 1992-09-10 1992-09-10 Production of copper-coated steel wire

Country Status (1)

Country Link
JP (1) JPH0687066A (en)

Similar Documents

Publication Publication Date Title
CA2267621C (en) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire
EP2067560B1 (en) System for manufacturing a base wire for an electrode wire for wire electrodischarge machining
CA2127859C (en) Nozzle for continuous caster
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JP2005105326A (en) Method and apparatus for manufacturing coated metal wire
RU2117547C1 (en) Method of direct casting of molten metal into continuous strip and device for its realization
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JPH0687066A (en) Production of copper-coated steel wire
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
JPH0255642A (en) Method and device for continuously casting strip steel
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
US5435375A (en) Titanium composite casting nozzle
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JP2701105B2 (en) Manufacturing method and apparatus for hot-dip wire
CN105328167A (en) DC casting device and method for producing steel/aluminum composite pipe
JP3500894B2 (en) Continuous casting of steel
JPH01170553A (en) Device for manufacturing rapid cooling metal thin strip
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JP4207562B2 (en) Continuous casting method and continuous cast slab manufactured by the method
JP3022277B2 (en) Pouring nozzle for belt wheel type continuous casting machine
JPH10226864A (en) Production of hot dip galvanized steel sheet
JP4462052B2 (en) Continuous casting mold and steel continuous casting method
JP2613309B2 (en) Manufacturing method of hot-dip coated steel sheet
JPS60184461A (en) Dip forming method
KR100489238B1 (en) Method for Manufacturing Strip Using Twin Roll Strip Caster