JPH0686981A - Electrolytic treatment of water containing microb - Google Patents
Electrolytic treatment of water containing microbInfo
- Publication number
- JPH0686981A JPH0686981A JP23225591A JP23225591A JPH0686981A JP H0686981 A JPH0686981 A JP H0686981A JP 23225591 A JP23225591 A JP 23225591A JP 23225591 A JP23225591 A JP 23225591A JP H0686981 A JPH0686981 A JP H0686981A
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrode
- treated
- effective chlorine
- electrolytic cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 141
- 238000011282 treatment Methods 0.000 title claims abstract description 25
- 239000000460 chlorine Substances 0.000 claims abstract description 81
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 80
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 73
- 244000005700 microbiome Species 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 30
- 235000020188 drinking water Nutrition 0.000 abstract description 48
- 239000003651 drinking water Substances 0.000 abstract description 48
- 230000001954 sterilising effect Effects 0.000 abstract description 17
- -1 iron ions Chemical class 0.000 abstract description 16
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 11
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 abstract description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 4
- 230000033228 biological regulation Effects 0.000 abstract description 4
- 150000004679 hydroxides Chemical class 0.000 abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052791 calcium Inorganic materials 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract description 2
- 229910052749 magnesium Inorganic materials 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 71
- 238000003860 storage Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000008399 tap water Substances 0.000 description 10
- 235000020679 tap water Nutrition 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 241000233866 Fungi Species 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 210000005056 cell body Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 101100493705 Caenorhabditis elegans bath-36 gene Proteins 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 235000014214 soft drink Nutrition 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910001924 platinum group oxide Inorganic materials 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920006350 polyacrylonitrile resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、微生物と有効塩素成分
を含有する各種被処理水特に飲料水における該微生物に
起因する各種性能劣化を抑制するために前記被処理水を
電解処理するための方法に関し、より詳細には飲料水等
の前記被処理水を電解処理し該飲料水等の被処理水中の
微生物及び有効塩素成分のうち飲料水中に残存すること
が義務付けられている有効塩素成分のみを含む清澄な飲
料水等を提供するための方法に関する。FIELD OF THE INVENTION The present invention relates to various kinds of water to be treated containing a microorganism and an effective chlorine component, in particular electrolytic treatment of the water to be treated in order to suppress various performance deteriorations caused by the microorganism in drinking water. Regarding the method, more specifically, only the effective chlorine component which is obliged to remain in the drinking water out of the microorganisms and effective chlorine components in the treated water such as the drinking water which is electrolytically treated with the treated water such as drinking water. And a method for providing clear drinking water and the like.
【0002】[0002]
【従来技術】飲料水は、貯水池等の水源に貯水された水
を浄水場で濾過し殺菌剤にて滅菌処理した後、各家庭や
飲食店等に上水道を通して供給される。飲料水の前記滅
菌は塩素ガスによる処理が一般的であるが、該塩素処理
によると飲料水の滅菌は比較的良好に行われる反面、残
留塩素の影響により処理された飲料水に異物質が混和し
たような違和感が生じて天然の水の有するまろやかさが
損なわれるという欠点が生じたり、トリハロメタンに代
表される有機系塩素化合物を生じ人体の健康上好ましく
ないという報告もされている。飲料水は人間の健康に直
結するもので、それに含有される細菌の滅菌や黴の繁殖
の防止つまり微生物の大部分又は全部を死滅させること
が不可欠であり、該滅菌等の方法としては前述の塩素に
よる方法が主流であるが、該塩素法による前記欠点を解
消するために塩素法以外の滅菌方法が提案されている。2. Description of the Related Art Drinking water is supplied to households, restaurants, etc. through tap water after filtering the water stored in a water source such as a reservoir at a water purification plant and sterilizing it with a bactericide. The above-mentioned sterilization of drinking water is generally treated with chlorine gas, but sterilization of drinking water is relatively good according to the chlorine treatment, while foreign substances are mixed in the treated drinking water due to the influence of residual chlorine. It is also reported that such a discomfort occurs and the mellowness of natural water is impaired, or an organic chlorine compound represented by trihalomethane is generated, which is not preferable for human health. Drinking water is directly related to human health, and it is indispensable to sterilize bacteria contained therein and prevent the growth of mold, that is, kill most or all of microorganisms. Although the method using chlorine is the mainstream, sterilization methods other than the chlorine method have been proposed in order to eliminate the above-mentioned drawbacks of the chlorine method.
【0003】例えば前記飲料水をオゾン添加処理しある
いは活性炭吸着処理して改質する方法が提案されている
が、処理すべき飲料水が例えば浄水場の水である場合に
は処理量が莫大であるため経済的に成り立たない等の欠
点がある。又浄水場で処理しても末端の蛇口に至るまで
に再度微生物が繁殖するという問題がある。しかし都市
部の水道水滅菌では、その原水となる河川水や湖水等が
各種有機物等で汚染されているため、微生物の滅菌に必
要な量以上の塩素を添加することになり、前記したよう
な有機ハロゲン化物等を生成させるという弊害が生じて
いる。これらの現象を防止するために従来は防黴剤や沈
澱抑制剤等の各種薬剤を被処理水中に投入したり各種フ
ィルタを配管途中に設置したりしているが、前記薬剤投
入は前述の通り薬剤の残留による被処理水への悪影響や
薬剤使用のコスト面での問題点が指摘されている。更に
添加薬剤に対する抗菌が暫くすると発生し、次の薬剤を
検討したり必要量以上に多量の薬剤を供給する等の必要
が生ずるという問題点を抱えている。そして飲料水のな
かには、カップ式自動販売機の貯水等、貯水タンク等に
一時的に貯留され、必要に応じて給水が行われるものが
ある。この種の飲料水は貯留タンク内に数日間貯留され
ることがあり、この間に菌類が繁殖し飲用として供され
る際には飲料水として不適当になっていることがある。
しかしこれらの貯水では前記菌類の繁殖に対する適正な
対策も施されず、人体の健康上好ましくない清涼飲料水
等が販売されあるいは提供されることもある。For example, a method has been proposed in which the drinking water is subjected to ozone addition treatment or activated carbon adsorption treatment to be reformed, but when the drinking water to be treated is, for example, water from a water purification plant, the treatment amount is enormous. Therefore, there are drawbacks such as not being economically viable. Further, even if treated at a water purification plant, there is a problem that the microorganisms will regenerate before reaching the end faucet. However, in tap water sterilization in urban areas, the raw water, such as river water and lake water, is contaminated with various organic substances, so it is necessary to add more chlorine than necessary for sterilizing microorganisms. The harmful effect of producing an organic halide etc. has arisen. In order to prevent these phenomena, conventionally, various chemicals such as antifungal agents and precipitation inhibitors have been put into the water to be treated and various filters have been installed in the middle of the piping. It has been pointed out that adverse effects on the water to be treated due to residual chemicals and problems in terms of the cost of using chemicals. Furthermore, there is a problem that antibacterial action against the added drug occurs after a while, and it becomes necessary to consider the next drug or supply a larger amount of drug than necessary. In addition, some drinking water is temporarily stored in a water storage tank or the like, such as water stored in a cup-type vending machine, and water is supplied as needed. This kind of drinking water may be stored in a storage tank for several days, and during this time, when the fungus propagates and is served for drinking, it may be unsuitable as drinking water.
However, such water storage does not take appropriate measures against the reproduction of the above-mentioned fungi, and soft drinks and the like that are unfavorable to human health may be sold or provided.
【0004】[0004]
【発明が解決しようとする問題点】前述した通り、水道
水等の飲料水やカップ式自動販売機における貯水には微
生物が含有されることがあり、本出願人は三次元電極を
使用する電解処理により前記飲料水等の滅菌処理を行う
方法を提案した。この方法によると飲料水中の微生物が
ほぼ100 %の効率で滅菌され、かつ飲料水中に含まれる
ことの多い有効塩素成分も塩素イオンに変換して該飲料
水中のいわゆるカルキ臭も除去できるため非常に優れた
飲料水等の処理方法である。しかし法令によると飲料水
特に水道水には0.1 ppm以上の有効塩素成分が含有さ
れることが義務付けられている。前記電解により飲料水
等を処理すると微生物がほぼ完全に滅菌されしかも有効
塩素成分もほぼ完全に除去されるため、法令に合致した
飲料水を提供することができないという問題点がある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, drinking water such as tap water or stored water in a cup type vending machine may contain microorganisms. A method of sterilizing the drinking water by treatment has been proposed. According to this method, the microorganisms in the drinking water are sterilized at an efficiency of almost 100%, and the effective chlorine component often contained in the drinking water is also converted into chlorine ions, so that the so-called chlorine odor in the drinking water can be removed. It is an excellent method for treating drinking water and the like. However, according to the law, drinking water, especially tap water, must contain 0.1 ppm or more of available chlorine. When drinking water or the like is treated by the electrolysis, microorganisms are almost completely sterilized, and effective chlorine components are almost completely removed. Therefore, there is a problem that drinking water conforming to the law cannot be provided.
【0005】[0005]
【発明の目的】本発明は、前述の従来技術の欠点を解消
し、微生物の滅菌をほぼ完全に行いかつ所定値以上の有
効塩素成分を含有する飲料水等を生成することのできる
被処理水の電解処理方法を提供することを目的とする。It is an object of the present invention to solve the above-mentioned drawbacks of the prior art, to sterilize microorganisms almost completely, and to produce drinking water or the like containing an effective chlorine component of a predetermined value or more. It is an object of the present invention to provide a method for electrolytic treatment of.
【0006】[0006]
【問題点を解決するための手段】本発明は、微生物及び
有効塩素成分を含む被処理水を固定床型三次元電極と接
触させて電解処理し前記微生物の滅菌処理を行った後
に、該被処理水を平板型電極と接触させて処理すること
を特徴とする微生物を含む被処理水の電解処理方法であ
る。According to the present invention, the water to be treated containing a microorganism and an effective chlorine component is brought into contact with a fixed bed type three-dimensional electrode for electrolytic treatment to sterilize the microorganism, and thereafter This is an electrolytic treatment method for water to be treated containing microorganisms, which comprises treating the treated water by contacting it with a flat plate type electrode.
【0007】以下本発明を詳細に説明する。本発明によ
る固定床型三次元電極を使用する電解処理では水道水等
の被処理水中の微生物が滅菌されて殆ど微生物を含まな
い被処理水を提供することができるが、それと同時に該
被処理水中の有効塩素成分も塩素イオン等の殺菌力を有
しない物質に変換される。該被処理水中には微生物が含
有されないため、有効塩素成分が存在しなくとも問題は
ないが、法令上の規定から飲料水は一定値以上の有効塩
素成分を含有することを義務付けられている。従って事
実上問題のない飲料水等であっても一般社会ではそのま
ま飲用に供することはできない。本発明ではこの問題点
を解決するために一旦微生物及び有効塩素成分を含有す
る飲料水等の被処理水を固定床型三次元電極で処理して
微生物及び有効塩素成分を含有しない被処理水とした
後、該被処理水を平板型電極と接触させて残存する塩素
イオンを規定値以上の有効塩素成分に変換して法令に合
致した飲料水等として提供しようとするものである。The present invention will be described in detail below. In the electrolytic treatment using the fixed bed type three-dimensional electrode according to the present invention, microorganisms in the water to be treated such as tap water can be sterilized to provide water to be treated containing almost no microorganisms. The effective chlorine components of are also converted into substances having no sterilizing power such as chlorine ions. Since microorganisms are not contained in the water to be treated, there is no problem even if there is no effective chlorine component, but the legal requirements stipulate that drinking water must contain a certain value or more of effective chlorine component. Therefore, even drinking water that is practically unproblematic cannot be used as it is in the general public. In the present invention, in order to solve this problem, treated water such as drinking water containing microorganisms and effective chlorine components is treated with a fixed bed type three-dimensional electrode and treated water containing no microorganisms and effective chlorine components. After that, the water to be treated is brought into contact with a flat plate type electrode to convert the residual chlorine ions into effective chlorine components having a prescribed value or more to provide drinking water or the like conforming to the law.
【0008】本発明の微生物には、細菌(バクテリ
ア)、菌、糸状菌(黴)、大腸菌、酵母、変形菌、単細
胞の藻類、原生動物、ウイルス等が含まれ、有効塩素成
分には次亜塩素酸イオン、塩素ガス等が含まれる。又本
発明の被処理水は人体に摂取される飲料水、食品処理水
及び給水器の貯水等を対象とし、飲料水は上水道を流れ
て家庭や飲食店等等の水道の蛇口から注出される水道水
等を含み、食品処理水としては生鮮食品の洗浄水や豆腐
等の含水食品に含有される水等が含まれ、給水器の水に
はカップ式自動販売機の貯水や銀行のロビー、プラット
ホーム、列車及び船舶内等に設置された足踏み式給水器
の貯水等が含まれる。本発明では被処理水中の微生物及
び有効塩素成分をまず固定床型三次元電極と接触させ次
いで平板型電極に接触させることが必要である。該固定
床型三次元電極及び平板型電極は同一の電解槽に収容さ
れていても別個の電解槽に設置されていてもよいが、前
者の場合には両電極を適宜の絶縁部材で隔離して電気的
な短絡が生じないようにすることが必要である。The microorganisms of the present invention include bacteria (bacteria), fungi, filamentous fungi (molds), Escherichia coli, yeasts, morphogens, unicellular algae, protozoa, viruses, etc. Chlorate ions, chlorine gas, etc. are included. Further, the water to be treated of the present invention is intended for drinking water to be ingested by the human body, food treatment water, water storage of a water supply device, etc. Including tap water, etc., the food treatment water includes water contained in washing water for fresh food and water-containing food such as tofu, etc., and the water in the water dispenser is stored in a cup-type vending machine, a lobby of a bank, Includes water storage for foot-operated water dispensers installed on platforms, trains, ships, etc. In the present invention, it is necessary that the microorganisms and effective chlorine components in the water to be treated are first brought into contact with the fixed bed type three-dimensional electrode and then with the flat plate type electrode. The fixed bed type three-dimensional electrode and the flat plate type electrode may be housed in the same electrolytic cell or installed in separate electrolytic cells, but in the former case, both electrodes are separated by an appropriate insulating member. It is necessary to prevent electrical short circuit.
【0009】前記被処理水を固定床型三次元電極と接触
させると、該被処理水中の微生物は液流動によって前記
固定床型三次元電極つまり後述する誘電体や固定床形成
用粒子等に接触しそれらの表面で高電位のエネルギー供
給を受け強力な酸化還元反応が微生物細胞内で生じ、そ
の活動が弱まったり微生物自身が死滅して滅菌が行われ
ると考えられる。該微生物の滅菌と同時に該三次元電解
槽の陰極面上では前記被処理水中の有効塩素成分の塩素
イオンへの変換が行われる。被処理水中の有効塩素成分
の主成分である次亜塩素酸イオンは次の式(1)に従って
塩素イオンと水とに変換される。 ClO- + 2H+ + 2e- → Cl- + H2 O (1)When the water to be treated is brought into contact with the fixed bed type three-dimensional electrode, the microorganisms in the water to be treated come into contact with the fixed bed type three-dimensional electrode, that is, the dielectric and particles for forming fixed beds, which will be described later, by liquid flow. However, it is considered that a strong redox reaction is generated in the microbial cells by receiving high-potential energy supply on their surface, the activity is weakened, or the microorganisms themselves die and sterilization is performed. Simultaneous with the sterilization of the microorganisms, the effective chlorine components in the water to be treated are converted into chlorine ions on the cathode surface of the three-dimensional electrolytic cell. The hypochlorite ion, which is the main component of the effective chlorine component in the water to be treated, is converted into chlorine ion and water according to the following equation (1). ClO − + 2H + + 2e − → Cl − + H 2 O (1)
【0010】又水道水には前述の微生物や有効塩素成分
以外にカルシウムイオンやマグネシウムイオン等の微量
のイオンや溶解物がその周囲に水和水を有するクラスタ
ーとして存在しこの水和水は飲料水等のまろやかさを失
わせる一因となっている。本発明方法により前記飲料水
等を電解処理すると、微生物の滅菌や有効塩素成分の分
解の他に、電位勾配に従って該飲料水中のイオンが液中
で高速で泳動あるいは移動をし前記クラスターは移動で
きずに巨大クラスターが破壊されて、あるいは前述の通
り水和水を有するイオンが陰極側に接触し破壊され前記
水和水の数が大きく減少し飲料水等の改質効果も同時に
生ずる。更に前記カルシウムイオンやマグネシウムイオ
ンも飲料水の味を悪くする一因となっているが、該飲料
水に本発明の電解処理を行うとこれらのイオンがその水
酸化物等として陰極側に析出し飲料水から除去されるた
め更に飲料水の味が向上する。本発明方法における微生
物の滅菌及び有効塩素成分の分解等に使用する電極は固
定床型三次元電極であり、該電極は莫大な表面積を有す
るため電極表面と被処理水との接触面積を増大させるこ
とができ、これにより装置サイズを小さくし、かつ電解
処理の効率を上げることができる点で有利である。前記
固定床型三次元電極は複極型として電解槽内に組み込ん
で複極型電解槽を構成しても単一電極として組み込んで
単極式電解槽を構成してもよい。In addition to the above-mentioned microorganisms and effective chlorine components, a small amount of ions such as calcium ions and magnesium ions and dissolved substances are present in the tap water as clusters having hydration water around them, and the hydration water is drinking water. It is one of the causes of losing the mellowness of the above. When the drinking water or the like is electrolytically treated by the method of the present invention, in addition to sterilization of microorganisms and decomposition of effective chlorine components, ions in the drinking water migrate or move at high speed in the liquid according to a potential gradient, and the clusters can move. Instead, the huge clusters are destroyed, or as described above, the ions having hydration water come into contact with the cathode side and are destroyed, and the number of the hydration water is greatly reduced, and the effect of modifying drinking water and the like is also produced. Further, calcium ions and magnesium ions also contribute to the taste of drinking water, but when the drinking water is subjected to the electrolytic treatment of the present invention, these ions are deposited on the cathode side as hydroxides or the like. Since it is removed from the drinking water, the taste of the drinking water is further improved. The electrode used for sterilizing microorganisms and decomposing effective chlorine components in the method of the present invention is a fixed bed type three-dimensional electrode, and since the electrode has a huge surface area, it increases the contact area between the electrode surface and the water to be treated. This is advantageous in that the device size can be reduced, and the efficiency of the electrolytic treatment can be increased. The fixed bed type three-dimensional electrode may be incorporated as a bipolar electrode in the electrolytic cell to form a bipolar electrode type electrolytic cell, or may be incorporated as a single electrode to configure a monopolar type electrolytic cell.
【0011】本発明方法における固定床型三次元電極を
電解槽に組み込む場合、該電解槽は一般に分極現象を生
じ電極として機能する該三次元電極の他に給電用電極を
含み、該三次元電極は前述の使用する電解槽に応じた形
状を有し、固定床型複極式電解槽を使用する場合には、
前記被処理水が透過可能な多孔質材料、例えば粒状、球
状、フェルト状、織布状、多孔質ブロック状等の形状を
有する活性炭、グラファイト、炭素繊維等の炭素系材料
から、あるいは同形状を有するニッケル、銅、ステンレ
ス、鉄、チタン等の金属材料、更にそれら金属材料に貴
金属のコーティングを施した材料から形成された複数個
の好ましくは粒状、球状、繊維状、フェルト状、織布
状、多孔質ブロック状、多孔板状、スポンジ状の誘電体
を直流電場内に置き、両端に設置した平板状又はエキス
パンドメッシュ状やパーフォレーティッドプレート状等
の多孔板体から成る給電用電極間に直流電圧あるいは10
Hz以下の交流電圧を印加して前記誘電体を分極させ該誘
電体の一端及び他端にそれぞれ陽極及び陰極を形成させ
て成る三次元電極を収容した固定床型複極式電解槽とす
ることが可能であり、この他に単独で陽極としてあるい
は陰極として機能する三次元材料を交互に短絡しないよ
うに設置しかつ電気的に接続して固定床型複極式電解槽
とすることができる。When the fixed bed type three-dimensional electrode in the method of the present invention is incorporated in an electrolytic cell, the electrolytic cell generally includes a power feeding electrode in addition to the three-dimensional electrode which causes a polarization phenomenon and functions as an electrode. Has a shape corresponding to the electrolytic cell used above, when using a fixed bed type bipolar electrode electrolytic cell,
A porous material that is permeable to the water to be treated, for example, activated carbon having a shape such as granular, spherical, felt-like, woven cloth-like, porous block-like, carbon-based material such as graphite, carbon fiber, or the like. A metal material having nickel, copper, stainless steel, iron, titanium or the like, and a plurality of preferably granular, spherical, fibrous, felt-like, woven cloth-like, formed from a material obtained by applying a coating of a noble metal to these metal materials. A DC voltage is applied between the power supply electrodes consisting of a porous block, porous plate, or sponge-like dielectric placed in a DC electric field, and flat plates, expanded mesh, or perforated plates installed at both ends. Or 10
A fixed bed type bipolar electrode electrolytic cell containing a three-dimensional electrode formed by applying an AC voltage of Hz or less to polarize the dielectric and forming an anode and a cathode at one end and the other end of the dielectric, respectively. In addition to this, a three-dimensional material that independently functions as an anode or a cathode can be installed so as not to be short-circuited alternately and electrically connected to form a fixed-bed type bipolar electrode electrolytic cell.
【0012】前記誘電体として活性炭、グラファイト、
炭素繊維等の炭素系材料を使用しかつ陽極から酸素ガス
を発生させながら被処理水を処理する場合には、前記誘
電体が酸素ガスにより酸化され炭酸ガスとして溶解すま
ことがある。これを防止するためには前記誘電体の陽分
極する側にチタン等の基材上に酸化イリジウム、酸化ル
テニウム等の白金族金属酸化物を被覆し通常不溶性金属
電極として使用される多孔質金属材料を接触状態で設置
し、酸素発生が主として該金属材料上で生ずるようにす
ればよい。前記誘電体(三次元電極)として炭素系材料
(炭素質三次元電極)を使用する場合には、その平均開
孔径を25〜125 μmとすることが望ましい。炭素質三次
元電極を電解槽に収容して被処理水を処理する際には、
炭素質三次元電極の性質により被処理水の流通の容易性
あるいは電解電圧等に影響が生ずる。該炭素質三次元電
極の開孔径も比較的強い影響を有し、該炭素質三次元電
極の開孔径が大きいと該電極に被処理水が接触すること
なく電解槽を通過しやすくなるため電流効率が低下す
る。逆に開孔径が小さすぎると被処理水が前記炭素質三
次元電極内を流通することができずに電解電圧の上昇や
電解槽内での液流の圧力損失を招いてしまう。As the dielectric, activated carbon, graphite,
When carbon-based materials such as carbon fibers are used and the water to be treated is treated while generating oxygen gas from the anode, the dielectric may be oxidized by oxygen gas and dissolved as carbon dioxide gas. In order to prevent this, a porous metal material that is usually used as an insoluble metal electrode by coating a substrate such as titanium with a platinum group metal oxide such as iridium oxide or ruthenium oxide on the positively polarized side of the dielectric May be placed in contact with each other so that oxygen generation mainly occurs on the metal material. When a carbon-based material (carbonaceous three-dimensional electrode) is used as the dielectric (three-dimensional electrode), it is desirable that the average opening diameter is 25 to 125 μm. When treating the water to be treated by accommodating the carbonaceous three-dimensional electrode in the electrolytic cell,
The property of the carbonaceous three-dimensional electrode affects the ease of circulation of the water to be treated or the electrolytic voltage. The opening diameter of the carbonaceous three-dimensional electrode also has a relatively strong effect, and if the opening diameter of the carbonaceous three-dimensional electrode is large, it becomes easier for the water to be treated to pass through the electrolytic cell without coming into contact with the electrode, so that the current flows. Efficiency is reduced. On the other hand, if the pore size is too small, the water to be treated cannot flow through the carbonaceous three-dimensional electrode, resulting in an increase in electrolysis voltage and pressure loss of the liquid flow in the electrolytic cell.
【0013】所望の開孔径を有する炭素質三次元電極は
次のように製造することができる。例えば炭素系粒子を
焼結して三次元電極を形成する場合には使用する炭素系
粒子の粒径を調節することにより、調製される三次元電
極の開孔径を調節して任意の開孔径を有する三次元電極
とすることができ、焼結温度は1000〜4000℃、好ましく
は約3800℃とする。又フェルト状の炭素質三次元電極と
する場合には、成形時の圧力と使用する炭素繊維の径を
調節することで任意の平均開孔径を有する三次元電極と
することができる。これらの場合の炭素系粒子と開孔径
の関係、及び成形圧力と開孔径の関係は経験的に得るこ
とができる。又他のタイプの固定床型複極式電解槽とし
て、例えば円筒状の電解槽本体内に給電用陽極及び陰極
を設置し、該給電用両極間に、三次元電極として機能す
る多数の導電性固定床形成用粒子と該固定床形成用粒子
より少数の電気絶縁性の合成樹脂等から成る絶縁粒子と
をほぼ均一に混在させた電解槽がある。該電解槽では両
給電用電極間に通電して電位を印加すると、固定床形成
用粒子が前記誘電体と同様に分極しその一端が正に又他
端が負に帯電して各固定床形成用粒子に電位が生じ、各
粒子に被処理水中の微生物を滅菌する機能が付与され
る。なお前記絶縁粒子は、前記両給電用電極が導電性の
前記固定床形成用粒子により電気的に接続されて短絡す
ることを防止する機能を有する。A carbonaceous three-dimensional electrode having a desired aperture diameter can be manufactured as follows. For example, when sintering a carbon-based particle to form a three-dimensional electrode, by adjusting the particle size of the carbon-based particle used, the open diameter of the prepared three-dimensional electrode can be adjusted to an arbitrary open diameter. And a sintering temperature of 1000 to 4000 ° C., preferably about 3800 ° C. In the case of a felt-like three-dimensional carbonaceous electrode, a three-dimensional electrode having an arbitrary average pore diameter can be obtained by adjusting the pressure during molding and the diameter of the carbon fiber used. In these cases, the relationship between the carbon-based particles and the opening diameter and the relationship between the molding pressure and the opening diameter can be obtained empirically. Further, as another type of fixed bed type bipolar electrode electrolytic cell, for example, an anode and a cathode for power feeding are installed in a cylindrical electrolytic cell body, and a large number of conductive materials functioning as a three-dimensional electrode are provided between both electrodes for power feeding. There is an electrolytic cell in which fixed bed forming particles and a smaller number of insulating particles made of a synthetic resin or the like having an electrically insulating property than the fixed bed forming particles are mixed almost uniformly. When a potential is applied by energizing between both electrodes for supplying electricity in the electrolytic cell, the fixed bed forming particles are polarized in the same manner as the dielectric material, and one end thereof is positively charged and the other end is negatively charged to form each fixed bed. An electric potential is generated in the particles for use, and each particle is given a function of sterilizing microorganisms in the water to be treated. The insulating particles have a function of preventing both of the power feeding electrodes from being electrically connected by the electrically conductive particles for forming the fixed bed to cause a short circuit.
【0014】又単極式固定床型電解槽を使用する場合に
は、前記した誘電体又は単独で陽極としてあるいは陰極
として機能する三次元材料各1個を隔膜を介してあるい
は介さずに電解槽内に設置し、あるいは複数の誘電体又
は前記三次元材料を同一の電解電位の状態で単一の電解
槽内に設置するようにする。いずれの形態の電極を使用
する場合でも、処理すべき被処理水が流れる電解槽内に
液が電極や誘電体や微粒子に接触せずに流通できる空隙
があると被処理水の処理効率が低下するため、電極等は
電解槽内の被処理水の流れが電極に接触せずにショート
パスしないように配置することが望ましい。When a monopolar fixed bed type electrolytic cell is used, the electrolytic cell described above or one of each of the three-dimensional materials each of which functions as an anode or a cathode by itself, with or without a diaphragm, is used. Or a plurality of dielectrics or the three-dimensional materials are placed in a single electrolytic cell at the same electrolytic potential. Regardless of which type of electrode is used, the treatment efficiency of the water to be treated decreases if there is a void that allows the liquid to flow without contacting the electrodes, dielectrics or particles in the electrolytic cell through which the water to be treated flows. Therefore, it is desirable to arrange the electrodes and the like so that the flow of the water to be treated in the electrolytic bath does not come into contact with the electrodes and does not short-pass.
【0015】前記電解槽内を隔膜で区画して陽極室と陰
極室を形成しても、隔膜を使用せずにそのまま通電を行
うこともできるが、隔膜を使用せずかつ電極の極間距離
あるいは誘電体と電極、又は誘電体相互の間隔を狭くす
る場合には短絡防止のため電気絶縁性のスペーサとして
例えば有機高分子材料で作製した網状スペーサ等を両極
間あるいは前記誘電体間等に挿入することができる。又
隔膜を使用する場合には流通する被処理水の移動を妨害
しないように多孔質例えばその開口率が10%以上95%以
下好ましくは20%以上80%以下のものを使用することが
望ましく、該隔膜は少なくとも前記被処理水が透過でき
る程度の孔径の微細孔を有していなければならない。こ
のような固定床型三次元電極と接触して電解処理され微
生物の滅菌と有効塩素成分の分解が行われた被処理水
を、次いで平板型電極と接触させて前記有効塩素成分の
分解により生じた塩素イオンから次亜塩素酸イオンや塩
素ガス等の有効塩素成分を再度生成させる。該平板型電
極の材質は従来使用されたものをそのまま使用すればよ
く、例えば陽極としては板状の白金族酸化物被覆チタン
材(寸法安定性電極)やニッケル材を、陰極としては板
状のステンレス材や炭素材等を使用することができる。Even if the inside of the electrolytic cell is partitioned by a diaphragm to form an anode chamber and a cathode chamber, it is possible to carry on the current without using the diaphragm, but without using the diaphragm and the distance between the electrodes. Alternatively, when the distance between the dielectric and the electrode or between the dielectrics is narrowed, an electrically insulating spacer such as a mesh spacer made of an organic polymer material is inserted between both electrodes or between the dielectrics to prevent short circuit. can do. Further, when using a diaphragm, it is desirable to use a porous material, for example, having an opening ratio of 10% or more and 95% or less, preferably 20% or more and 80% or less so as not to interfere with the movement of the water to be circulated. The diaphragm must have fine pores having a pore size that allows at least the water to be treated to permeate. The water to be treated, which has been subjected to electrolytic treatment in contact with such a fixed bed type three-dimensional electrode and sterilization of microorganisms and decomposition of the effective chlorine component, is then brought into contact with the flat plate type electrode to decompose the effective chlorine component. The effective chlorine components such as hypochlorite ion and chlorine gas are regenerated from the chlorine ions. As the material of the flat plate type electrode, those conventionally used may be used as they are. For example, a plate-shaped platinum group oxide-coated titanium material (dimensional stability electrode) or nickel material may be used as the anode and a plate-shaped material may be used as the cathode. A stainless material, a carbon material, or the like can be used.
【0016】この平板型電極は前述の通り前記固定床型
三次元電極と同一の電解槽内に設置しても別個の電解槽
内に設置してもよい。水道水や地下水等の電気伝導度は
500μS/cm前後でありこの程度の被処理水を使用
し、前記両電極を同一電解槽内に設置する場合には両電
極間が短絡して漏洩電流が流れることがある。従ってこ
の場合には該漏洩電流の発生を防止するための手段を講
じることが望ましく、例えば被処理水の流通が妨げるこ
とがない程度の開口好ましくは30%以下の開口率を有す
る絶縁材で両電極を隔離して短絡を防止する。前記平板
型電極は表面積が小さく通常その電流密度は前記固定床
型三次元電極の電流密度より大きい1.0 A/dm2 以上
となり、この電流密度ではその陽極において式(1)の逆
反応が生じて次亜塩素酸イオン等の有効塩素成分が再度
生成する。この際前記電流密度の範囲内で流す電流を制
御することにより生成する有効塩素成分の濃度を適切に
設定し法令値等に応じた最適濃度の被処理水を提供する
ことができる。As described above, this flat plate type electrode may be installed in the same electrolytic cell as the fixed bed type three-dimensional electrode or in a separate electrolytic cell. The electrical conductivity of tap water, groundwater, etc.
When the amount of water to be treated is about 500 μS / cm, and both electrodes are installed in the same electrolytic cell, a short circuit may occur between both electrodes and a leakage current may flow. Therefore, in this case, it is desirable to take measures to prevent the generation of the leakage current, for example, an opening that does not hinder the flow of the water to be treated, preferably an insulating material having an opening ratio of 30% or less. Isolate the electrodes to prevent short circuits. The flat plate type electrode has a small surface area, and the current density thereof is 1.0 A / dm 2 or more, which is larger than the current density of the fixed bed type three-dimensional electrode. At this current density, the reverse reaction of the formula (1) occurs at the anode. Effective chlorine components such as hypochlorite ions are generated again. At this time, it is possible to appropriately set the concentration of the effective chlorine component to be generated by controlling the current flowing within the range of the current density, and to provide the water to be treated with the optimum concentration according to the legal value.
【0017】次に添付図面に基づいて本発明に使用でき
る電解槽の好ましい例を説明するが、本発明に使用でき
る電解槽は、この電解槽に限定されるものではない。図
1は、本発明方法の電解槽として使用可能な複極式固定
床型電極と平板型電極を収容した単一電解槽の例を示す
概略縦断面図である。底板中央に被処理水供給口1を、
又天板中央に被処理水取出口2をそれぞれ有する円筒状
の電解槽本体3は、中央に被処理水流通用の通孔4が形
成された絶縁材料から成る隔離板5により下部の三次元
電極室6と上部の平板型電極室7とに区画されている。
前記電解槽本体3は、長期間の使用又は再度の使用にも
耐え得る電気絶縁材料で形成することが好ましく、特に
合成樹脂であるポリエピクロルヒドリン、ポリビニルメ
タクリレート、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリ塩化エチレン、フェノール−ホルムアル
デヒド樹脂、ポリアクリロニトリル樹脂等が好ましく使
用できる。三次元電極室6の内部上端近傍及び下端近傍
にはそれぞれメッシュ状の給電用陽極8と給電用陰極9
が設けられている。該両給電用電極8、9間には複数個
の図示の例では3個のスポンジ状の固定床型三次元電極
10が積層され、かつ該三次元電極10間及び該三次元電極
10と前記両給電用電極8、9間に4枚のメッシュ状隔膜
又はスペーサー11が挟持されている。各三次元電極10は
電解槽本体3の内壁に密着し三次元電極10の内部を通過
せず、三次元電極10と電解槽本体3の側壁との間を流れ
る被処理水の漏洩流がなるべく少なくなるように配置さ
れている。なお12は前記三次元電極10の陽分極する側に
密着状態で設置された不溶性電極等の多孔質金属材料で
ある。Next, preferred examples of the electrolytic cell that can be used in the present invention will be described based on the attached drawings, but the electrolytic cell that can be used in the present invention is not limited to this electrolytic cell. FIG. 1 is a schematic vertical cross-sectional view showing an example of a single electrolytic cell containing a bipolar electrode fixed bed type electrode and a plate type electrode which can be used as the electrolytic cell of the method of the present invention. The treated water supply port 1 is located at the center of the bottom plate.
Further, the cylindrical electrolytic cell main body 3 having the treated water outlet 2 in the center of the top plate has a lower three-dimensional electrode by a separator plate 5 made of an insulating material in which a through hole 4 for circulating the treated water is formed in the center. It is partitioned into a chamber 6 and an upper flat plate electrode chamber 7.
The electrolytic cell body 3 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, and in particular, it is a synthetic resin such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, or polychloride. Ethylene, phenol-formaldehyde resin, polyacrylonitrile resin and the like can be preferably used. A mesh-shaped power feeding anode 8 and a power feeding cathode 9 are provided near the upper end and the lower end inside the three-dimensional electrode chamber 6, respectively.
Is provided. Between the two feeding electrodes 8 and 9, a plurality of three sponge-like fixed bed type three-dimensional electrodes are provided in the illustrated example.
10 are stacked, and between the three-dimensional electrodes 10 and the three-dimensional electrodes
Four mesh-shaped diaphragms or spacers 11 are sandwiched between 10 and the power feeding electrodes 8 and 9. Each three-dimensional electrode 10 is in close contact with the inner wall of the electrolytic cell body 3 and does not pass through the inside of the three-dimensional electrode 10, and the leakage flow of the water to be treated flowing between the three-dimensional electrode 10 and the side wall of the electrolytic cell body 3 should be as small as possible. It is arranged to be less. Reference numeral 12 is a porous metal material such as an insoluble electrode, which is installed in close contact with the side of the three-dimensional electrode 10 that undergoes positive polarization.
【0018】前記平板型電極室7内には垂直方向に位置
する平板型陽極13と平板型陰極14が設置され、通電時に
はその実効電流密度が前記固定床型電極10の実効電流密
度より大きくなるようにする。なお前記固定床型三次元
電極10及び平板型電極13、14は別個の電源によりそれぞ
れ通電しても、単一の電源を共通配線により使用して両
電極に通電するようにしてもよい。このような構成から
成る電解槽の三次元電極室6に下方から矢印で示すよう
に被処理水を供給しながら通電を行うと、前記各固定床
型三次元電極10が図示の如く下面が正に上面が負に分極
して各三次元電極10の下面に多孔質陽極が形成され、前
記被処理水はこの多孔質陽極に接触して微生物の滅菌が
行われる。更に該被処理水は上面の多孔質陰極に接触し
てカルシウム、マグネシウム及び鉄イオン等がそれらの
水酸化物等として析出して除去されかつ次亜塩素酸イオ
ンや塩素ガス等の有効塩素成分が上記式(1)に従って塩
素イオンに変換されて微生物及び有効塩素成分が殆ど含
まれない状態で通孔4を通して平板型電極室7に供給さ
れる。この平板型電極室7では、前記固定床型三次元電
極室6で生成した塩素イオンが酸化又は還元されて次亜
塩素酸イオンや塩素ガスに変換され、法令の規定に合致
した有効塩素成分を有する飲料水等として被処理水取出
口2から取り出され、所定用途に使用される。A flat plate type anode 13 and a flat plate type cathode 14 which are vertically positioned are installed in the flat plate type electrode chamber 7, and the effective current density thereof becomes larger than that of the fixed bed type electrode 10 when energized. To do so. The fixed bed type three-dimensional electrode 10 and the flat plate type electrodes 13 and 14 may be energized by separate power sources, or a single power source may be used by common wiring to energize both electrodes. When current is supplied from below to the three-dimensional electrode chamber 6 of the electrolytic cell having such a structure as shown by the arrow, each fixed bed type three-dimensional electrode 10 has a positive bottom surface as shown in the drawing. The upper surface of the three-dimensional electrode 10 is negatively polarized to form a porous anode on the lower surface of each three-dimensional electrode 10. The water to be treated is brought into contact with the porous anode to sterilize microorganisms. Further, the water to be treated comes into contact with the porous cathode on the upper surface and calcium, magnesium, iron ions, etc. are deposited and removed as hydroxides thereof, and effective chlorine components such as hypochlorite ions and chlorine gas are removed. According to the above formula (1), it is converted into chlorine ions and supplied to the flat plate type electrode chamber 7 through the through hole 4 in a state in which microorganisms and effective chlorine components are hardly contained. In the flat plate type electrode chamber 7, the chlorine ions generated in the fixed bed type three-dimensional electrode chamber 6 are oxidized or reduced to be converted to hypochlorite ion or chlorine gas, and an effective chlorine component conforming to the regulations of the law is obtained. It is taken out from the water to be treated 2 as drinking water and the like and is used for a predetermined purpose.
【0019】図2は、図1の電解槽の改良に係わるもの
で図1と同一部材には同一符号を付して説明を省略す
る。三次元電極室6と平板型電極室7とは中央に図1の
通孔4より径の大きい被処理水流通用の通孔4′が形成
された絶縁材料から成る隔離板5′により区画され、前
記通孔4′には円柱状の接続ロッド15が挿入されてい
る。該接続ロッド15の下端は三次元電極室内6内の給電
用陽極8に接続し、かつ該ロッド16の上端は平板型電極
室7内に平行に離間して設置されたメッシュ状あるいは
板状の陽極13′及び陰極14′のうち、下方に位置する陰
極14′に接続されている。この電解槽を使用する場合も
図1の場合と同様に、被処理水が三次元電極10の多孔質
陽極に接触して微生物の滅菌が行われる。更に該被処理
水は上面の多孔質陰極に接触してカルシウム等がそれら
の水酸化物等として析出して除去されかつ次亜塩素酸イ
オン等の有効塩素成分を殆ど含まれない状態で通孔4′
を通して平板型電極室7に供給される。 この平板型電
極室7でも同様にして被処理水の電解が行われ、法令の
規定に合致した有効塩素成分を有する飲料水等として被
処理水取出口2から取り出され、所定用途に使用され
る。FIG. 2 relates to the improvement of the electrolytic cell of FIG. 1, and the same members as those of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The three-dimensional electrode chamber 6 and the flat plate type electrode chamber 7 are partitioned by a separator plate 5'made of an insulating material in which a through hole 4'for treating water distribution having a diameter larger than that of the through hole 4 in FIG. A cylindrical connecting rod 15 is inserted into the through hole 4 '. The lower end of the connecting rod 15 is connected to the power-supplying anode 8 in the three-dimensional electrode chamber 6, and the upper end of the rod 16 is in the form of a mesh or a plate installed in parallel in the flat plate type electrode chamber 7. It is connected to the lower cathode 14 'of the anode 13' and the cathode 14 '. When this electrolytic cell is used, the water to be treated comes into contact with the porous anode of the three-dimensional electrode 10 to sterilize the microorganisms, as in the case of FIG. Further, the water to be treated passes through the porous cathode on the upper surface in a state in which calcium and the like are precipitated and removed as hydroxides thereof and are removed, and effective chlorine components such as hypochlorite ions are hardly contained. 4 '
Through the flat plate type electrode chamber 7. In this flat plate type electrode chamber 7 as well, electrolysis of the water to be treated is carried out in the same manner, and it is taken out from the water to be treated 2 as drinking water or the like having an effective chlorine component conforming to the regulations of the law and used for a predetermined purpose. .
【0020】図3は、図1の電解槽をカップ式自動販売
機の貯水の改質処理に使用した状態を示す概略図であ
る。カップ式自動販売機の希釈水となる水道水等は予め
濾過器16により固形不純物が除去された後、箱状のカッ
プ式自動販売機用貯留タンク17に供給される。該タンク
17内の貯水18は電解槽3が接続された循環ライン19を循
環し該電解槽3の三次元電極室6で微生物の滅菌及び有
効塩素成分の除去が行われかつ平板型電極室7で所定量
の有効塩素成分が再度生成した後、前記貯留タンク17に
戻るようにしてある。従って該タンク17内の貯水18は常
に微生物が存在せずしかも所定量の有効塩素成分が含有
される飲料水として法令に適合した水となっている。該
貯留タンク17内の貯水18はコック20を開くことにより紙
コップ21に給水され、別に供給される濃厚原液と混合さ
れて清涼飲料水等として販売される。FIG. 3 is a schematic view showing a state in which the electrolytic cell of FIG. 1 is used for reforming the stored water of a cup type vending machine. Tap water or the like to be diluted water of the cup type vending machine is supplied to a box-shaped cup type vending machine storage tank 17 after solid impurities are removed by a filter 16 in advance. The tank
The stored water 18 in 17 circulates through a circulation line 19 connected to the electrolytic cell 3 to sterilize microorganisms and remove effective chlorine components in the three-dimensional electrode chamber 6 of the electrolytic cell 3 and to dispose in the flat plate type electrode chamber 7. After the fixed amount of available chlorine component is generated again, it is returned to the storage tank 17. Therefore, the stored water 18 in the tank 17 is water that does not always contain microorganisms and that complies with the law as drinking water containing a predetermined amount of available chlorine components. The water 18 stored in the storage tank 17 is supplied to the paper cup 21 by opening the cock 20, and is mixed with the concentrated stock solution supplied separately and sold as soft drink.
【0021】図4は、本発明方法の電解槽として使用可
能な電解槽の他の例を示す概略縦断面図である。底板中
央に被処理水供給口31を、又天板中央に被処理水取出口
32をそれぞれ有する短寸円筒状の三次元電極式電解槽33
内には、図1の固定床型三次元電極と同一の固定床型三
次元陽極34及び平板型陰極35が設置されて単極型電解槽
を構成している。該三次元電極式電解槽33の被処理水取
出口32には、平板型電極式電解槽36の被処理水供給口37
が連結され、該平板型電極式電解槽36内には垂直方向に
位置する平板型陽極38と平板型陰極39が設置され、該平
板型電極式電解槽36で処理された被処理水は被処理水取
出口40から取り出される。図示の例においても図1の場
合と同様に所定濃度の有効塩素成分を含む微生物を含ま
ない飲料水等を生成することができ、しかも固定床型電
極34と平板型電極38、39が別個の電解槽内に設置されて
いるため短絡が生ずることはない。FIG. 4 is a schematic vertical sectional view showing another example of the electrolytic cell which can be used as the electrolytic cell of the method of the present invention. Treated water supply port 31 in the center of the bottom plate, and treated water outlet in the center of the top plate
Short cylindrical three-dimensional electrode type electrolytic cell 33 having 32 respectively
A fixed-bed type three-dimensional anode 34 and a flat-plate type cathode 35, which are the same as the fixed-bed type three-dimensional electrode of FIG. 1, are installed therein to form a single electrode type electrolytic cell. The treated water outlet 32 of the three-dimensional electrode type electrolytic bath 33 is provided with the treated water supply port 37 of the flat plate type electrode electrolytic bath 36.
Are connected to each other, and a flat plate type anode 38 and a flat plate type cathode 39 that are vertically positioned are installed in the flat plate electrode type electrolytic bath 36, and the water to be treated treated in the flat plate electrode type electrolytic bath 36 is not treated. It is taken out from the treated water outlet 40. Also in the illustrated example, similar to the case of FIG. 1, it is possible to produce drinking water or the like which does not contain microorganisms containing an effective chlorine component of a predetermined concentration, and the fixed bed type electrode 34 and the flat plate type electrodes 38, 39 are separate. Since it is installed in the electrolytic cell, no short circuit will occur.
【0022】[0022]
【実施例】次に本発明方法による被処理水処理の実施例
を記載するが、本実施例は本発明を限定するものではな
い。EXAMPLES Next, examples of treatment of water to be treated by the method of the present invention will be described, but these examples do not limit the present invention.
【実施例1】透明な硬質ポリ塩化ビニル樹脂製の高さ80
mm、内径40mmのフランジ付円筒形である図1に示し
た電解槽を使用して被処理水の電解処理を行った。電解
槽の固定床型電極室には、炭素繊維から成りかつ酸化イ
リジウム被覆チタン材から成る多孔質金属材料を密着さ
せた直径38mm、厚さ10mmの固定床型三次元電極3個
を、開口率80%で直径38mm及び厚さ1.2 mmのポリエ
チレン樹脂製隔膜4枚で挟み込み、上下両端の隔膜にそ
れぞれ白金をその表面にメッキしたチタン製である直径
38mm厚さ 1.0mmのメッシュ状給電用陽極及び給電用
陰極を接触させて設置した。Example 1 Height 80 made of transparent hard polyvinyl chloride resin
mm, an inner diameter of 40 mm and a flanged cylindrical electrolytic bath shown in FIG. 1 were used to electrolyze the water to be treated. In the fixed-bed type electrode chamber of the electrolytic cell, three fixed-bed type three-dimensional electrodes with a diameter of 38 mm and a thickness of 10 mm, to which a porous metal material made of carbon fiber and titanium material coated with iridium oxide was adhered, were used. The diameter is made of titanium, which is sandwiched between four polyethylene resin diaphragms with a diameter of 38 mm and a thickness of 1.2 mm at 80%, and platinum is plated on the upper and lower diaphragms respectively.
A 38 mm thick 1.0 mm mesh power feeding anode and a power feeding cathode were placed in contact with each other.
【0023】又電解槽の平板型電極室にはの縦30mm、
横30mm及び厚さ1.0 mmの寸法安定性電極から成る陽
極、及びチタン製の縦30mm、横30mm及び厚さ1.0 m
mの陰極を互いに5.0 mm離間させて設置した。両電極
室は、塩化ビニル樹脂製の直径40mmで中央に直径10m
mの通孔が形成された隔離板で区画した。前記両電極は
別個の電源により通電し、固定床型電極室に電圧16Vが
印加され、その実効電流密度が0.15A/dm2 となるよ
うにし、又平板型電極室に電圧2.5 Vが印加され、その
実効電流密度が3.5 A/dm2 となるようにした。水道
水に微生物を添加して微生物数が3400個/ミリリットル
とした試験水3.0リットルを被処理水として前記電解槽
内を固定床型電極室、平板型電極室の順に1.2 リットル
/分の流速で通過させ電解処理を行った。電解槽から取
り出された被処理水を貯留タンク内に導いた後、再度電
解槽に供給して複数回電解槽を通過させ所定時間経過後
の貯留タンク内の微生物数及び有効塩素成分を測定した
ところ表1の通りであった。Further, the plate type electrode chamber of the electrolytic cell has a vertical length of 30 mm,
Anode consisting of dimensionally stable electrodes 30 mm wide and 1.0 mm thick, and 30 mm long, 30 mm wide and 1.0 m thick made of titanium
m cathodes were placed 5.0 mm apart from each other. Both electrode chambers are made of vinyl chloride resin and have a diameter of 40 mm and a diameter of 10 m in the center.
It was partitioned by a separator plate having m through holes. Both electrodes are energized by separate power sources, a voltage of 16 V is applied to the fixed-bed electrode chamber so that the effective current density is 0.15 A / dm 2, and a voltage of 2.5 V is applied to the flat electrode chamber. , Its effective current density was set to 3.5 A / dm 2 . Microorganisms were added to tap water to make the number of microorganisms 3400 / milliliter, and 3.0 liters of test water was treated water, and the inside of the electrolyzer was a fixed bed type electrode chamber and a flat plate type electrode chamber at a flow rate of 1.2 liters / min. It was made to pass and electrolytic treatment was performed. After introducing the treated water taken out from the electrolysis tank into the storage tank, it was supplied to the electrolysis tank again and passed through the electrolysis cell multiple times to measure the number of microorganisms and the effective chlorine component in the storage tank after a predetermined time elapsed. However, the results are shown in Table 1.
【0024】[0024]
【実施例2】実施例1の電解槽の隔離板を除いたこと以
外は同様にして被処理水の処理を行った。その結果を表
2に示した。表2から電解槽通過後の微生物数が若干上
昇しているがこれは固定床型電極及び平板型電極間に被
処理水を介して電解電流の短絡が生じているためと推測
される。Example 2 Treated water was treated in the same manner as Example 1 except that the separator of the electrolytic cell was removed. The results are shown in Table 2. From Table 2, there is a slight increase in the number of microorganisms after passing through the electrolytic cell, which is presumed to be due to a short circuit of the electrolytic current between the fixed bed electrode and the flat plate electrode through the water to be treated.
【0025】[0025]
【比較例1】平板型電極に通電しなかったこと以外は実
施例1と同様の条件で被処理水の処理を行い、電解槽通
過前後の微生物数及び有効塩素成分を測定したところ表
3の通りであった。表3から平板型電極を使用しないと
電解槽から取り出される被処理水中に殆ど有効塩素成分
が含有されないことが判る。[Comparative Example 1] The treated water was treated under the same conditions as in Example 1 except that the flat plate electrode was not energized, and the numbers of microorganisms and effective chlorine components before and after passing through the electrolytic cell were measured. It was on the street. It can be seen from Table 3 that the effective chlorine component is scarcely contained in the water to be treated taken out from the electrolytic cell unless the flat plate type electrode is used.
【0026】 [0026]
【0027】[0027]
【実施例3】図3に示した電解槽を使用して被処理水の
電解処理を行った。内径40mm、高さ30mmの円筒形の
透明な塩化ビニル樹脂製の固定床型電極式電解槽内に
は、炭素繊維から成る直径38mm、厚さ20mmの固定床
型三次元陽極1個と、チタン製の直径38mm及び厚さ1.
0 mmの板状陰極を設置した。又縦20mm、横40mm及
び高さ40mmの箱型の平板型電極式電解槽内には縦15m
m、横35mm及び厚さ1.0 mmの寸法安定性電極から成
る陽極、及びチタン製の縦15mm、横35mm及び厚さ1.
0 mmの陰極を互いに十分離間させて設置した。前記両
電解槽に別個の電源により通電し、固定床型三次元電極
式電解槽に電圧5.5 Vが印加され、その実効電流密度が
0.25A/dm2 となるようにし、又平板型電極式電解槽
に電圧2.5 Vが印加され、その実効電流密度が1.5 A/
dm2 となるようにした。実施例1と同じ被処理水を両
電解槽を通過させて実施例1と同様にして電解処理を行
った。電解槽から取り出された被処理水を再度該電解槽
に供給して複数回電解槽を通過させ所定時間経過後の貯
留タンク内の微生物数及び有効塩素成分を測定したとこ
ろ表4の通りであった。Example 3 Using the electrolytic bath shown in FIG. 3, the water to be treated was electrolyzed. A cylindrical fixed-bed electrode electrolysis cell made of transparent transparent vinyl chloride resin with an inner diameter of 40 mm and a height of 30 mm has a fixed-bed three-dimensional anode made of carbon fiber with a diameter of 38 mm and a thickness of 20 mm and titanium. 38mm diameter and thickness 1.
A 0 mm plate-shaped cathode was installed. Also, the height is 15 m in a box-type flat plate electrode type electrolytic cell with a length of 20 mm, width of 40 mm and height of 40 mm.
m, width 35 mm and thickness 1.0 mm, an anode consisting of dimensionally stable electrodes, and titanium made 15 mm in length, 35 mm in width and thickness 1.
The 0 mm cathodes were placed well separated from each other. Both of the electrolyzers are energized by separate power sources, a voltage of 5.5 V is applied to the fixed bed type three-dimensional electrode type electrolyzer, and the effective current density is
0.25 A / dm 2, and a voltage of 2.5 V was applied to the flat plate electrode type electrolytic cell, and the effective current density was 1.5 A / dm 2.
It was set to dm 2 . The same water to be treated as in Example 1 was passed through both electrolytic cells to carry out electrolytic treatment in the same manner as in Example 1. The water to be treated taken out of the electrolytic cell was supplied to the electrolytic cell again and passed through the electrolytic cell a plurality of times to measure the number of microorganisms and the effective chlorine component in the storage tank after a lapse of a predetermined time. It was
【0028】[0028]
【表4】 [Table 4]
【0029】[0029]
【発明の効果】本発明方法は、微生物及び有効塩素成分
を含む被処理水を固定床型三次元電極と接触させて電解
処理し前記微生物の滅菌処理を行った後に、該被処理水
を平板型電極と接触させて処理することを特徴とする微
生物を含む被処理水の電解処理方法である(請求項
1)。微生物を含有する被処理水を電気化学的に処理す
る従来の方法では前記微生物の滅菌だけでなく、前記被
処理水に含まれることのある有効塩素成分も分解してし
まう。このようにして得られる被処理水中には殆ど微生
物が含まれないため有効塩素成分が含有されていなくて
も実質的な弊害は生じないが、処理済の被処理水を飲料
水として使用する場合には法令の規定により一定値以上
の有効塩素成分を含有しなければならない。According to the method of the present invention, the water to be treated containing microorganisms and effective chlorine components is brought into contact with a fixed bed type three-dimensional electrode for electrolytic treatment to sterilize the microorganisms, and then the treated water is flattened. A method for electrolytically treating water to be treated containing microorganisms, which comprises treating the treated water by contacting it with a mold electrode (claim 1). In the conventional method of electrochemically treating the water to be treated containing the microorganism, not only the sterilization of the microorganism but also the effective chlorine component contained in the water to be treated is decomposed. Since the treated water thus obtained contains almost no microorganisms, it does not cause any substantial harm even if it does not contain an effective chlorine component, but when the treated water after treatment is used as drinking water. Must contain more than a certain amount of available chlorine components as required by law.
【0030】従って微生物と有効塩素成分を被処理水と
して使用して改質処理を行い飲料水を生成する場合には
微生物を完全に滅菌し有効塩素成分を部分的に分解して
若干量の有効塩素成分を残存させることが理想である。
しかし実際には所望量の有効塩素成分を残存させること
は不可能に近い。本発明は、微生物と有効塩素成分を含
む被処理水を固定床型三次元電極を使用して電解的に処
理して微生物の滅菌と有効塩素成分の分解をほぼ完全に
行った後、有効塩素成分の分解物である塩素イオン等を
含む該被処理水を平板型電極で電解することにより再度
所定量の有効塩素成分を該被処理水中に生成させ、法令
の規定に適合した飲料水等を得ることを可能にしたもの
である。Therefore, when a modification treatment is carried out using microorganisms and effective chlorine components as the water to be treated to produce drinking water, the microorganisms are completely sterilized and the effective chlorine components are partially decomposed to obtain a small amount of effective water. Ideally, the chlorine component should remain.
However, in reality, it is almost impossible to leave a desired amount of available chlorine component. The present invention is a method of electrolytically treating water to be treated containing microorganisms and effective chlorine components using a fixed bed type three-dimensional electrode to sterilize microorganisms and decompose effective chlorine components almost completely. A predetermined amount of effective chlorine component is again generated in the water to be treated by electrolyzing the water to be treated containing a chlorine ion or the like, which is a decomposition product of the components, with a flat plate type electrode, and drinking water etc. conforming to the stipulations of laws and regulations is obtained. It made it possible to obtain.
【0031】特にカップ式自動販売機あるいはロビーや
プラットホーム、及び列車内や船舶内の給水器の水は貯
留タンクに貯留され随時給水されるため長期間タンク内
に貯留されることが多く微生物の繁殖が生じ易く、かつ
前述の通り規定量以上の有効塩素成分を含有することが
義務付けられている。本発明を該カップ式自動販売機の
貯水やロビーやプラットホームの給水器の貯水に適用す
ると(請求項2)、繁殖した微生物の滅菌と有効塩素成
分の生成を同時に行うことができ法令に適合した清澄な
水を原料にした清涼飲料水等を提供することができる。
前記固定床型三次元電極と平板型電極は、同一電解槽内
に設置しても別個の電解槽内に設置してもよいが設置面
積の減少のために同一電解槽内に設置することが好まし
い(請求項3)。しかし同一電解槽内に両電極を設置す
る場合には両電極が短絡しないような手段を講ずること
が望ましく、例えば被処理水の流通を阻害しない程度の
通孔を有する絶縁性の隔離板で両電極を収容した電極室
を区画する。In particular, the water of the cup-type vending machine, the lobby or platform, and the water supply device in the train or the ship is stored in the storage tank and is supplied as needed, so that it is often stored in the tank for a long period of time. Is likely to occur, and as described above, it is obligatory to contain an effective chlorine component in a specified amount or more. When the present invention is applied to the water storage of the cup type vending machine and the water storage of the water supply device of the lobby or platform (Claim 2), it is possible to sterilize the propagated microorganisms and produce the effective chlorine component at the same time, which complies with the law. It is possible to provide soft drinks and the like made from clear water.
The fixed bed type three-dimensional electrode and the flat plate type electrode may be installed in the same electrolytic cell or separate electrolytic cells, but they may be installed in the same electrolytic cell to reduce the installation area. Preferred (Claim 3). However, when both electrodes are installed in the same electrolytic cell, it is desirable to take measures to prevent both electrodes from short-circuiting. For example, an insulating separator having a through hole that does not impede the flow of the water to be treated may be used. An electrode chamber containing the electrode is defined.
【0032】又有効塩素成分の分解と該分解物からの有
効塩素成分の生成は同時に起こる可能性もあり、本発明
では固定床型三次元電極室で有効塩素成分の分解を、又
平板型電極室で有効塩素成分の生成を生じさせることが
必要である。該両反応は電極の電流密度による影響が大
きく、低電流密度では有効塩素成分の分解が、高電流密
度では有効塩素成分のが生じ易い。一般に固定床型三次
元電極は高表面積を有し平板型電極は低表面積である。
従って通常の固定床型三次元電極及び平板型電極をその
まま使用すると固定床型三次元電極の電流密度が低く有
効塩素成分の分解が生じ、平板型電極の電流密度が高く
有効塩素成分の生成が生じて(請求項4)、所望の有効
塩素成分濃度を有し微生物を殆ど含有しない飲料水等を
得ることができる。Further, the decomposition of the effective chlorine component and the formation of the effective chlorine component from the decomposition product may occur simultaneously. In the present invention, the effective chlorine component is decomposed in the fixed bed type three-dimensional electrode chamber, and the flat plate type electrode is used. It is necessary to cause the production of available chlorine components in the chamber. The both reactions are greatly affected by the current density of the electrode, and the effective chlorine component is likely to be decomposed at a low current density and the effective chlorine component is easily generated at a high current density. In general, a fixed bed type three-dimensional electrode has a high surface area and a flat plate type electrode has a low surface area.
Therefore, if the ordinary fixed bed type three-dimensional electrode and flat plate type electrode are used as they are, the current density of the fixed bed type three dimensional electrode is low and the effective chlorine component is decomposed, and the current density of the flat plate type electrode is high and the effective chlorine component is generated. As a result (claim 4), it is possible to obtain drinking water or the like having a desired effective chlorine component concentration and containing almost no microorganisms.
【図1】本発明方法の電解槽として使用可能な複極式固
定床型電極と平板型電極を収容した単一電解槽の例を示
す概略縦断面図。FIG. 1 is a schematic vertical sectional view showing an example of a single electrolytic cell containing a bipolar fixed bed type electrode and a plate type electrode which can be used as an electrolytic cell of the method of the present invention.
【図2】図1の電解槽の改良に係わる電解槽を示す概略
縦断面図。FIG. 2 is a schematic vertical sectional view showing an electrolytic cell relating to the improvement of the electrolytic cell of FIG.
【図3】図1の電解槽をカップ式自動販売機の貯水の改
質処理に使用した状態を示す概略図FIG. 3 is a schematic view showing a state in which the electrolytic cell of FIG. 1 is used for reforming stored water of a cup type vending machine.
【図4】本発明方法の電解槽として使用可能な電解槽の
他の例を示す概略縦断面図。FIG. 4 is a schematic vertical sectional view showing another example of an electrolytic cell that can be used as the electrolytic cell of the method of the present invention.
3・・・電解槽本体 4・・・通孔 5・・・隔離板
6・・・三次元電極室 7・・・平板型電極室 8・・・給電用陽極 9・・・
給電用陰極室 10・・・固定床型電極 13・・・平板型
陽極 14・・・平板型陰極 17・・・貯留タンク 18・
・・貯水 21・・・紙コップ 33・・・三次元電極式電
解槽 34・・・三次元電極 36・・・平板型電極式電解
槽 38・・・平板型陽極 39・・・平板型陰極3 ... Electrolyzer body 4 ... Through hole 5 ... Separator
6 ... Three-dimensional electrode chamber 7 ... Flat plate type electrode chamber 8 ... Anode for feeding 9 ...
Power supply cathode chamber 10 ... Fixed bed type electrode 13 ... Plate type anode 14 ... Plate type cathode 17 ... Storage tank 18 ...
・ ・ Water storage 21 ・ ・ ・ paper cup 33 ・ ・ ・ three-dimensional electrode type electrolytic cell 34 ・ ・ ・ three-dimensional electrode 36 ・ ・ ・ plate type electrode electrolytic cell 38 ・ ・ ・ plate type anode 39 ・ ・ ・ plate type cathode
【手続補正書】[Procedure amendment]
【提出日】平成5年9月20日[Submission date] September 20, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
【図4】 [Figure 4]
Claims (4)
を固定床型三次元電極と接触させて電解処理し前記微生
物の滅菌処理を行った後に、該被処理水を平板型電極と
接触させて処理することを特徴とする微生物を含む被処
理水の電解処理方法。1. The water to be treated containing a microorganism and an effective chlorine component is brought into contact with a fixed bed type three-dimensional electrode for electrolytic treatment to sterilize the microorganism, and then the water to be treated is brought into contact with a flat plate type electrode. A method for electrolytic treatment of water to be treated containing microorganisms, characterized in that
び/又は給水器の貯水である請求項1に記載の方法。2. The method according to claim 1, wherein the water to be treated is water stored in a cup-type vending machine and / or water stored in a water dispenser.
電解槽内に設置されている請求項1又は2に記載の方
法。3. The method according to claim 1, wherein the fixed bed type three-dimensional electrode and the plate type electrode are installed in a single electrolytic cell.
板型電極の実効電流密度より小さくなるようにした請求
項1から3までのいずれかに記載の方法。4. The method according to claim 1, wherein the effective current density of the fixed bed type three-dimensional electrode is smaller than that of the flat plate type electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23225591A JP3150370B2 (en) | 1991-08-19 | 1991-08-19 | Electrolytic treatment method for treated water containing microorganisms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23225591A JP3150370B2 (en) | 1991-08-19 | 1991-08-19 | Electrolytic treatment method for treated water containing microorganisms |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0686981A true JPH0686981A (en) | 1994-03-29 |
JP3150370B2 JP3150370B2 (en) | 2001-03-26 |
Family
ID=16936408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23225591A Expired - Fee Related JP3150370B2 (en) | 1991-08-19 | 1991-08-19 | Electrolytic treatment method for treated water containing microorganisms |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3150370B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1945575A1 (en) * | 2005-09-14 | 2008-07-23 | Korea Ocean Research and Development Institute | Electrolytic sterilizing apparatus for ship ballast water |
JP2013108104A (en) * | 2011-11-17 | 2013-06-06 | Permelec Electrode Ltd | Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method |
CN103466757A (en) * | 2013-10-11 | 2013-12-25 | 中国水电顾问集团中南勘测设计研究院 | Baffled electrolytic reaction tank |
CN103739039A (en) * | 2014-01-16 | 2014-04-23 | 化工部长沙设计研究院 | Multi-dimensional electric catalytic equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102248133B1 (en) * | 2019-06-11 | 2021-05-03 | 이정열 | Electro-plating apparatus |
-
1991
- 1991-08-19 JP JP23225591A patent/JP3150370B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1945575A1 (en) * | 2005-09-14 | 2008-07-23 | Korea Ocean Research and Development Institute | Electrolytic sterilizing apparatus for ship ballast water |
EP1945575A4 (en) * | 2005-09-14 | 2010-03-03 | Korea Ocean Res Dev Inst | Electrolytic sterilizing apparatus for ship ballast water |
JP2013108104A (en) * | 2011-11-17 | 2013-06-06 | Permelec Electrode Ltd | Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method |
CN103466757A (en) * | 2013-10-11 | 2013-12-25 | 中国水电顾问集团中南勘测设计研究院 | Baffled electrolytic reaction tank |
CN103739039A (en) * | 2014-01-16 | 2014-04-23 | 化工部长沙设计研究院 | Multi-dimensional electric catalytic equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3150370B2 (en) | 2001-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103936109A (en) | Drinking water electrolysis preparation device | |
JPH10151463A (en) | Water treatment method | |
CN103951020A (en) | Health water dispenser | |
JP2014014645A (en) | Artificial dialysis water manufacturing installation for personal dialysis | |
CN203833744U (en) | Commercial water dispenser | |
CN103951118A (en) | Business water machine | |
CN203833687U (en) | Healthy water dispenser | |
JP3150370B2 (en) | Electrolytic treatment method for treated water containing microorganisms | |
JP3014427B2 (en) | Treatment of treated water | |
JP3056511B2 (en) | Treatment water treatment equipment | |
JP3214724B2 (en) | Fixed-bed type three-dimensional electrode type electrolytic cell | |
KR19990085959A (en) | Water purification and sterilizing water production equipment | |
JPH04118090A (en) | Electrolytic treatment of water to be treated | |
JPH05309362A (en) | Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment | |
JP2971571B2 (en) | 3D electrode type electrolytic cell | |
JPH04219193A (en) | Treatment of water to be treated | |
JPH05329483A (en) | Treatment of water to be treated and bipolar electrolytic cell used therefor | |
JP3180318B2 (en) | Electrochemical treatment of treated water containing microorganisms | |
JPH09299955A (en) | Electrolytic cell and treatment of water using the same | |
JP3664274B2 (en) | Electrolytic treatment method of water to be treated | |
JPH04219192A (en) | Treatment of water to be treated | |
JPH05337471A (en) | Electrochemical treatment of water to be treated | |
JPH11221566A (en) | Production of electrolytic water | |
JPH1043765A (en) | Electrolyzer for electrolytic treatment of water to be treated | |
JPH09117768A (en) | Electrolytic treatment of water to be treated |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |