[go: up one dir, main page]

JPH0686933A - Production of catalyst for producing methacrylic acid - Google Patents

Production of catalyst for producing methacrylic acid

Info

Publication number
JPH0686933A
JPH0686933A JP4240400A JP24040092A JPH0686933A JP H0686933 A JPH0686933 A JP H0686933A JP 4240400 A JP4240400 A JP 4240400A JP 24040092 A JP24040092 A JP 24040092A JP H0686933 A JPH0686933 A JP H0686933A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
sulfate
ammonium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4240400A
Other languages
Japanese (ja)
Other versions
JP3316881B2 (en
Inventor
Koichi Nagai
功一 永井
Seiichi Hamano
誠一 浜野
Yoshihiko Nagaoka
義彦 長岡
Toshiaki Ui
利明 宇井
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP24040092A priority Critical patent/JP3316881B2/en
Publication of JPH0686933A publication Critical patent/JPH0686933A/en
Application granted granted Critical
Publication of JP3316881B2 publication Critical patent/JP3316881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 高い反応活性、選択性及び長い触媒寿命を有
するメタクリル酸製造用触媒の提供。 【構成】 一般式 PaMobVcAsdXeYfOg (式中、P、Mo、V、As、Oはそれぞれリン、モリ
ブデン、バナジウム、ヒ素及び酸素を表し、Xはカリウ
ム、ルビジウム、セシウム及びタリウムからなる群より
選ばれた少なくとも一種の元素を表し、Yは銅、銀、ビ
スマス、鉄、コバルト、アンチモン、ランタン及びセリ
ウムからなる群より選ばれた少なくとも一種の元素を表
す)で示され、実質的にアンモニウム根及び硫酸根を含
有しないヘテロポリ酸の部分中和塩からなるメタクリル
酸製造用触媒を製造する際に、全ての触媒原料を水に溶
解又は懸濁させた溶液のpHが3〜9の範囲になるよう
にアンモニウム根及び硫酸根を存在させ、該溶液を濃縮
乾燥して得られる固体を不活性ガス雰囲気下に400〜
500℃で焼成する。
(57) [Summary] (Modified) [Objective] To provide a catalyst for producing methacrylic acid having high reaction activity, selectivity and long catalyst life. [Structure] General formula PaMobVcAsdXeYfOg (wherein P, Mo, V, As, and O represent phosphorus, molybdenum, vanadium, arsenic, and oxygen, respectively, and X is at least selected from the group consisting of potassium, rubidium, cesium, and thallium. Represents one element, and Y represents at least one element selected from the group consisting of copper, silver, bismuth, iron, cobalt, antimony, lanthanum and cerium), and substantially represents an ammonium group and a sulfate group. When producing a catalyst for producing methacrylic acid consisting of a partially neutralized salt of heteropolyacid, which is not contained, ammonium root is adjusted so that the pH of the solution obtained by dissolving or suspending all the catalyst raw materials in water is in the range of 3 to 9. And sulfate, and the solid obtained by concentrating and drying the solution is added to 400-
Bake at 500 ° C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相接触酸化によるメタ
クリル酸の製造に用いられるヘテロポリ酸系触媒の製造
方法に関する。詳しくはメタクロレイン、イソブタン等
を分子状酸素で気相接触酸化してメタクリル酸を製造す
るために用いられるヘテロポリ酸系触媒の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a heteropolyacid catalyst used for producing methacrylic acid by vapor phase catalytic oxidation. More particularly, it relates to a method for producing a heteropolyacid catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein, isobutane, etc. with molecular oxygen.

【0002】[0002]

【従来の技術】メタクロレインを気相接触酸化してメタ
クリル酸を製造するための触媒は種々提案されており
(特開昭50−101316号、特開昭50−1425
10号、特開昭59−4445号等)、既にその一部は
工業的規模の生産に用いられている。またイソ酪酸の酸
化脱水素(特開昭57−72936号等)、イソブチル
アルデヒドの酸化(特開昭57−144238号等)に
よりメタクリル酸を製造するための触媒も良く知られて
いる。
2. Description of the Related Art Various catalysts have been proposed for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein (JP-A-50-101316, JP-A-50-1425).
No. 10, JP-A-59-4445, etc.), a part of which is already used for industrial scale production. Further, catalysts for producing methacrylic acid by oxidative dehydrogenation of isobutyric acid (JP-A-57-72936, etc.) and oxidation of isobutyraldehyde (JP-A-57-144238, etc.) are also well known.

【0003】更に、イソブチレン又は第三級ブタノール
を酸化してメタクリル酸、メタクロレインを作るための
触媒(特開昭55−127328号)、最近ではイソブ
タンを直接酸化してメタクリル酸、メタクロレインを得
るための触媒(特開平2−42032号,特開平3−6
3139号等)も提案されている。
Further, a catalyst for oxidizing methacrylic acid and methacrolein by oxidizing isobutylene or tertiary butanol (JP-A-55-127328), and recently, direct oxidation of isobutane to obtain methacrylic acid and methacrolein. Catalysts (JP-A-2-42032, JP-A-3-6)
No. 3139) is also proposed.

【0004】これらの反応に用いられる触媒としては、
モリブデン及びリンを主成分とするヘテロポリ酸及び又
はその塩の構造を有し、又バナジウムによるモリブデン
の一部置換、銅、アンチモン、ヒ素等の助触媒成分の添
加が有効であることが知られている。
The catalyst used in these reactions is
It is known that it has a structure of a heteropolyacid containing molybdenum and phosphorus as main components and / or a salt thereof, and that partial replacement of molybdenum with vanadium and addition of cocatalyst components such as copper, antimony and arsenic are effective. There is.

【0005】調製法に関しては、カルボン酸等の添加
(特開昭51−136615号)、ピリジン類の添加
(特開昭57−177347号)、キノリン類の添加
(特開昭60−209258号)、硝酸アンモニウムの
添加(特開昭57−165040号)等各種添加物の使
用、硝酸根を含まない原料を使用し80℃以上の温度で
スラリーを熟成する方法(特開昭59−12758
号)、また不活性ガス雰囲気焼成(特開昭57−165
040号)、アンモニア及び水蒸気雰囲気焼成(特開昭
58−61833号)等の焼成法など種々の改良がなさ
れてきている。
Regarding the preparation method, addition of carboxylic acid and the like (JP-A-51-136615), addition of pyridines (JP-A-57-177347) and addition of quinolines (JP-A-60-209258). , A method of using various additives such as the addition of ammonium nitrate (JP-A-57-165040), and aging the slurry at a temperature of 80 ° C. or higher using a raw material containing no nitrate radical (JP-A-59-12758).
No.) and firing in an inert gas atmosphere (JP-A-57-165).
040), ammonia and steam atmosphere firing (Japanese Patent Laid-Open No. 58-61833), and various other improvements have been made.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の知られている触媒系の問題点は、既に実用化されてい
るメタクロレインの酸化においても反応収率(活性と選
択性)と触媒寿命の両者を満足させる点で必ずしも十分
でないことである。例えばアクロレインからアクリル酸
を製造するためのMo−V系複合酸化物触媒に比べ、反
応の選択性が悪いばかりでなく反応活性と寿命も悪く、
従って大量の触媒が必要となり設備費用と触媒コストの
負担が大きいのが現状である。イソブタン、イソ酪酸な
どを原料とする場合も未だに工業化できていないのは触
媒の性能が十分でないことが大きな理由の一つである。
本発明の課題は現状の触媒を改良して、より高い反応活
性、選択性と、長い触媒寿命を合わせもつ触媒を提供す
ることにある。
However, the problems of these known catalyst systems are that both the reaction yield (activity and selectivity) and the catalyst life are long in the oxidation of methacrolein which has already been put to practical use. It is not always sufficient to satisfy For example, in comparison with a Mo-V type composite oxide catalyst for producing acrylic acid from acrolein, not only the selectivity of the reaction is poor but also the reaction activity and the life are poor,
Therefore, a large amount of catalyst is required and the burden of equipment cost and catalyst cost is large at present. One of the major reasons why the performance of the catalyst is not sufficient is that it has not been industrialized even when using isobutane, isobutyric acid or the like as a raw material.
An object of the present invention is to improve the existing catalyst to provide a catalyst having higher reaction activity, selectivity and long catalyst life.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記の課題
を達成するために、ヘテロポリ酸系の触媒の改良につい
て鋭意検討した結果、特定の方法で調製した触媒が上記
の目的を達成することを見い出し本発明に到達したもの
である。
In order to achieve the above-mentioned objects, the inventors of the present invention have made earnest studies on improvement of a heteropolyacid catalyst, and as a result, a catalyst prepared by a specific method achieves the above objects. The present invention has been discovered and has reached the present invention.

【0008】すなわち本発明は、一般式 PaMobVcAsdXeYfOg (式中、P、Mo、V、As、Oはそれぞれリン、モリ
ブデン、バナジウム、ヒ素及び酸素を表し、Xはカリウ
ム、ルビジウム、セシウム及びタリウムからなる群より
選ばれた少なくとも一種の元素を表し、Yは銅、銀、ビ
スマス、鉄、コバルト、アンチモン、ランタン及びセリ
ウムからなる群より選ばれた少なくとも一種の元素を表
し、また添字a、b、c、d、e、f及びgは各元素の
原子比を表し、b=12としたとき、a、c及びeは0
(ゼロ)を含まない3以下の値、d及びfは0(ゼロ)
を含む3以下の値、gは他の元素の原子価及び原子比に
よって決まる値である)で示され、実質的にアンモニウ
ム根及び硫酸根を含有しないヘテロポリ酸の部分中和塩
からなるメタクリル酸製造用触媒を製造する際に、全て
の触媒原料を水に溶解又は懸濁させた溶液のpHが3〜
9の範囲になるようにアンモニウム根及び硫酸根を存在
させ、該溶液を濃縮乾燥して得られる固体を不活性ガス
雰囲気下に400〜500℃で焼成することを特徴とす
るメタクリル酸製造用触媒の製造方法である。
That is, the present invention provides the general formula PaMobVcAsdXeYfOg (wherein P, Mo, V, As and O represent phosphorus, molybdenum, vanadium, arsenic and oxygen, respectively, and X represents a group consisting of potassium, rubidium, cesium and thallium. Represents at least one element selected from Y, Y represents at least one element selected from the group consisting of copper, silver, bismuth, iron, cobalt, antimony, lanthanum and cerium, and subscripts a, b, c, d, e, f and g represent the atomic ratio of each element, and when b = 12, a, c and e are 0
A value of 3 or less that does not include (zero), d and f are 0 (zero)
Methacrylic acid consisting of a partially neutralized salt of a heteropolyacid that does not substantially contain ammonium radicals and sulfate radicals, and g is a value of 3 or less, including g, and g is a value determined by the valence and atomic ratio of other elements. When producing a production catalyst, the pH of a solution obtained by dissolving or suspending all catalyst raw materials in water is 3 to
A catalyst for producing methacrylic acid, characterized in that an ammonium group and a sulfate group are present in the range of 9 and the solid obtained by concentrating and drying the solution is calcined at 400 to 500 ° C. in an inert gas atmosphere. Is a manufacturing method.

【0009】本発明の触媒の基本的な構造は、従来から
よく知られているリンモリブデン酸のカリウム、ルビジ
ウム、セシウム、タリウムによる部分中和塩であるが、
更に必須成分としてバナジウムを含んでいる。ヒ素はメ
タクリル酸選択性の向上に有効であり、この目的のため
に添加することが推奨される。またY元素も反応活性や
選択性の向上に効果があり含まれている方が望ましい。
中でも銅を選択した場合はその効果が大きい。
The basic structure of the catalyst of the present invention is a partially neutralized salt of phosphomolybdate, which is well known in the art, with potassium, rubidium, cesium and thallium.
Furthermore, vanadium is contained as an essential component. Arsenic is effective in improving methacrylic acid selectivity, and it is recommended to add it for this purpose. Further, it is desirable that the Y element is contained because it is effective in improving the reaction activity and the selectivity.
Above all, the effect is large when copper is selected.

【0010】これらの元素の組み合わせについては既に
公知であるが、触媒の性能についてはその組成と共に原
料、添加物、焼成法などの調製法によるところが大き
く、本発明の特定の調製条件を採用することにより更に
高性能な触媒となる。
Although the combination of these elements has already been known, the performance of the catalyst depends largely on the composition thereof as well as the preparation method such as raw materials, additives and calcination method, and the specific preparation conditions of the present invention should be adopted. Makes the catalyst even higher in performance.

【0011】本発明の一つの要件は、触媒前駆体を調製
する水溶液、懸濁物の段階でアンモニウム根及び硫酸根
を含んでいることである。このことは調製原料としてア
ンモニウム及び硫酸根を含むものを用いることにより容
易に達成できる。
One of the requirements of the present invention is to include ammonium radicals and sulfate radicals at the stage of the aqueous solution and suspension for preparing the catalyst precursor. This can be easily achieved by using a raw material containing ammonium and sulfate.

【0012】モリブデン及びアンモニウムの原料として
モリブデン酸アンモニウムを用いることが好ましい。酸
化モリブデン、リンモリブデン酸等を用いる場合にはア
ンモニウム根が所定の範囲に入るようにアンモニア等を
添加する必要がある。バナジウム原料としてはメタバナ
ジン酸アンモニウム、五酸化バナジウム等が使用でき
る。リン及びヒ素はリン酸、ヒ酸を用いるのが一般的で
あるがリン酸アンモニウム、ヒ酸アンモニウム又はリン
酸銅など他の必須成分との塩等の形で用いてもよい。硫
酸根はカリウム等のX成分及び/又は銅等のY成分の硫
酸塩の形で導入することが便利である。もちろん硫酸、
硫酸アンモニウムなどを添加することもできる。硫酸根
が原料の何れかに存在すれば、他のX成分及びY成分は
硝酸塩、塩化物、炭酸塩、水酸化物、燐酸塩等を用いる
こともできる。
It is preferable to use ammonium molybdate as a raw material for molybdenum and ammonium. When using molybdenum oxide, phosphomolybdic acid, or the like, it is necessary to add ammonia or the like so that the ammonium root falls within a predetermined range. As the vanadium raw material, ammonium metavanadate, vanadium pentoxide and the like can be used. Phosphoric acid and arsenic are generally used as phosphorus and arsenic, but they may be used in the form of salts with other essential components such as ammonium phosphate, ammonium arsenate or copper phosphate. Sulfate is conveniently introduced in the form of a sulfate salt of an X component such as potassium and / or a Y component such as copper. Of course sulfuric acid,
Ammonium sulfate or the like can also be added. If sulfate radicals are present in any of the raw materials, nitrates, chlorides, carbonates, hydroxides, phosphates and the like can be used as the other X component and Y component.

【0013】これらの原料をそれぞれ水に溶解または懸
濁し混合した液は、通常、懸濁液となっている。この溶
液はそのpHが約3〜9の範囲にあることが必要であ
り、この溶液を蒸発乾固して得た固体は、P:Moの比
が1:9のいわゆるドーソン型のヘテロポリ酸の塩が主
成分となっている。アンモニウム塩を用いないか、硫酸
根が多すぎて溶液のpHが3より小さくなると蒸発乾固
の段階からP:Moの比が1:12のいわゆるケギン構
造の塩となっており、この場合は本発明のような活性の
高い触媒が得られない。アンモニウム根が相対的に多過
ぎるなどpHが9より大きい場合には、前駆体のポリ酸
の形成が難しくやはり活性が低下する。アンモニウム
根、硫酸根はモリブデン12モルに対して、それぞれ6
〜18モル、0.1〜3モル存在させることが好まし
い。
A liquid obtained by dissolving or suspending these raw materials in water and mixing them is usually a suspension. This solution needs to have a pH in the range of about 3 to 9, and the solid obtained by evaporating this solution to dryness is a so-called Dawson type heteropoly acid having a P: Mo ratio of 1: 9. The main component is salt. If ammonium salt is not used or the pH of the solution becomes less than 3 due to too much sulfate, the salt has a so-called Keggin structure with a P: Mo ratio of 1:12 from the stage of evaporation to dryness. It is not possible to obtain a highly active catalyst as in the present invention. When the pH is higher than 9, such as when the amount of ammonium roots is relatively too large, it is difficult to form the precursor polyacid, and the activity is also lowered. Ammonium roots and sulfate roots are 6 for each 12 mol of molybdenum.
-18 mol, 0.1-3 mol is preferably present.

【0014】一般に用いられる硝酸塩などに比べ、なぜ
硫酸塩を用いた方が高性能な触媒が得られるのかその理
由ははっきりしないが、懸濁液中の結晶粒子径がより小
さくなる傾向が観測されている。
Although the reason why a high-performance catalyst can be obtained by using a sulfate as compared with a commonly used nitrate or the like is not clear, it is observed that the crystal grain size in the suspension becomes smaller. ing.

【0015】また次に述べる焼成工程において硫酸アン
モニウムなどの成分が揮散する際の細孔形成に有利であ
ると考えられる。更に、成形の際、メトキシセルロー
ス、ポリビニルアルコール等の有機成形助材を添加する
場合、硝酸アンモニウムが共存すると焼成時に大きな発
熱を伴う恐れがあるが、硫酸アンモニウム共存の場合は
このような問題が無いことでも有利である。
Further, it is considered to be advantageous for pore formation when components such as ammonium sulfate are volatilized in the firing step described below. Further, when adding an organic molding aid such as methoxycellulose or polyvinyl alcohol during molding, when ammonium nitrate coexists, a large amount of heat may be generated during firing, but in the case of ammonium sulfate coexistence, there is no such problem. It is advantageous.

【0016】この溶液を約80℃〜250℃の温度で1
時間以上、より好ましくは密閉加圧容器を用いて約11
0℃〜200℃の温度で加熱処理をする方が好ましい。
加熱処理を行わないか、加熱温度が約80℃以下の場合
は、メタクリリ酸への転化率が低い触媒になる。また2
50℃以上にしてもそれに見合った効果は得られない。
処理時間は特に制限されないが、通常、1〜24時間で
ある。この段階で何らかの固液の反応が進行し最終的に
得られた触媒の活性がより高くなる。
This solution is stirred at a temperature of about 80.degree.
Over time, more preferably about 11 using a closed pressure vessel
It is preferable to perform the heat treatment at a temperature of 0 ° C to 200 ° C.
When the heat treatment is not performed or the heating temperature is about 80 ° C. or lower, the catalyst has a low conversion rate to methacrylic acid. Again 2
Even if the temperature is higher than 50 ° C., the corresponding effect cannot be obtained.
The treatment time is not particularly limited, but is usually 1 to 24 hours. At this stage, some solid-liquid reaction proceeds, and the activity of the finally obtained catalyst becomes higher.

【0017】懸濁液はろ過して固形分を分離してもよい
が、通常は約100〜150℃の温度で濃縮乾燥する。
得られる固体は、アンモニウム根と硫酸根とを含んでい
るが、アンモニウムの一部はドーソン型ヘテロポリ酸の
塩を形成している。また硫酸根の存在状態については不
明であるが少なくともその一部は硫酸アンモニウムを形
成していると推定される。乾燥後の固体はこのままでは
殆ど活性がないので焼成して活性化する必要がある。焼
成の段階で、約200〜300℃の間でドーソン型から
ケギン型への結晶転移が起こり、また370℃までに遊
離の硫酸アンモニウム等の成分が除去されるが、これだ
けではまだ活性が低い。急激な焼成による触媒活性及び
強度への悪影響を避けるために、不活性ガス雰囲気中で
焼成して活性化する前に、予め約350〜370℃まで
の温度で徐々に焼成するのが好ましい。
The suspension may be filtered to separate solids, but it is usually concentrated and dried at a temperature of about 100 to 150 ° C.
The obtained solid contains ammonium radicals and sulfate radicals, but a part of ammonium forms a salt of Dawson type heteropolyacid. Although the presence of sulfate is unknown, it is presumed that at least part of it forms ammonium sulfate. Since the solid after drying is almost inactive as it is, it needs to be activated by firing. During the calcination stage, a crystal transition from a Dawson type to a Keggin type occurs between about 200 and 300 ° C., and free ammonium sulfate and other components are removed by 370 ° C., but this alone is still low in activity. In order to avoid adverse effects on catalyst activity and strength due to rapid calcination, it is preferable to gradually calcine at a temperature of up to about 350 to 370 ° C. before calcination and activation in an inert gas atmosphere.

【0018】活性化は不活性ガス雰囲気中で約400〜
500℃、好ましくは約420〜450℃の温度で約1
〜10時間焼成して行われる。通常行われているように
空気中で焼成した場合は、400℃以上ではヘテロポリ
酸の分解、焼結が起こって活性が低くなり、400℃以
下ではアンモニウム根および硫酸根が多く残ってしまう
ためにやはり活性が低い。不活性ガス中で400℃以上
の温度で焼成することによりヘテロポリ酸の構造を破壊
すること無く実質的に全てのアンモニウム根及び硫酸根
を取り除くことが出来る。不活性ガス雰囲気中で焼成
後、空気中で約400℃以下で焼成しても良い。
The activation is about 400-in an inert gas atmosphere.
About 1 at a temperature of 500 ° C, preferably about 420-450 ° C.
It is performed by firing for 10 hours. When fired in air as is usually done, the decomposition and sintering of the heteropolyacid occur at temperatures above 400 ° C, resulting in low activity, and at temperatures below 400 ° C, many ammonium and sulfate radicals remain. After all activity is low. By baking in an inert gas at a temperature of 400 ° C. or higher, substantially all ammonium radicals and sulfate radicals can be removed without destroying the structure of the heteropolyacid. After firing in an inert gas atmosphere, firing may be performed at about 400 ° C. or lower in air.

【0019】特開昭54−144311号及び特開昭5
7−11895号には、触媒調製原料として硫酸塩を用
い、硫酸根又はイオウ成分を触媒成分として含むものが
開示されているが、焼成後の触媒にイオウ分を含んでい
る点で本発明とは明らかに異なるものである。
Japanese Unexamined Patent Publication Nos. 54-14311 and 54-5
No. 7-11895 discloses that a sulfate is used as a raw material for preparing a catalyst and a sulfate group or a sulfur component is contained as a catalyst component. However, the present invention is characterized in that the catalyst after calcination contains a sulfur component. Is clearly different.

【0020】不活性ガス中で焼成したものはやや還元状
態になっているので、更に空気中で約400℃以下の温
度で焼成し再酸化して反応に用いてもよい。
Since the product calcined in an inert gas is in a slightly reduced state, it may be further calcined in air at a temperature of about 400 ° C. or lower and reoxidized for use in the reaction.

【0021】本発明の触媒はメタクロレイの酸化をはじ
め種々の反応に用いられるが、使用に当たっては触媒単
味、或いはアルミナ、シリカ、シリコンカーバイド等の
担体に担持又は希釈混合した形で用いられ、固定床の場
合は円柱状、球状、リング状等に成形して用いられる。
流動床、移動床等の反応形式で用いることもできる。
The catalyst of the present invention is used for various reactions such as oxidation of methacrolein. In use, the catalyst is used alone or in the form of being supported or diluted and mixed on a carrier such as alumina, silica, silicon carbide, and fixed. In the case of a floor, it is formed into a columnar shape, a spherical shape, a ring shape or the like before use.
It can also be used in a reaction format such as a fluidized bed or a moving bed.

【0022】本発明で得られる触媒を用いて、メタクロ
レインを気相で接触酸化してメタクリル酸を製造する場
合、使用される原料としては必ずしも純粋のメタクロレ
インである必要はなく、イソブチレンやターシャリーブ
タノールを気相接触酸化して得られたメタクロレイン含
有ガスでも、また液相法で得られたメタクロレインを気
化したものでもよい。酸素源は純粋な酸素でもよいが、
工業的には空気が使用される。
When methacrolein is catalytically oxidized in the gas phase to produce methacrylic acid using the catalyst obtained in the present invention, the raw material used does not necessarily have to be pure methacrolein, but isobutylene or tert. A methacrolein-containing gas obtained by vapor-phase catalytic oxidation of libutanol or a vaporized methacrolein obtained by a liquid phase method may be used. The oxygen source may be pure oxygen,
Air is used industrially.

【0023】その他の希釈ガスとしては、窒素、二酸化
炭素、一酸化炭素、水蒸気等を用いることができる。反
応原料ガス中のメタクロレイン濃度は約1〜10%、メ
タクロレインに対する酸素の比は約1〜5程度が用いら
れる。原料ガスの空間速度は約500〜5000h-1
範囲、反応温度は約260〜340℃程度が好ましい。
反応圧力は通常、常圧付近又は若干の加圧下で行なわれ
る。
As the other diluent gas, nitrogen, carbon dioxide, carbon monoxide, steam or the like can be used. The concentration of methacrolein in the reaction material gas is about 1 to 10%, and the ratio of oxygen to methacrolein is about 1 to 5. The space velocity of the raw material gas is preferably in the range of about 500 to 5000 h −1 , and the reaction temperature is preferably about 260 to 340 ° C.
The reaction pressure is usually around normal pressure or under slight pressure.

【0024】また本発明で得られる触媒を用いて、イソ
ブタンを直接酸化してメタクリル酸、メタクロレインを
製造する場合は、原料ガス中のイソブタン濃度は約15
%以上の高濃度の方がよい。酸素源としては、純酸素、
酸素富化空気、空気などが用いられる。イソブタンに対
する酸素の比は約0.2〜2程度が適当である。
When isobutane is directly oxidized using the catalyst obtained in the present invention to produce methacrylic acid or methacrolein, the concentration of isobutane in the raw material gas is about 15.
It is better to have a high concentration of at least% As an oxygen source, pure oxygen,
Oxygen-enriched air, air, etc. are used. A suitable ratio of oxygen to isobutane is about 0.2 to 2.

【0025】反応ガス中には水蒸気を約3〜30%の範
囲で含有させることが望ましい。原料ガス中には窒素、
二酸化炭素、一酸化炭素などが希釈ガスとして含まれて
いてもよい。この反応では転化率をそれほど高くできな
いので、未反応イソブタン及び場合により酸素は回収し
て再循環される。
It is desirable that the reaction gas contains water vapor in the range of about 3 to 30%. Nitrogen in the source gas,
Carbon dioxide, carbon monoxide, etc. may be contained as a diluent gas. The conversion cannot be so high in this reaction, so unreacted isobutane and optionally oxygen are recovered and recycled.

【0026】副生メタクロレンは再循環するか別の反応
器に導きメタクリル酸まで酸化する。空間速度は約30
0〜3000h-1、反応温度は約270〜340℃程度
が好ましい。反応圧力は、通常、常圧又は加圧下で行な
われる。
The by-product methacrolein is recycled or introduced into another reactor to oxidize methacrylic acid. Space velocity is about 30
The reaction temperature is preferably 0 to 3000 h -1 , and the reaction temperature is preferably about 270 to 340 ° C. The reaction pressure is usually atmospheric pressure or under pressure.

【0027】本発明で得られる触媒は、イソ酪酸の酸化
脱水素、イソブチルアルデヒドの酸化によるメタクリル
酸の製造にも用いることができる。またイソブチレンか
ら一段でメタクリル酸を製造する際にも用いることが可
能である。これらの反応では、メタクロレイの酸化と同
様な反応条件が採用できる。
The catalyst obtained in the present invention can also be used for the production of methacrylic acid by the oxidative dehydrogenation of isobutyric acid and the oxidation of isobutyraldehyde. It can also be used when producing methacrylic acid from isobutylene in a single step. In these reactions, reaction conditions similar to the oxidation of metachlorey can be adopted.

【0028】[0028]

【発明の効果】本発明の触媒はメタクリル酸の製造にお
いて、高い反応活性、選択性及び長い触媒寿命を有して
いる。
INDUSTRIAL APPLICABILITY The catalyst of the present invention has high reaction activity, selectivity and long catalyst life in the production of methacrylic acid.

【0029】[0029]

【実施例】以下に実施例を挙げて、本発明を更に具体的
に説明するが、本発明はこれらの実施例によって限定さ
れるものではない。転化率、及び選択率の定義は下記の
通りである。 転化率(%)=〔(反応した原料の炭素原子モル数)×
100〕÷(供給した原料の炭素原子モル数) 選択率(%)=〔(生成した生成物の炭素原子モル数)
×100〕÷(反応した原料の炭素原子モル数)
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The definitions of the conversion rate and the selectivity are as follows. Conversion rate (%) = [(moles of carbon atoms in the reacted raw material) x
100] ÷ (moles of carbon atoms of the supplied raw material) Selectivity (%) = [(moles of carbon atoms of the produced product)
× 100] ÷ (number of moles of carbon atoms of reacted raw material)

【0030】実施例1 イオン交換水330mlにモリブデン酸アンモニウム
((NH4 6 Mo7 24・4H2 O)296.5g及
びメタバナジン酸アンモニウム(NH4 VO3 )8.1
9gを溶解した液に、85%リン酸(H3 PO4 )2
4.2g,60%ヒ酸水溶液(H3 AsO4 )13.3
g,50%硫酸セシウム水溶液(Cs2 SO 4 )70.
3g及び硫酸銅(CuSO4 ・5H2 O)10.5gを
イオン交換水225ml溶解したものを加え、混合し
た。得られたスラリー中にはMo12モルあたりアンモ
ニウム根10.8モル,硫酸根1モルが含まれおり、p
Hは約6.0であった。
Example 1 Ammonium molybdate was added to 330 ml of ion-exchanged water.
((NHFour)6Mo7O twenty four・ 4H2O) 296.5g and
And ammonium metavanadate (NHFourVO3) 8.1
85% phosphoric acid (H3POFour) 2
4.2 g, 60% arsenic acid aqueous solution (H3AsOFour) 13.3
g, 50% cesium sulfate aqueous solution (Cs2SO Four) 70.
3 g and copper sulfate (CuSOFour・ 5H2O) 10.5 g
Add 225 ml of deionized water, mix and mix
It was In the obtained slurry, 12 moles of Mo
Contains 10.8 moles of roots and 1 mole of sulfate, p
H was about 6.0.

【0031】このスラリーをロータリーエバポレーター
で濃縮し、電気炉中120℃で乾燥した。この段階の乾
固物は、X線回折では2θ(CuKα)が9.6゜、1
1.1゜、12.4゜、15.5゜、19.1゜、2
0.7゜、22.7゜、25.9゜、27.6゜等にピ
ークをもち、いわゆるドーソン型のヘテロポリ酸塩の構
造をしている。
The slurry was concentrated by a rotary evaporator and dried in an electric furnace at 120 ° C. The dry solid at this stage has a 2θ (CuKα) of 9.6 ° and 1 by X-ray diffraction.
1.1 °, 12.4 °, 15.5 °, 19.1 °, 2
It has peaks at 0.7 °, 22.7 °, 25.9 °, 27.6 ° and has a so-called Dawson type heteropolyacid salt structure.

【0032】これを粉砕し,水を加えて金型で直径5m
m、長さ7mm程度に押し出し成形し,次いで空気中3
20℃で5時間焼成した。このものはX線回折で10.
5゜、18.4゜、23.8゜、26.1゜、30.2
゜等にピークをもち、いわゆるケギン型のヘテロポリ酸
塩になっていた。
This is crushed, water is added, and the diameter is 5 m with a mold.
m, length 7mm, extrusion molding, then 3 in air
It was baked at 20 ° C. for 5 hours. This is 10.
5 °, 18.4 °, 23.8 °, 26.1 °, 30.2
It had a peak at ° etc. and was a so-called Keggin-type heteropolyacid salt.

【0033】更にこれを窒素気流中、450℃で5時間
焼成後、空気中390℃で3時間焼成した。X線回折の
結果、この触媒はケギン型ヘテロポリ酸塩の構造であっ
た。またアンモニウム根及び硫酸根を分析した結果いず
れも検出限界(0.01重量%)以下であった。この触
媒の組成はP1.5 Mo120.5 As0.4 Cs1.4 Cu
0.3 (ただし、酸素、水素を除く)である。
Further, this was baked in a nitrogen stream at 450 ° C. for 5 hours and then in air at 390 ° C. for 3 hours. As a result of X-ray diffraction, the catalyst had a Keggin-type heteropolyacid salt structure. In addition, the results of analyzing ammonium roots and sulfates were both below the detection limit (0.01% by weight). The composition of this catalyst is P 1.5 Mo 12 V 0.5 As 0.4 Cs 1.4 Cu
0.3 (but excluding oxygen and hydrogen).

【0034】この触媒9mlを内径15mmのガラス製
反応管に充填し、メタクロレイン4モル%、酸素12モ
ル%、水蒸気16モル%、残りが窒素からなる組成の原
料ガスを、空間速度(STP基準)670h-1で反応管
を通し、反応温度280℃で活性試験を行った。その結
果メタクロレイン転化率84.5%、メタクリル酸選択
率87.0%であった。
9 ml of this catalyst was filled in a glass reaction tube having an inner diameter of 15 mm, and a raw material gas having a composition consisting of 4 mol% of methacrolein, 12 mol% of oxygen, 16 mol% of steam, and the balance of nitrogen was supplied at a space velocity (STP standard). ) Through the reaction tube at 670 h −1 , an activity test was conducted at a reaction temperature of 280 ° C. As a result, the conversion of methacrolein was 84.5% and the selectivity of methacrylic acid was 87.0%.

【0035】比較例1 硫酸セシウム水溶液の代わりに硝酸セシウム(CsNO
3 )38.2g及び硫酸銅の代わりに硝酸銅(CuNO
3 ・3H2 O)10.2gを用いた他は実施例1と同様
にして同じ組成の触媒を調製した。この触媒のX線回折
は実施例1と同じであった。実施例1と同様の活性試験
では、メタクロレイン転化率70.3%、メタクリル酸
選択率88.2%であった。硫酸塩でなく硝酸塩を用い
た場合は活性が低いことがわかる。
Comparative Example 1 Instead of an aqueous solution of cesium sulfate, cesium nitrate (CsNO
3 ) 38.2 g and copper nitrate (CuNO) instead of copper sulfate
3 · 3H 2 O) except for using 10.2g A catalyst was prepared in the same composition in the same manner as in Example 1. The X-ray diffraction of this catalyst was the same as in Example 1. In the same activity test as in Example 1, the methacrolein conversion was 70.3% and the methacrylic acid selectivity was 88.2%. It can be seen that the activity is low when nitrate is used instead of sulfate.

【0036】実施例2 パラモリブデン酸アンモニウム296.5gをイオン交
換水330mlに溶解したものに、別に85%リン酸2
4.2g、60%ヒ酸水溶液13.3g、硫酸銅10.
5g、50%硫酸セシウム水溶液70.3gをイオン交
換水225mlに溶解したものを混合、沈澱析出し、更
に五酸化バナジウム6.38gを加え、このスラリーを
1リットルのオートクレーブに移し、120℃で5時間
加熱撹拌処理を行った。このスラリー中にはモリブデン
12モルに対しアンモニウム根10.3モル、硫酸根1
モルを含んでおり、pHは約5.8であった。このスラ
リーを120℃で5時間乾燥し、その後は実施例1と同
じ方法で実施例1と同じ組成の触媒を調製した。実施例
1と同様の活性試験の結果は、メタクロレイン転化率9
3.4%、メタクリル酸選択率83.9%であった。
Example 2 296.5 g of ammonium paramolybdate was dissolved in 330 ml of deionized water, and another 85% phosphoric acid 2 was added.
4.2 g, 60% arsenic acid aqueous solution 13.3 g, copper sulfate 10.
A solution prepared by dissolving 5 g of 50% cesium sulfate aqueous solution 70.3 g in ion-exchanged water 225 ml was mixed and precipitated. Vanadium pentoxide 6.38 g was further added, and this slurry was transferred to a 1 liter autoclave and heated at 120 ° C. for 5 hours. A heating and stirring process was performed for an hour. In this slurry, 1 mol of ammonium root and 1 mol of sulfate and 12 mol of molybdenum were used.
It contained moles and had a pH of about 5.8. The slurry was dried at 120 ° C. for 5 hours, and then a catalyst having the same composition as in Example 1 was prepared by the same method as in Example 1. The result of the activity test similar to that of Example 1 shows that the conversion of methacrolein is 9
It was 3.4% and the selectivity of methacrylic acid was 83.9%.

【0037】比較例2 85%リン酸21.0gとし、硫酸銅の代わりにリン酸
銅(Cu3 (PO4 2 ・3H2 O)6.05g、硫酸
セシウムの代わりに炭酸セシウム(Cs2 CO 3 )3
1.3gを用いた他は実施例2と同様にして実施例1と
同じ組成の触媒を調製した。実施例1と同様の活性試験
の結果は、メタクロレイン転化率78.3%、メタクリ
ル酸選択率86.4%であった。実施例2と比較して活
性が低いことがわかる。
Comparative Example 2 21.0 g of 85% phosphoric acid was prepared, and phosphoric acid was used instead of copper sulfate.
Copper (Cu3(POFour) 2・ 3H2O) 6.05 g, sulfuric acid
Cesium carbonate (Cs instead of cesium2CO 3) 3
Same as Example 2 except that 1.3 g was used.
A catalyst of the same composition was prepared. Activity test similar to that of Example 1
The result is that the methacrolein conversion rate is 78.3% and methacrylic acid is
The acid selectivity was 86.4%. Compared to Example 2,
It can be seen that the property is low.

【0038】実施例3 パラモリブデン酸アンモニウム296.5gをイオン交
換水330mlに溶解したものに、別に85%リン酸2
4.2g、硫酸銅3.5g、50%硫酸セシウム水溶液
90.4g及び98%硫酸(H2 SO4 )7.0gをイ
オン交換水225mlに溶解したものを混合し、更に五
酸化バナジウム12.8gを加え、このスラリーを1リ
ットルのオートクレーブに移し、120℃で5時間加熱
撹拌処理を行った。このスラリー中にはモリブデン12
モルに対してアンモニウム根10.3モル、硫酸根1.
45モルを含んでおり、pHは約5.3であった。この
後は実施例2と同様にして、P1.5 Mo121.0 Cs
1.8 Cu0.1 の組成の触媒を調製した。実施例1と同様
の活性試験の結果は、メタクロレイン転化率86.4
%、メタクリル酸選択率81.0%であった。
Example 3 296.5 g of ammonium paramolybdate was dissolved in 330 ml of deionized water, and another 85% phosphoric acid 2 was added.
4.2 g, copper sulfate 3.5 g, 50% cesium sulfate aqueous solution 90.4 g and 98% sulfuric acid (H 2 SO 4 ) 7.0 g dissolved in ion-exchanged water 225 ml were mixed, and vanadium pentoxide 12. 8 g was added, and this slurry was transferred to a 1 liter autoclave, and heated and stirred at 120 ° C. for 5 hours. Molybdenum 12 in this slurry
Ammonium roots 10.3 moles and sulfate roots 1.
It contained 45 moles and had a pH of about 5.3. After this, in the same manner as in Example 2, P 1.5 Mo 12 V 1.0 Cs
A catalyst having a composition of 1.8 Cu 0.1 was prepared. The result of the activity test similar to that of Example 1 shows that the methacrolein conversion rate is 86.4.
%, And the selectivity for methacrylic acid was 81.0%.

【0039】比較例3 実施例3の触媒調製の途中、成形したものを窒素気流中
で焼成することなしに空気中360℃で焼成して触媒と
した。この触媒の赤外分光の結果、アンモニウム根が残
存していることがわかった。またイオウ分の定量分析結
果は0.6重量%であった。実施例1と同様の活性試験
の結果は、メタクロレイン転化率76.2%、メタクリ
ル酸選択率79.8%であった。実施例3と比較して、
不活性ガス雰囲気下における焼成を行わないと、活性、
選択性共に低い。
Comparative Example 3 During the preparation of the catalyst of Example 3, the molded product was calcined in air at 360 ° C. without being calcined in a nitrogen stream to obtain a catalyst. Infrared spectroscopy of this catalyst revealed that ammonium roots remained. The result of quantitative analysis of sulfur content was 0.6% by weight. As a result of the same activity test as in Example 1, the conversion of methacrolein was 76.2% and the selectivity of methacrylic acid was 79.8%. Compared to Example 3,
Without firing in an inert gas atmosphere, the
Both selectivity is low.

【0040】比較例4 リンモリブデン酸(H3 PMo1240・30H2 O)1
18.2g、85%リン酸8.65gをイオン交換水5
00mlに加え更に五酸化バナジウム(V2 5 )4.
54gを加え、100℃で5時間リフラックスし均一な
溶液を得た。これに硝酸銅1.2gを加え溶解し、更に
硝酸セシウム17.5g及び硫酸アンモニウム((NH
4 2 SO4 )9.9gをイオン交換水150mlに溶
解したものを加えてスラリーとした。このスラリー中に
はMo12モルに対しアンモニウム根3モル、硫酸根
1.5モルを含んでおり、pHは約2.0であった。
Comparative Example 4 Phosphomolybdic acid (H3PMo12O40・ 30H2O) 1
18.2 g and 85% phosphoric acid 8.65 g were added to ion-exchanged water 5
In addition to 00 ml, vanadium pentoxide (V2O Five) 4.
Add 54 g and reflux at 100 ° C for 5 hours to obtain a uniform
A solution was obtained. 1.2g of copper nitrate was added and dissolved in this, and further
17.5 g of cesium nitrate and ammonium sulfate ((NH
Four)2SOFour) Dissolve 9.9 g in 150 ml of deionized water
The solution was added to make a slurry. In this slurry
Is 3 moles of ammonium root and 12 moles of Mo, sulfate
It contained 1.5 moles and had a pH of about 2.0.

【0041】このスラリーをロータリーエバポレーター
をを用いて濃縮し、120℃で乾燥した。このものはX
線回折、赤外分光によりケギン型ヘテロポリ酸の塩であ
った。これを窒素気流中435℃で5時間焼成したの
ち、グラファイトを加えて打錠成形した。更に空気中3
80℃で3時間焼成し触媒とした。触媒組成は実施例3
と同じである。実施例1と同様の活性試験の結果は、メ
タクロレイン転化率73.8%、メタクリル酸選択率7
6.8%であった。スラリーのpHが低いと、活性、選
択性共に低い。
The slurry was concentrated using a rotary evaporator and dried at 120 ° C. This is X
It was a salt of Keggin-type heteropolyacid by line diffraction and infrared spectroscopy. This was baked in a nitrogen stream at 435 ° C. for 5 hours, and graphite was added to the mixture to form tablets. 3 in the air
It was calcined at 80 ° C. for 3 hours to obtain a catalyst. The catalyst composition is in Example 3
Is the same as. The result of the activity test similar to that of Example 1 shows that the conversion of methacrolein is 73.8% and the selectivity of methacrylic acid is 7
It was 6.8%. When the pH of the slurry is low, both activity and selectivity are low.

【0042】実施例4 実施例2の触媒を用い寿命試験を行った。反応条件は実
施例1と同様であるが、長期運転の反応温度は300℃
とし、活性試験の時だけ280℃で行った。その結果、
試験開始後200日後の反応成績は、メタクロレイン転
化率92.3%、メタクリル酸選択率84.2%であっ
た。
Example 4 A life test was conducted using the catalyst of Example 2. The reaction conditions are the same as in Example 1, but the reaction temperature during long-term operation is 300 ° C.
The test was carried out at 280 ° C. only during the activity test. as a result,
The reaction results 200 days after the start of the test were a methacrolein conversion rate of 92.3% and a methacrylic acid selectivity rate of 84.2%.

【0043】比較例5 比較例3の触媒を用い実施例4と同様の寿命試験を行っ
た。200日後の反応成績は、メタクロレイン転化率7
0.6%、メタクリル酸選択率79.2%であり、実施
例4に比べ活性低下が大きい。
Comparative Example 5 Using the catalyst of Comparative Example 3, the same life test as in Example 4 was conducted. The reaction result after 200 days was 7 for the conversion of methacrolein.
The activity was 0.6% and the selectivity of methacrylic acid was 79.2%, and the activity was much lower than in Example 4.

【0044】実施例5 実施例2の触媒を用い、イソブタンの酸化反応を行っ
た。触媒9gを内径15mmのガラス製反応管に充填し、
イソブタン42モル%、酸素33モル%、水蒸気12モ
ル%、残りが窒素からなる原料ガスを空間速度(STP
基準)600h-1で供給した。反応圧力1.5気圧とし
た。反応温度300℃とし反応開始15時間後に分析し
たところ、イソブタン転化率10.1%、メタクリル酸
選択率50.6%、メタクロレイン選択率13.2%で
あった。
Example 5 Using the catalyst of Example 2, an oxidation reaction of isobutane was carried out. 9 g of the catalyst was filled in a glass reaction tube having an inner diameter of 15 mm,
A source gas consisting of 42 mol% of isobutane, 33 mol% of oxygen, 12 mol% of steam, and the balance of nitrogen is a space velocity (STP).
(Reference) supplied at 600 h -1 . The reaction pressure was 1.5 atm. When the reaction temperature was set to 300 ° C. and analysis was carried out 15 hours after the start of the reaction, the isobutane conversion was 10.1%, methacrylic acid selectivity was 50.6%, and methacrolein selectivity was 13.2%.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇井 利明 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 (72)発明者 山本 哲也 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Toshiaki Ui 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Co., Ltd. (72) Inventor Tetsuya Yamamoto 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Co., Ltd. Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 PaMobVcAsdXeYfOg (式中、P、Mo、V、As、Oはそれぞれリン、モリ
ブデン、バナジウム、ヒ素及び酸素を表し、Xはカリウ
ム、ルビジウム、セシウム及びタリウムからなる群より
選ばれた少なくとも一種の元素を表し、Yは銅、銀、ビ
スマス、鉄、コバルト、アンチモン、ランタン及びセリ
ウムからなる群より選ばれた少なくとも一種の元素を表
し、また添字a、b、c、d、e、f及びgは各元素の
原子比を表し、b=12としたとき、a、c及びeは0
(ゼロ)を含まない3以下の値、d及びfは0(ゼロ)
を含む3以下の値、gは他の元素の原子価及び原子比に
よって決まる値である)で示され、実質的にアンモニウ
ム根及び硫酸根を含有しないヘテロポリ酸の部分中和塩
からなるメタクリル酸製造用触媒を製造する際に、全て
の触媒原料を水に溶解又は懸濁させた溶液のpHが3〜
9の範囲になるようにアンモニウム根及び硫酸根を存在
させ、該溶液を濃縮乾燥して得られる固体を不活性ガス
雰囲気下に400〜500℃で焼成することを特徴とす
るメタクリル酸製造用触媒の製造方法。
1. A general formula PaMobVcAsdXeYfOg (wherein P, Mo, V, As and O represent phosphorus, molybdenum, vanadium, arsenic and oxygen, respectively, and X is selected from the group consisting of potassium, rubidium, cesium and thallium. Represents at least one element, Y represents at least one element selected from the group consisting of copper, silver, bismuth, iron, cobalt, antimony, lanthanum and cerium, and subscripts a, b, c, d, e , F and g represent the atomic ratio of each element, and when b = 12, a, c and e are 0.
A value of 3 or less that does not include (zero), d and f are 0 (zero)
Methacrylic acid consisting of a partially neutralized salt of a heteropolyacid that does not substantially contain ammonium radicals and sulfate radicals, and g is a value of 3 or less, including g, and g is a value determined by the valence and atomic ratio of other elements. When producing a production catalyst, the pH of a solution obtained by dissolving or suspending all catalyst raw materials in water is 3 to
A catalyst for producing methacrylic acid, characterized in that an ammonium group and a sulfate group are present in the range of 9 and the solid obtained by concentrating and drying the solution is calcined at 400 to 500 ° C. in an inert gas atmosphere. Manufacturing method.
【請求項2】 全ての触媒原料を水に溶解又は懸濁させ
た溶液を80〜250℃で飽和水蒸気存在下に1〜24
時間加熱処理することを特徴とする請求項1記載のメタ
クリル酸製造用触媒の製造方法。
2. A solution prepared by dissolving or suspending all catalyst raw materials in water at 1 to 24 in the presence of saturated steam at 80 to 250 ° C.
The method for producing a catalyst for producing methacrylic acid according to claim 1, characterized in that heat treatment is carried out for a period of time.
【請求項3】 触媒原料を水に溶解又は懸濁させた溶液
中のアンモニウム根、硫酸根の量が、モリブデン12モ
ルに対してそれぞれ6〜18モル、0.1〜3モルであ
る請求項1記載のメタクリル酸製造用触媒の製造方法。
3. The amount of ammonium radical and sulfate radical in the solution prepared by dissolving or suspending the catalyst raw material in water is 6 to 18 mol and 0.1 to 3 mol per 12 mol of molybdenum, respectively. 1. The method for producing the catalyst for producing methacrylic acid according to 1.
JP24040092A 1992-09-09 1992-09-09 Method for producing catalyst for producing methacrylic acid Expired - Fee Related JP3316881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24040092A JP3316881B2 (en) 1992-09-09 1992-09-09 Method for producing catalyst for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24040092A JP3316881B2 (en) 1992-09-09 1992-09-09 Method for producing catalyst for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH0686933A true JPH0686933A (en) 1994-03-29
JP3316881B2 JP3316881B2 (en) 2002-08-19

Family

ID=17058914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24040092A Expired - Fee Related JP3316881B2 (en) 1992-09-09 1992-09-09 Method for producing catalyst for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3316881B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812606A (en) * 1994-06-30 1996-01-16 Sumitomo Chem Co Ltd Process for producing oxygen-containing compound using C4-LPG
JP2007090193A (en) * 2005-09-28 2007-04-12 Sumitomo Chemical Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008068217A (en) * 2006-09-15 2008-03-27 Nippon Kayaku Co Ltd Composite metal oxide catalyst and production method of the same
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2009022945A (en) * 2007-06-20 2009-02-05 Mitsubishi Rayon Co Ltd Raw material for catalyst production, its production method, method for producing catalyst, and method for producing methacrylic acid
KR20190069481A (en) 2016-12-12 2019-06-19 미쯔비시 케미컬 주식회사 Process for preparing catalyst precursor for the production of α, β-unsaturated carboxylic acid, process for producing α, β-unsaturated carboxylic acid, process for producing α, β-unsaturated carboxylic acid and process for producing α, β-unsaturated carboxylic acid ester

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812606A (en) * 1994-06-30 1996-01-16 Sumitomo Chem Co Ltd Process for producing oxygen-containing compound using C4-LPG
JP2007090193A (en) * 2005-09-28 2007-04-12 Sumitomo Chemical Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) * 2005-09-28 2010-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008068217A (en) * 2006-09-15 2008-03-27 Nippon Kayaku Co Ltd Composite metal oxide catalyst and production method of the same
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2009022945A (en) * 2007-06-20 2009-02-05 Mitsubishi Rayon Co Ltd Raw material for catalyst production, its production method, method for producing catalyst, and method for producing methacrylic acid
KR20190069481A (en) 2016-12-12 2019-06-19 미쯔비시 케미컬 주식회사 Process for preparing catalyst precursor for the production of α, β-unsaturated carboxylic acid, process for producing α, β-unsaturated carboxylic acid, process for producing α, β-unsaturated carboxylic acid and process for producing α, β-unsaturated carboxylic acid ester
CN110062656A (en) * 2016-12-12 2019-07-26 三菱化学株式会社 The manufacturing method of alpha, beta-unsaturated carboxylic acid catalyst for producing precursor, the manufacturing method of alpha, beta-unsaturated carboxylic acid catalyst for producing, the manufacturing method of the manufacturing method of alpha, beta-unsaturated carboxylic acid and esters of alpha, beta, unsaturated carboxylic acids

Also Published As

Publication number Publication date
JP3316881B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
US4180678A (en) Process for preparing methacrylic acid
US4017423A (en) Process for the preparation of unsaturated acids from unsaturated aldehydes
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
US4225466A (en) Catalytic oxide composition for preparing methacrylic acid
US5208371A (en) Process for production of methacrolein and methacrylic acid
JP2021120333A (en) Method for producing heteropolyacid compound, method for producing heteropolyacid compound and methacrylic acid
JPH081005A (en) Method for producing catalyst for methacrylic acid production
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP2001114726A (en) Production process for methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JPH10128112A (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing the same
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JPH09290162A (en) Production of oxidation catalyst and production of methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008229515A (en) Method for producing a catalyst for methacrylic acid production
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JPH0924277A (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH10167711A (en) Vanadium-phosphorus-based oxide, its production, catalyst for vapor-phase oxidation comprising the same and partial vapor-phase oxidation for hydrocarbons

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees