[go: up one dir, main page]

JPH0686996B2 - Heat exchanger with fins - Google Patents

Heat exchanger with fins

Info

Publication number
JPH0686996B2
JPH0686996B2 JP61206371A JP20637186A JPH0686996B2 JP H0686996 B2 JPH0686996 B2 JP H0686996B2 JP 61206371 A JP61206371 A JP 61206371A JP 20637186 A JP20637186 A JP 20637186A JP H0686996 B2 JPH0686996 B2 JP H0686996B2
Authority
JP
Japan
Prior art keywords
cut
heat transfer
fin
raised
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61206371A
Other languages
Japanese (ja)
Other versions
JPS6361894A (en
Inventor
繁男 青山
真嗣 藤本
薫 加藤
智朗 安藤
尚夫 楠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61206371A priority Critical patent/JPH0686996B2/en
Publication of JPS6361894A publication Critical patent/JPS6361894A/en
Publication of JPH0686996B2 publication Critical patent/JPH0686996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調,冷凍等に使用され、冷媒と空気等の流
体間で熱の授受を行う熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used for air conditioning, refrigeration, etc., for exchanging heat between a refrigerant and a fluid such as air.

従来の技術 従来、この種の熱交換器は、第8図に示したように、U
ベンドにより互いに接続された銅管1とアルミ等を材料
とするフィン2よりなり、銅管1の内部を流れる冷媒と
フィン2間を流れる空気3が熱交換を行う構成を有して
いた。この様な熱交換器は近年、小型,高性能化が要求
されているが、騒音等の観点からフィン間の空気流速は
低く抑えられているため、管内側の熱抵抗に比して、空
気側の熱抵抗は高い。そこで現在は空気側の伝熱管面積
を拡大すること管内側の熱抵抗との差を減少させる様に
工夫している。しかしながら、伝熱面を拡大することに
は物理的な限界が存在するとともに、経済性,省スペー
ス性等の点から問題もあり、空気側の熱抵抗を低下させ
ることが、この様な熱交換器に於て重要な課題である。
2. Description of the Related Art Conventionally, as shown in FIG.
The copper pipe 1 and the fins 2 made of aluminum or the like are connected to each other by a bend, and the refrigerant flowing inside the copper pipe 1 and the air 3 flowing between the fins 2 exchange heat. In recent years, such heat exchangers are required to be smaller and have higher performance, but the air flow velocity between fins is kept low from the viewpoint of noise, etc. Side thermal resistance is high. Therefore, we are currently working to expand the area of the heat transfer tube on the air side to reduce the difference with the heat resistance inside the tube. However, there is a physical limit to the expansion of the heat transfer surface, and there is a problem in terms of economical efficiency and space saving, and reducing the heat resistance on the air side is such a heat exchange. This is an important issue for vessels.

第9図及び第10図は、この様な熱交換器の従来例を示し
たものである。第9図は平面図、第10図はC−C面フィ
ン断面図である。銅管4の内部はフロン等の冷媒が循環
しており、その熱は銅管4からフィンカラー5へ伝わ
り、フィン6及び切り起し7へ伝わる。一方矢印8方向
からファン等により送られる空気はフィン6間を通過す
るが、その際、温度の異なったフィン面と熱の授受を行
う。この作用によって冷媒と空気の熱交換が連続的に行
なわれる。
9 and 10 show a conventional example of such a heat exchanger. FIG. 9 is a plan view, and FIG. 10 is a sectional view of a C-C plane fin. Refrigerant such as CFCs circulates inside the copper tube 4, and the heat is transferred from the copper tube 4 to the fin collar 5 and then to the fins 6 and the cut and raised portions 7. On the other hand, the air sent by the fan or the like from the direction of the arrow 8 passes between the fins 6, and at that time, heat is transferred to and from the fin surfaces having different temperatures. By this action, heat exchange between the refrigerant and air is continuously performed.

発明が解決しようとする問題点 前述の従来例は、フィン6に切り起し7を有するスリッ
トフィンと称せられるもので、フィン表面に加工のない
フラットフィンと比較すると表面の熱抵抗を40〜50%低
下させている。しかしながら、この様に切り起しをフィ
ン面に設けた場合、平板理論を適用すると層流の助走区
間の熱伝達率が非常に高いために、現在のこの様なスリ
ットフィンにより達成しているフィン表面の熱抵抗値よ
り50%以上低い熱抵抗値を実現しうるはずである。この
理論値を達成し得ない理由に様々考えられるが、それら
のうちで重要な理由として掲げられるものは、 切り
起し7を通過する空気流の通風抵抗が高く、切り起し7
以外の部分通過する空気量が増加するので切り起し部で
の熱的性能が十分生かされない。
Problems to be Solved by the Invention The above-described conventional example is called a slit fin having a cut-and-raised fin 7 and has a surface thermal resistance of 40 to 50 as compared with a flat fin having no fin surface. % Has been reduced. However, when the cut-and-raised parts are provided on the fin surface in this manner, the application of the flat plate theory causes the heat transfer coefficient in the run-up section of the laminar flow to be very high. It should be possible to achieve a thermal resistance value that is 50% or more lower than the thermal resistance value of the surface. There are various reasons why this theoretical value cannot be achieved. Among them, the most important reason is that the ventilation resistance of the air flow passing through the cut-and-raise 7 is high and the cut-and-raised 7
Since the amount of air passing through other parts increases, the thermal performance at the cut-and-raised part is not fully utilized.

すなわち、フィン6に平行な面における流速分布、及
び、フィン6′に垂直な面における流速分布は、第9図
及び、第10図に示す様に、伝熱管4の周り、及び、切り
起し7とその上側にあるフィン6との隙間の流速が速
く、切り起し7の境界層前縁効果が十分に生かされな
い。 止水域が広く存在するため有効な伝熱面積が減
少する。特に空気流8の上流側にある銅管4後流の止水
域は、その後部の切り起し7を覆うため、これら切り起
し7の熱抵抗が増大し、フィンの平均熱抵抗を増大させ
る。 銅管4がちどり状に配置され、銅管4の前方又
は後方に切り起し7が設けられるため銅管4からの熱流
を妨げフィン効率が低下する。 空気流8の上流側の
切り起し7の先端より発生する温度境界層の中に、下流
側の切り起し7が覆われてしまうため、下流側に位置す
る切り起し7の境界層前縁効果がほとんど生かされな
い。
That is, the flow velocity distribution in the plane parallel to the fins 6 and the flow velocity distribution in the plane perpendicular to the fins 6 ′ are, as shown in FIGS. 9 and 10, around the heat transfer tube 4 and cut and raised. The flow velocity in the gap between 7 and the fin 6 on the upper side is high, and the leading edge effect of the boundary layer of the cut-and-raised 7 is not sufficiently utilized. The effective heat transfer area decreases due to the wide existence of the still water area. In particular, the water-stopping region of the wake of the copper tube 4 on the upstream side of the air flow 8 covers the cut-and-raised parts 7 at the rear part thereof, so that the thermal resistance of these cut-and-raised parts 7 increases and the average thermal resistance of the fins increases. . Since the copper pipes 4 are arranged in a striped pattern and the cut-and-raised parts 7 are provided in front of or behind the copper pipe 4, heat flow from the copper pipe 4 is impeded and fin efficiency is reduced. In front of the boundary layer of the cut-and-raised portion 7 located on the downstream side, the downstream-side cut-and-raised portion 7 is covered in the temperature boundary layer generated from the tip of the cut-and-raised portion 7 on the upstream side of the air flow 8. The edge effect is hardly used.

そこで本発明は、 伝熱管間及び、切り起し間の流れ
を均一化し、切り起し部の通過空気量を低下させないよ
うにし、平行平板間流れを実現せして理論値に近い熱伝
達率を得ることができる。 空気流下流側の切り起し
が、上流側の切り起しの温度境界層に覆われないように
し、切り起しによる境界層前縁効果を十分に生かすこと
ができる。 止水域へ流体の付着現象によって流れを
誘導する。 伝熱管間の熱流を妨げない様に伝熱管及
び伝熱面構成を採用することで、前記の問題点を解決
し、フィンの熱抵抗を低下させ、コンパクトかつ高性能
なフィン付熱交換器を提案することを目的とするもので
ある。
Therefore, the present invention makes the flows between the heat transfer tubes and between the cut-and-raised parts uniform, does not reduce the amount of air passing through the cut-and-raised parts, and realizes the flow between parallel plates to achieve a heat transfer coefficient close to the theoretical value. Can be obtained. The cut-raising on the downstream side of the air flow is prevented from being covered by the temperature boundary layer of the cut-raising on the upstream side, and the boundary layer leading edge effect due to the cut-raising can be fully utilized. Flow is induced by the phenomenon of fluid adhesion to the still water area. By adopting a heat transfer tube and heat transfer surface configuration so as not to obstruct the heat flow between the heat transfer tubes, the above problems are solved, the heat resistance of the fins is reduced, and a compact and high-performance heat exchanger with fins is provided. It is intended to be a proposal.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、気流方向
に対して、第2列目以降の伝熱管が、気流上流側にある
いづれかの伝熱管の下流側への投影面と部分的な重なり
を有し、かつ、フィンの伝熱管間部に気流方向に開口し
た複数の切り起しをフィン基板を残して上,下に設置す
ると共に、切り起し高さhと、フィン間隔s及びフィン
板厚tとの関係をs/3<h≦(s+t)/2とするもので
ある。
Means for Solving the Problems The technical means of the present invention for solving the above problems is such that the heat transfer tubes in the second and subsequent rows are downstream of one of the heat transfer tubes located upstream of the air flow with respect to the air flow direction. The projection and the projection surface are partially overlapped with each other and the fins are installed above and below the fin substrate with the fin substrate left open in the airflow direction between the heat transfer tubes. The relationship between the height h, the fin spacing s, and the fin plate thickness t is s / 3 <h ≦ (s + t) / 2.

作用 この技術的手段による作用は次のようになる。Action The action of this technical means is as follows.

すなわち、 各伝熱管群内の管列は気流方向にわずか
ずれて設置されるために、橋状又はルーバー状の切り起
しを管の後流部へその一部が入り込む様に構成できるた
め、伝熱管近傍に部分的に空気流速の高い箇所が生ぜ
ず、切り起しへ十分な流量の空気通過させることができ
るたえ、切り起しの熱的な性能を十分生かすことができ
る。 伝熱管間のフィン上に気流方向に開口した複数
の切り起しをフィン基板を残して上,下に設置すると共
に、切り起し高さとhとフィン間隔s及びフィン板厚t
との関係をs/3<h≦(s+t)/2とするため、隣接す
るフィンとの間隔における空気流速が均一になり、切り
起し部分へ十分な空気流量を流すことができるため、切
り起しによる境界層前縁効果を十分に生かすことができ
る。以上、, により、理論的な平行平板の助走区
間の熱伝達率に十分近い値を実現できる。 各伝熱管
は空気流の上流側の管投影面のどれかと部分的に重なる
様に設置されているために、上流側の管の後流が下流側
の管により流動方向を下流側の管の止水域側へ誘引さ
れ、止水域が減少する。またこの現象は、伝熱管群間の
切り起しを設けているためより顕著になる。つまり切り
起しは気流方向に開口した側辺部とフィンに接続される
脚部を有するが、この脚部を伝熱管後流部へ入り込む様
に設けられるので、気流は止水域側へ流動する様にな
り、止水域は減少するのである。これは脚部を気流と傾
斜させ、仰角を持たせればより効果は大きくなる。
各伝熱管列は上流側の管と気流流方向から見て著しく位
置がずれて設置されることがないので、伝熱管群間のフ
ィンへの熱の流れは切り起しにより阻害されることが少
ない。
That is, since the tube rows in each heat transfer tube group are installed slightly displaced in the air flow direction, a bridge-shaped or louvered cut-and-raised part can be configured so that a part of the cut-and-raised part enters the wake of the tubes. Since there is no part where the air velocity is high near the heat transfer tube, a sufficient flow rate of air can be passed to the cut-and-raised parts, and the thermal performance of the cut-and-raised parts can be fully utilized. A plurality of cut-and-raised parts opened in the air flow direction are installed above and below the fins between the heat transfer tubes, leaving the fin substrate, and the cut-and-raised height and h, the fin spacing s, and the fin plate thickness t.
And s / 3 <h ≦ (s + t) / 2, the air flow velocity in the space between adjacent fins becomes uniform, and a sufficient air flow rate can be made to flow to the cut and raised portions. The leading edge effect of the boundary layer due to the raising can be fully utilized. From the above, by the above, it is possible to realize a value close enough to the theoretical heat transfer coefficient in the run-up section of a parallel plate. Since each heat transfer tube is installed so that it partially overlaps with one of the projection planes on the upstream side of the air flow, the wake of the upstream side tube will flow toward the downstream side of the downstream side tube by the downstream side tube. It is attracted to the water stop side and the water stop area decreases. Further, this phenomenon becomes more remarkable because the cut and raised portions are provided between the heat transfer tube groups. In other words, the cut-and-raised part has a side part that is open in the air flow direction and a leg part that is connected to the fins, but since the leg part is provided so as to enter the wake part of the heat transfer tube, the air flow flows to the water stop region side. As a result, the water cutoff area will decrease. This is more effective if the legs are inclined with respect to the airflow and have an elevation angle.
Since each heat transfer tube row is not installed so as to be significantly displaced from the upstream tube in the air flow direction, the heat flow to the fins between the heat transfer tube groups may be hindered by cutting and raising. Few.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment One embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例のフィン付熱交換器の平面
図、第2図は第1図のA−A断面図、第3図は第2図詳
細図である。10は伝熱管、11はフィン、12はフィンカラ
ーであり、13a及び13bは橋状の切り起しである。伝熱管
10の内部には、冷媒が循環しており、その冷媒の有する
熱は、伝熱管10、フィンカラー12、フィン11、及び切り
起し13a及び13bへと順次伝えられる。一方、気流方向14
から流動する気流は、フィン11間を通過する際に、冷媒
から伝えられた熱を、空気の接する面を介して間接的に
熱の授受を行う。
1 is a plan view of a heat exchanger with fins according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a detailed view of FIG. 10 is a heat transfer tube, 11 is a fin, 12 is a fin collar, and 13a and 13b are bridge-shaped cut-and-raised parts. Heat transfer tube
A refrigerant circulates inside 10 and the heat of the refrigerant is sequentially transferred to the heat transfer tube 10, the fin collar 12, the fin 11, and the cut-and-raised parts 13a and 13b. On the other hand, airflow direction 14
When passing between the fins 11, the air flow flowing from heat exchanges the heat transferred from the refrigerant indirectly via the surface in contact with the air.

次に、この一実施例の構成に於ける作用を説明する。Next, the operation of the configuration of this embodiment will be described.

気流方向に対して、第2列目以降の伝熱管10は、気流上
流側にあるいづれかの伝熱管10の下流側への投影面と半
分だけ重なるように配置されている。すなわち、切り起
し13a及び13bの一部が伝熱管10の後流部へ入り込む様に
構成できるため、伝熱管10近傍に部分的に空気流速の速
い箇所が生じることがなく、気流方向14に直角方向の伝
熱管10間で均一空気流速が得られる。
The heat transfer tubes 10 in the second and subsequent rows are arranged so as to be half overlapped with the downstream projection surface of one of the heat transfer tubes 10 on the upstream side of the air flow in the air flow direction. That is, since the cut-and-raised parts 13a and 13b can be configured such that a part of the cut-and-raised parts 13a and 13b enter into the wake of the heat transfer tube 10, there is no part where the air flow velocity is high in the vicinity of the heat transfer tube 10, and in the airflow direction 14. A uniform air flow velocity can be obtained between the heat transfer tubes 10 in the orthogonal direction.

また、伝熱管10間のフィン11上に、気流方向14に対して
フィン11の基板に対して上面側に開口した複数の橋状の
切り起し13aと、下面側へ開口した橋状の切り起し13bと
の間にフィン11の基板が存在するように構成し、かつ、
隣接するフィン11同志の間隔をs,フィン基板をtとする
と、切り起し高さhをh=(s+t)/2としているた
め、切り起し13a及び13bがフィン間隔sの丁度、中央に
位置する。従って、第3図に示す示す様に隣接するフィ
ン11の間に於いて均一な空気流速が得られる。
In addition, on the fins 11 between the heat transfer tubes 10, a plurality of bridge-shaped cut-and-raised portions 13a opened on the upper surface side with respect to the substrate of the fins 11 in the air flow direction 14 and bridge-shaped cut-outs opened on the lower surface side. It is configured such that the substrate of the fin 11 is present between the raised portion 13b and
Assuming that the space between adjacent fins 11 is s and the fin substrate is t, the cut-and-raised height h is set to h = (s + t) / 2, so the cut-and-raised parts 13a and 13b are located at the center of the fin space s, exactly. To position. Therefore, as shown in FIG. 3, a uniform air flow velocity can be obtained between the adjacent fins 11.

以上,伝熱管10間及びフィン11間の両方おいて、空気流
速が均一となるため、切り起し13部分へ十分な空気流量
を流すことができ、切り起し13による境界層前縁効果を
十分に生かすことができる。即ち、理論的な平行平板の
助走区間の熱伝達率に十分近い、高い値を得ることがで
きる。
As described above, since the air flow velocity is uniform both between the heat transfer tubes 10 and between the fins 11, a sufficient air flow rate can be made to flow to the cut-and-raised portion 13, and the boundary layer leading edge effect due to the cut-and-raised 13 can be obtained. You can make good use of it. That is, it is possible to obtain a high value which is sufficiently close to the theoretical heat transfer coefficient in the approaching section of the parallel plate.

尚、切り起し高さhについては、第4図に示す様に、h
=(s+t)/2の時、伝熱性能は最大になるが、h>s/
3であれば最大の約90%以上の性能をするが、逆に、h
>(s+t)/2とすると、切り起し13a及び13bの脚部に
よる通風抵抗の増大をまねく。従って、s/3<h≦(s
+t)/2であれば、実用上、十分優れた伝熱性能を有す
る。次に、気流方向14に対して第2列目以降の伝熱管10
が気流上流側にあるいづれかの伝熱管10の下流側への投
影面と半分だけ重なる様に配置されているため、上流側
伝熱管10後流が下流側伝熱管10の存在により、その流動
方向を下流側伝熱管10の止水域側へ誘引され、止水域が
減少する。更に、伝熱管10間に仕切り起し13a及び13bを
設け、かつ、切り起し13a及び13bのフィン11と接続する
脚部を気流方向14に対して傾斜させて設けているので、
この現象はより顕著になり、止水域減少の効果は大きく
なる。
Regarding the cut-and-raised height h, as shown in FIG.
= (S + t) / 2, the heat transfer performance is maximized, but h> s /
If it is 3, the performance is about 90% or more of the maximum, but conversely, h
When> (s + t) / 2, the ventilation resistance due to the legs of the cut-and-raised parts 13a and 13b is increased. Therefore, s / 3 <h ≦ (s
If + t) / 2, the heat transfer performance is sufficiently excellent in practical use. Next, the heat transfer tubes 10 in the second and subsequent rows with respect to the air flow direction 14
Is arranged so as to half overlap with the downstream projection surface of one of the heat transfer tubes 10 on the upstream side of the air flow, so that the wake of the upstream heat transfer tube 10 has a flow direction due to the presence of the downstream heat transfer tube 10. Is attracted to the water stop side of the downstream heat transfer pipe 10, and the water stop area decreases. Furthermore, since partitioning and raising 13a and 13b are provided between the heat transfer tubes 10, and leg portions connected to the fins 11 of the raising and cutting 13a and 13b are provided to be inclined with respect to the air flow direction 14,
This phenomenon becomes more prominent, and the effect of reducing the still water area becomes greater.

また、伝熱管10各々は気流方向14に対して概ね一列とな
っていているため、気流方向14に直角な方向の伝熱管10
間のフィン11上に於ける熱の移動を妨げることがなく、
フィン効率も高くなる。
Further, since the heat transfer tubes 10 are substantially in line with the air flow direction 14, the heat transfer tubes 10 in the direction perpendicular to the air flow direction 14 are arranged.
Without hindering the transfer of heat on the fins 11 between
Fin efficiency is also high.

以上の点より、全体的なフィンの伝熱性能は著しく向上
する。
From the above points, the heat transfer performance of the entire fin is significantly improved.

次に、本発明の他の実施例について説明する。Next, another embodiment of the present invention will be described.

第5図,第6図及び第7図は、本発明の他の実施例の一
つを示したものであり、第5図は平面図,第6図は第5
図のB−B断面図、第7図は第6図詳細図である。10は
伝熱管、11はフィン、12はフィンカラーであり、15a及
び15bは橋状の切り起しである。フィンの基板11に対し
て上面側に設け切り起しを15a、下面側に設けた切り起
しを15bとすると、気流方向14に対して、上面側切り起
し15a、フィン基板11、下面側切り起し15bの順で切り起
しを設置している。一連の切り起し群において、気流方
向14に対する最上流側の上図切り起ず15a′の高さ及び
最下流側の下面切り起し15b′の高さをh1とするとh1
(s+t)/2とし、その他の切り起し高さh2はh2=(s
−t)/2としている。そして、伝熱管10の配列について
は、第1実施例と同様である。
FIGS. 5, 6, and 7 show one of other embodiments of the present invention. FIG. 5 is a plan view and FIG. 6 is a fifth view.
FIG. 7 is a detailed view of FIG. 6 taken along the line BB of FIG. 10 is a heat transfer tube, 11 is a fin, 12 is a fin collar, and 15a and 15b are bridge-shaped cut-and-raised parts. When the cut-and-raised parts provided on the upper surface side of the fin substrate 11 are 15a and the cut-and-raised parts provided on the lower surface side are 15b, the upper-surface-side cut-and-raised parts 15a, the fin substrate 11, and the lower surface side in the airflow direction 14. Cuts and cuts are installed in the order of 15b. In a series of cut-and-raised group, if the 'height and lower surface cut-raised 15b of the most downstream side of the' height of the figure cutting force without 15a of most upstream side is h 1 for the air flow direction 14 h 1 =
(S + t) / 2, and the other cut-and-raised height h 2 is h 2 = (s
-T) / 2. The arrangement of the heat transfer tubes 10 is the same as in the first embodiment.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be described.

第7図に示すような、一連の切り起し群において、気流
方向14に対する最上流側の上面切り起し15a′及び最下
流側の下面切り起し15b′の高さh1がh1=(s+t)/2
になっているので、15a′及び15b′はフィン間隔sの丁
度、中央に位置する。従って、一連の切り起し群の気流
流入部及び流出部のフィン11間に於いて均一な空気流速
が得られる。また、中央部に於いては、切り起し高さh2
がh1=(s−t)/2であるため、隣り合うフィン11間の
中心線に対して切り起し15a及び15bがフィン板厚tだけ
ずれた構成になっている。即ち、下面切り起し15bと隣
り合うフィンの上面切り起し15aとの間には、板厚t分
の間隙が生じ、その間隙を流れる気流は加速されるた
め、切り起し15aに生じる温度境界層が薄くなり、局所
の熱伝達率が向上する。しかも、隣り合うフィン11間に
於ける切り起し15a及び15bの、中心線に対するずれはフ
ィン板厚さだけであるので、フィン間における気流分布
はほぼ均一となる。従って、切り起し群における気流分
布は、全体的にほぼ均一であるため、切り起し15a,15
a′,15b,15b′それぞれに於ける境界層前縁効果を十分
に生かすことができ、かつ、局所的に流速の速い部分が
形成されることによる局所熱伝達率の向上が付加される
ので、伝熱性能は、第1実施例より更に向上する。
In the series of cut-and-raised groups as shown in FIG. 7, the height h 1 of the uppermost-side cut-and-raised portion 15a ′ on the uppermost stream side and the lowermost-side cut-and-raised portion 15b ′ on the most downstream side in the airflow direction 14 is h 1 = (S + t) / 2
Therefore, 15a 'and 15b' are located at the center of the fin spacing s. Therefore, a uniform air flow velocity can be obtained between the fins 11 at the air flow inlet and outlet of the series of cut and raised parts. In addition, in the central part, the cut and raised height h 2
Is h 1 = (s−t) / 2, the cut-and-raised parts 15 a and 15 b are displaced from the center line between the adjacent fins 11 by the fin plate thickness t. That is, a gap corresponding to the plate thickness t is generated between the lower surface cut-and-raised part 15b and the upper surface cut-and-raised part 15a of the adjacent fin, and the airflow flowing through the gap is accelerated, so that the temperature generated in the cut-and-raised part 15a is increased. The boundary layer becomes thinner and the local heat transfer coefficient improves. Moreover, the deviation of the cut-and-raised parts 15a and 15b between the adjacent fins 11 with respect to the center line is only the fin plate thickness, so that the air flow distribution between the fins is substantially uniform. Therefore, since the airflow distribution in the cut-and-raised group is almost uniform overall, the cut-and-raised 15a, 15
The boundary layer leading edge effect in each of a ′, 15b, and 15b ′ can be fully utilized, and the local heat transfer coefficient is improved by locally forming the portion with high flow velocity. The heat transfer performance is further improved as compared with the first embodiment.

尚、切り起し高さh2=(s−t)/2について言及してお
くと、通常、フィン板厚tは材料にアルミにウムを使用
すると、t=0.1〜0.2mmで、また、フィン間隔sは、熱
交換器の通風抵抗や目詰りの問題からs≧0.8〜0.9mmで
使用される。よって、s>3tであるため、h2=(s−
t)/2>s>3となり、本特許請求範囲を満足してい
る。
Incidentally, referring to the cut-and-raised height h 2 = (s−t) / 2, usually, the fin plate thickness t is t = 0.1 to 0.2 mm when aluminum is used as the material, and The fin spacing s is set to s ≧ 0.8 to 0.9 mm because of the problems of ventilation resistance and clogging of the heat exchanger. Therefore, since s> 3t, h 2 = (s−
t) / 2>s> 3, which satisfies the claims of the present invention.

発明の効果 以上のように本発明は、一定間隔で平行に並べられ、そ
の間を気流が流動するフィンと、このフィンに直角に挿
入され、内部を流体が流動する、気流方向に複数列配置
された伝熱管とから構成され、気流方向に対して、第2
列目以降の伝熱管が、気流上流側にあるいづれかの伝熱
管の下流側への投影面と部分的な重なりを有し、かつ、
フィンの伝熱管間部に気流方向に開口した複数の切り起
しをフィン基板を残して上,下に設置すると共に、切り
起し高さhとフィン間隔s及びフィン板厚tとの関係を
s>3<h≦(s+t)/2とするフィン付熱交換器であ
るから、次の様な効果を有する。
EFFECTS OF THE INVENTION As described above, according to the present invention, fins that are arranged in parallel at regular intervals and through which an air flow flows, and fins that are inserted at a right angle to the fins and through which fluid flows inside are arranged in a plurality of rows in the air flow direction. It is composed of a heat transfer tube and a second
The heat transfer tubes on and after the second row have a partial overlap with the downstream projection surface of one of the heat transfer tubes on the upstream side of the air flow, and
A plurality of cut-and-raised parts opened in the airflow direction between the heat transfer tubes of the fins are installed above and below the fin substrate, and the relationship between the cut-and-raised height h and the fin spacing s and the fin plate thickness t is shown. Since the heat exchanger with fins satisfies s> 3 <h ≦ (s + t) / 2, it has the following effects.

伝熱管群間及び隣接するフィン間、即ち、フィンに
平行な方向及び直角な方向に於ける気流流速分布が均一
化され、切り起しの境界層前縁効果によって、フィン表
面熱伝達率が大巾に向上する。
The airflow velocity distribution is uniform between the heat transfer tube groups and between adjacent fins, that is, in the direction parallel to and perpendicular to the fins, and the fin surface heat transfer coefficient is high due to the boundary layer leading edge effect of cut and raised. Improves width.

気流上流側にある伝熱管の後流が下流側の伝熱管に
よって流れの方向を変え、止水域側へ流動するため止水
域の面積が減少し、有効な伝熱面積が増加する。
The wake of the heat transfer tube on the upstream side of the air flow changes its direction by the heat transfer tube on the downstream side and flows to the water stop area side, so that the area of the water stop area decreases and the effective heat transfer area increases.

各伝熱管が気流方向から見て著しくづれて設置され
ないので、伝熱管からフィン及び切り起しへの熱の流れ
が阻害されず、フィン効率が向上する。
Since the heat transfer tubes are not installed so as to be significantly staggered when viewed from the air flow direction, the flow of heat from the heat transfer tubes to the fins and the cut and raised portions is not obstructed, and fin efficiency is improved.

以上の効果により、伝熱性能が向上し、小型で高性能な
フィン付熱交換器が実現できる。
Due to the above effects, heat transfer performance is improved, and a small-sized and high-performance finned heat exchanger can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例によるフィン付熱交換器の平
面図、第2図は第1図のA−A線断面図、第3図は同断
面詳細図、第4図は伝熱性能と切り起し高さの関係を示
す説明図、第5図は本発明の他の実施例によるフィン付
熱交換器の平面図、第6図は第5図のB−B線断面図、
第7図は同断面詳細図、第8図は従来例を示すフィン付
熱交換器の斜視図、第9図は同平面図、第10図は第9図
のC−C線断面図である。 10……伝熱管、11……フィン、13,13a,13b,15a,15b……
切り起し、14……気流方向、h……切り起し高さ、s…
…フィン間隔、t……フィン板厚。
1 is a plan view of a heat exchanger with fins according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a detailed sectional view of the same, and FIG. 4 is heat transfer. FIG. 5 is an explanatory view showing the relationship between performance and cut-and-raised height, FIG. 5 is a plan view of a heat exchanger with fins according to another embodiment of the present invention, and FIG. 6 is a sectional view taken along line BB of FIG.
FIG. 7 is a detailed view of the same section, FIG. 8 is a perspective view of a heat exchanger with fins showing a conventional example, FIG. 9 is a plan view of the same, and FIG. 10 is a sectional view taken along line CC of FIG. . 10 …… Heat transfer tube, 11 …… Fin, 13,13a, 13b, 15a, 15b ……
Cut and raised, 14 ... Air flow direction, h ... Cut and raised height, s ...
... fin spacing, t ... fin plate thickness.

フロントページの続き (72)発明者 加藤 薫 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 安藤 智朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 楠原 尚夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Kaoru Kato 3-22, Takaidahondori, Higashi-Osaka, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Tomoaki Ando 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. ( 72) Inventor Nao Kusuhara, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一定間隔で平行に並べられ、その間を気流
が流動するフィンと、このフィンに直角に挿入され、内
部を流体が流動する、気流方向に複数列配置された伝熱
管とから構成され、気流方向に対して、第2列目以降の
前記伝熱管が、気流上流側にあるいづれかの伝熱管の下
流側への投影面と部分的な重なりを有し、かつ、フィン
の伝熱管間部に気流方向に開口した複数の切り起しをフ
ィン基板を残して上,下に設置すると共に、切り起し高
さhとフィン間隔s及びフィン板厚tとの関係を s/3<h≦(s+t)/2とするフィン付熱交換器。
1. A fin, which is arranged in parallel at regular intervals and through which an air flow flows, and heat transfer tubes which are inserted at a right angle to the fin and through which a fluid flows, arranged in a plurality of rows in the air flow direction. The heat transfer tubes in the second and subsequent rows have a partial overlap with the downstream projection surface of any of the heat transfer tubes on the upstream side of the air flow with respect to the air flow direction, and the heat transfer tubes of the fins are provided. A plurality of cut-and-raised parts that are open in the air flow direction are installed above and below the fin substrate while leaving the fin substrate, and the relationship between the cut-and-raised height h, the fin spacing s, and the fin plate thickness t is s / 3 < A finned heat exchanger with h ≦ (s + t) / 2.
【請求項2】フィン基板に対して上面側及び下面側に設
けた切り起しを上面側切り起し、及び下面側切り起しと
し、気流方向に対して、上面側切り起し、フィン基板、
下面側切り起しの順で切り起しを設置した特許請求の範
囲第1項記載のフィン付熱交換器。
2. A fin substrate is provided with cut-and-raised parts provided on the upper surface side and the lower-surface side with respect to the fin substrate as upper surface-side cut-and-raised parts, and with respect to the air flow direction. ,
The heat exchanger with fins according to claim 1, wherein the cut-and-raised parts are installed in the order of the cut-and-raised parts on the lower surface side.
【請求項3】気流方向に対して、上面側切り起しと下面
側切り起しとの間にフィン基板が存在するように切り起
しを設置した特許請求の範囲第1項記載のフィン付熱交
換器。
3. The finned assembly according to claim 1, wherein the cut-and-raised part is provided so that the fin substrate exists between the cut-and-raised part on the upper surface side and the cut-and-raised part on the lower surface side with respect to the air flow direction. Heat exchanger.
【請求項4】フィン基板に対する切り起しの高さが部分
的に異なる様に切り起しを設置した特許請求の範囲第2
項または第3項記載のフィン付熱交換器。
4. The cut-and-raised parts are provided so that the heights of the cut-and-raised parts with respect to the fin substrate are partially different.
A heat exchanger with fins according to item 3 or 3.
JP61206371A 1986-09-02 1986-09-02 Heat exchanger with fins Expired - Lifetime JPH0686996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206371A JPH0686996B2 (en) 1986-09-02 1986-09-02 Heat exchanger with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206371A JPH0686996B2 (en) 1986-09-02 1986-09-02 Heat exchanger with fins

Publications (2)

Publication Number Publication Date
JPS6361894A JPS6361894A (en) 1988-03-18
JPH0686996B2 true JPH0686996B2 (en) 1994-11-02

Family

ID=16522219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206371A Expired - Lifetime JPH0686996B2 (en) 1986-09-02 1986-09-02 Heat exchanger with fins

Country Status (1)

Country Link
JP (1) JPH0686996B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366451B1 (en) * 2000-10-27 2002-12-31 주식회사 엘지이아이 Evaporator combined with dual-tube and fins for refrigerator
JP2010025476A (en) * 2008-07-22 2010-02-04 Daikin Ind Ltd Heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144892A (en) * 1981-02-28 1982-09-07 Daikin Ind Ltd Gross-fin coil type heat exchanger
JPS6055877B2 (en) * 1978-06-12 1985-12-06 能美防災工業株式会社 fire detection sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103071U (en) * 1982-12-24 1984-07-11 三菱重工業株式会社 Heat exchanger
JPS6055877U (en) * 1983-09-26 1985-04-19 株式会社タニタ fire starter crater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055877B2 (en) * 1978-06-12 1985-12-06 能美防災工業株式会社 fire detection sheet
JPS57144892A (en) * 1981-02-28 1982-09-07 Daikin Ind Ltd Gross-fin coil type heat exchanger

Also Published As

Publication number Publication date
JPS6361894A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JPH0670555B2 (en) Fin tube heat exchanger
US5947194A (en) Heat exchanger fins of an air conditioner
JP2604722B2 (en) Flying ube type heat exchanger
JPH0686996B2 (en) Heat exchanger with fins
JPH0684876B2 (en) Heat exchanger with fins
JPS633183A (en) Finned heat exchanger
JPS61243292A (en) Finned heat exchanger
JPS59185992A (en) Heat exchanger
JPH0684875B2 (en) Heat exchanger with fins
JPS58158497A (en) Finned-tube type heat exchanger
JPH0684879B2 (en) Finch tube type heat exchanger
JPS63101698A (en) Heat exchanger with fin
JPS6127493A (en) Heat exchanger with fins
JPS61237995A (en) Finned heat exchanger
JPH0686997B2 (en) Heat exchanger with fins
JPS6247029Y2 (en)
JPS61272594A (en) Finned heat exchanger
JP2730649B2 (en) Heat exchanger
JPH09196585A (en) Heat exchanger with fins
JPS61243289A (en) Finned heat exchanger
JPH01107096A (en) Finned heat exchanger
KR100318229B1 (en) A heat exchanger of air conditioner
JPS61240099A (en) Heat exchanger
JPS5923982Y2 (en) heat exchanger with fins
JPH0684877B2 (en) Finch tube type heat exchanger